|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MultiBooked dataset.""" |
|
|
|
import os |
|
import xml.etree.ElementTree as ET |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Barnes2018multibooked, |
|
author={Barnes, Jeremy and Lambert, Patrik and Badia, Toni}, |
|
title={MultiBooked: A corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification}, |
|
booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC'18)}, |
|
year = {2018}, |
|
month = {May}, |
|
date = {7-12}, |
|
address = {Miyazaki, Japan}, |
|
publisher = {European Language Resources Association (ELRA)}, |
|
language = {english} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MultiBooked is a corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification. |
|
|
|
The corpora are compiled from hotel reviews taken mainly from booking.com. The corpora are in Kaf/Naf format, which is |
|
an xml-style stand-off format that allows for multiple layers of annotation. Each review was sentence- and |
|
word-tokenized and lemmatized using Freeling for Catalan and ixa-pipes for Basque. Finally, for each language two |
|
annotators annotated opinion holders, opinion targets, and opinion expressions for each review, following the |
|
guidelines set out in the OpeNER project. |
|
""" |
|
|
|
_HOMEPAGE = "http://hdl.handle.net/10230/33928" |
|
|
|
_LICENSE = "CC-BY 3.0" |
|
|
|
_URL = "https://github.com/jerbarnes/multibooked/archive/master.zip" |
|
|
|
|
|
class MultiBooked(datasets.GeneratorBasedBuilder): |
|
"""MultiBooked dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="ca", description="MultiBooked dataset in Catalan language."), |
|
datasets.BuilderConfig(name="eu", description="MultiBooked dataset in Basque language."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.features.Sequence( |
|
{ |
|
"wid": datasets.Value("string"), |
|
"sent": datasets.Value("string"), |
|
"para": datasets.Value("string"), |
|
"word": datasets.Value("string"), |
|
} |
|
), |
|
"terms": datasets.features.Sequence( |
|
{ |
|
"tid": datasets.Value("string"), |
|
"lemma": datasets.Value("string"), |
|
"morphofeat": datasets.Value("string"), |
|
"pos": datasets.Value("string"), |
|
"target": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
"opinions": datasets.features.Sequence( |
|
{ |
|
"oid": datasets.Value("string"), |
|
"opinion_holder_target": datasets.features.Sequence(datasets.Value("string")), |
|
"opinion_target_target": datasets.features.Sequence(datasets.Value("string")), |
|
"opinion_expression_polarity": datasets.features.ClassLabel( |
|
names=["StrongNegative", "Negative", "Positive", "StrongPositive"] |
|
), |
|
"opinion_expression_target": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dirpath": os.path.join(data_dir, "multibooked-master", "corpora", self.config.name), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dirpath): |
|
for id_, filepath in enumerate(sorted(Path(dirpath).iterdir())): |
|
example = defaultdict(lambda: defaultdict(list)) |
|
with open(filepath, encoding="utf-8") as f: |
|
for _, elem in ET.iterparse(f): |
|
if elem.tag == "text": |
|
for child in elem: |
|
|
|
example["text"]["wid"].append(child.attrib.get("wid", "")) |
|
example["text"]["sent"].append(child.attrib["sent"]) |
|
example["text"]["para"].append(child.attrib["para"]) |
|
example["text"]["word"].append(child.text) |
|
elif elem.tag == "terms": |
|
for child in elem: |
|
|
|
example["terms"]["tid"].append(child.attrib.get("tid", "")) |
|
example["terms"]["lemma"].append(child.attrib["lemma"]) |
|
example["terms"]["morphofeat"].append(child.attrib["morphofeat"]) |
|
example["terms"]["pos"].append(child.attrib["pos"]) |
|
targets = [] |
|
for target in child.findall("span/target"): |
|
targets.append(target.attrib["id"]) |
|
example["terms"]["target"].append(targets) |
|
elif elem.tag == "opinions": |
|
for child in elem: |
|
example["opinions"]["oid"].append(child.attrib["oid"]) |
|
|
|
opinion_holder = child.find("opinion_holder") |
|
targets = [] |
|
for target in opinion_holder.findall("span/target"): |
|
targets.append(target.attrib["id"]) |
|
example["opinions"]["opinion_holder_target"].append(targets) |
|
|
|
opinion_target = child.find("opinion_target") |
|
targets = [] |
|
for target in opinion_target.findall("span/target"): |
|
targets.append(target.attrib["id"]) |
|
example["opinions"]["opinion_target_target"].append(targets) |
|
|
|
opinion_expression = child.find("opinion_expression") |
|
example["opinions"]["opinion_expression_polarity"].append( |
|
opinion_expression.attrib["polarity"] |
|
) |
|
targets = [] |
|
for target in opinion_expression.findall("span/target"): |
|
targets.append(target.attrib["id"]) |
|
example["opinions"]["opinion_expression_target"].append(targets) |
|
yield id_, example |
|
|