Singh2018 / scripts /classification_scripts /Classify_Scalars_SVM_MatchSubjs.m
jalauer's picture
Add files using upload-large-folder tool
d7989aa verified
function Classify_Scalars_SVM_MatchSubjs(InData,TITLE,MATCHTOEEG,vars,Xval)
% Nomenclature is that 'A' TARGETS are classified (1's) from 'B' STANDARDS (0's)
Big_A=InData(InData(:,1)==1,vars) ; % PD
Big_B=InData(InData(:,1)~=1,vars) ; % CTL
% Align them so each CTL matches each PD
Big_B=Big_B(MATCHTOEEG',:);
for rep = 1:28
if rem(rep,100)==0
['SVM ' Xval ' ' TITLE ' ' num2str(rep)]
end
AllData = cat(1,Big_A,Big_B);
GROUPS = [ones(1,size(Big_A,1)),zeros(1,size(Big_B,1))];
Size_Per_Set = size(AllData,1) .* .5;
% Cross Validate
testsize = 1;
trainsize = Size_Per_Set-testsize;
% get shuffled trials for train set
TrainBool = ones(1,Size_Per_Set); TrainBool(rep)=0;
% get shuffled trials for validate set
Test1Bool = zeros(1,Size_Per_Set); Test1Bool(rep)=1;
% same for standards and targets
TrainBool = [TrainBool TrainBool];
Test1Bool = [Test1Bool Test1Bool];
% Classify ****** Targets ******
% training set
x_train = AllData(TrainBool==1,:);
% normalize!
x_mean = mean(x_train); x_std = std(x_train);
x_train_norm = (x_train - repmat(x_mean,size(x_train,1),1)); % mean normalize
x_train_norm = x_train_norm./repmat(x_std,size(x_train,1),1);
y_train = GROUPS(TrainBool==1);
% validate set
xtstset1 = AllData(Test1Bool == 1,:);
% normalize to train set
xtstset1_norm = (xtstset1-repmat(x_mean,size(xtstset1,1),1));
xtstset1_norm = xtstset1_norm./ repmat(x_std,size(xtstset1,1),1); % normalize to trn data
y_tstset1 = GROUPS(Test1Bool==1);
% store normalizing constants. Important to normalize to that when applying
% weights to a different data set later.
norm{1}(rep,:) = x_mean;
norm{2}(rep,:) = x_std;
x_train = x_train_norm;
x_test1 = xtstset1_norm;
% ############# SVM #############
SVMModel = fitcsvm(x_train,y_train','KernelFunction','linear');
[label,score] = predict(SVMModel,x_test1);
acc=label==y_tstset1';
Aset_acc(rep,:)=acc(1:length(acc)/2);
Bset_acc(rep,:)=acc((length(acc)/2)+1:end);
Aset_score(rep,:)=score(1,1);
Bset_score(rep,:)=score(2,1);
% ############# SVM #############
clearvars -except Aset_acc Bset_acc Aset_score Bset_score rep Big_A Big_B InData Xval TITLE iterations MATCHTOEEG
end
% Save
save(['SVM_',TITLE,'_',Xval,'_iter28','.mat'],'Aset_acc','Bset_acc','Aset_score','Bset_score');