|
import dask.dataframe as dd |
|
import pandas as pd |
|
import sys |
|
import os |
|
import numpy as np |
|
|
|
from Bio.PDB import PDBList |
|
from Bio import SeqIO |
|
|
|
from rdkit import Chem |
|
|
|
import warnings |
|
|
|
def get_sequence(pdb_id): |
|
try: |
|
pdbfile = PDBList().retrieve_pdb_file(pdb_id.upper(),file_format='pdb',pdir='/tmp') |
|
seq = str(next(SeqIO.parse(pdbfile, "pdb-seqres")).seq) |
|
os.unlink(pdbfile) |
|
|
|
return seq |
|
except Exception as e: |
|
print(e) |
|
pass |
|
|
|
def make_canonical(smi): |
|
return Chem.MolToSmiles(Chem.MolFromSmiles(smi)) |
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob(sys.argv[3]) |
|
|
|
seqs = [] |
|
smiles = [] |
|
active = [] |
|
|
|
targets = pd.read_csv(sys.argv[1],sep=' ',keep_default_na=False) |
|
for fn in filenames: |
|
df = pd.read_csv(fn,header=None,sep=' ') |
|
df[0] = df[0].apply(make_canonical) |
|
df[1] = df[1].apply(make_canonical) |
|
actives = df[0].unique() |
|
decoys = df[1].unique() |
|
smiles += actives.tolist()+decoys.tolist() |
|
active += [True]*len(actives) + [False]*len(decoys) |
|
split = os.path.basename(fn).split('-') |
|
target = split[2].upper() |
|
if len(split) > 5: |
|
target += '-'+split[3].upper() |
|
print(target) |
|
seq = get_sequence(targets[targets.name.str.upper()==target].pdb.values[0]) |
|
seqs += [seq]*(len(actives)+len(decoys)) |
|
|
|
ddf = dd.from_pandas(pd.DataFrame({'seq': seqs, 'smiles': smiles, 'active': active}),npartitions=1) |
|
ddf = ddf.repartition(partition_size='1M') |
|
ddf.to_parquet(sys.argv[2]) |
|
|