Upload rotten_tomatoes_reviews.py
Browse files- rotten_tomatoes_reviews.py +114 -0
rotten_tomatoes_reviews.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from datasets.tasks import TextClassification
|
3 |
+
|
4 |
+
_DESCRIPTION = """
|
5 |
+
Movie Review Dataset.
|
6 |
+
|
7 |
+
This is a dataset containing 4,265 positive and 4,265 negative processed
|
8 |
+
sentences from Rotten Tomatoes movie reviews.
|
9 |
+
"""
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@InProceedings{Pang+Lee:05a,
|
13 |
+
author = {Bo Pang and Lillian Lee},
|
14 |
+
title = {Seeing stars: Exploiting class relationships for sentiment
|
15 |
+
categorization with respect to rating scales},
|
16 |
+
booktitle = {Proceedings of the ACL},
|
17 |
+
year = 2005
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DOWNLOAD_URL = "https://testerstories/files/ai_learn/rt-polaritydata.tar.gz"
|
22 |
+
|
23 |
+
|
24 |
+
class RottenTomatoesReviews(datasets.GeneratorBasedBuilder):
|
25 |
+
VERSION = datasets.Version("1.0.0")
|
26 |
+
|
27 |
+
def _info(self):
|
28 |
+
return datasets.DatasetInfo(
|
29 |
+
description=_DESCRIPTION,
|
30 |
+
features=datasets.Features(
|
31 |
+
{
|
32 |
+
"text": datasets.Value("string"),
|
33 |
+
"label": datasets.features.ClassLabel(names=["neg", "pos"]),
|
34 |
+
}
|
35 |
+
),
|
36 |
+
supervised_keys=[""],
|
37 |
+
homepage="http://www.cs.cornell.edu/people/pabo/movie-review-data/",
|
38 |
+
citation=_CITATION,
|
39 |
+
task_templates=[
|
40 |
+
TextClassification(text_column="text", label_column="label")
|
41 |
+
],
|
42 |
+
)
|
43 |
+
|
44 |
+
def _split_generators(self, dl_manager):
|
45 |
+
archive = dl_manager.download(_DOWNLOAD_URL)
|
46 |
+
|
47 |
+
return [
|
48 |
+
datasets.SplitGenerator(
|
49 |
+
name=datasets.Split.TRAIN,
|
50 |
+
gen_kwargs={
|
51 |
+
"split_key": "train",
|
52 |
+
"files": dl_manager.iter_archive(archive),
|
53 |
+
},
|
54 |
+
),
|
55 |
+
datasets.SplitGenerator(
|
56 |
+
name=datasets.Split.VALIDATION,
|
57 |
+
gen_kwargs={
|
58 |
+
"split_key": "validation",
|
59 |
+
"files": dl_manager.iter_archive(archive),
|
60 |
+
},
|
61 |
+
),
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.TEST,
|
64 |
+
gen_kwargs={
|
65 |
+
"split_key": "test",
|
66 |
+
"files": dl_manager.iter_archive(archive),
|
67 |
+
},
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
def _get_examples_from_split(self, split_key, files):
|
72 |
+
data_dir = "rt-polaritydata/"
|
73 |
+
pos_samples, neg_samples = None, None
|
74 |
+
|
75 |
+
for path, f in files:
|
76 |
+
if path == data_dir + "rt-polarity.pos":
|
77 |
+
pos_samples = [line.decode("latin-1").strip() for line in f]
|
78 |
+
elif path == data_dir + "rt-polarity.neg":
|
79 |
+
neg_samples = [line.decode("latin-1").strip() for line in f]
|
80 |
+
|
81 |
+
if pos_samples is not None and neg_samples is not None:
|
82 |
+
break
|
83 |
+
|
84 |
+
i1 = int(len(pos_samples) * 0.8 + 0.5)
|
85 |
+
i2 = int(len(pos_samples) * 0.9 + 0.5)
|
86 |
+
|
87 |
+
train_samples = pos_samples[:i1] + neg_samples[:i1]
|
88 |
+
train_labels = (["pos"] * i1) + (["neg"] * i1)
|
89 |
+
|
90 |
+
validation_samples = pos_samples[i1:i2] + neg_samples[i1:i2]
|
91 |
+
validation_labels = (["pos"] * (i2 - i1)) + (["neg"] * (i2 - i1))
|
92 |
+
|
93 |
+
test_samples = pos_samples[i2:] + neg_samples[i2:]
|
94 |
+
test_labels = (["pos"] * (len(pos_samples) - i2)) + (
|
95 |
+
["neg"] * (len(pos_samples) - i2)
|
96 |
+
)
|
97 |
+
|
98 |
+
if split_key == "train":
|
99 |
+
return (train_samples, train_labels)
|
100 |
+
if split_key == "validation":
|
101 |
+
return (validation_samples, validation_labels)
|
102 |
+
if split_key == "test":
|
103 |
+
return (test_samples, test_labels)
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Invalid split key {split_key}")
|
106 |
+
|
107 |
+
def _generate_examples(self, split_key, files):
|
108 |
+
split_text, split_labels = self._get_examples_from_split(split_key, files)
|
109 |
+
|
110 |
+
for text, label in zip(split_text, split_labels):
|
111 |
+
data_key = split_key + "_" + text
|
112 |
+
feature_dict = {"text": text, "label": label}
|
113 |
+
|
114 |
+
yield data_key, feature_dict
|