|
|
function Classify_Scalars_SVM(InData,TITLE,iterations,vars,Xval)
|
|
|
|
|
|
|
|
|
Big_A=InData(InData(:,1)==1,vars) ;
|
|
|
Big_B=InData(InData(:,1)~=1,vars) ;
|
|
|
|
|
|
Aset_score=NaN(28,iterations);
|
|
|
Bset_score=NaN(28,iterations);
|
|
|
for rep = 1:iterations
|
|
|
if rem(rep,100)==0
|
|
|
['SVM ' Xval ' ' TITLE ' ' num2str(rep)]
|
|
|
end
|
|
|
|
|
|
|
|
|
size_targs=size(Big_A,1);
|
|
|
size_stds=size(Big_B,1);
|
|
|
if size_targs<size_stds
|
|
|
temp=shuffle(1:size_stds);
|
|
|
TARGETS=Big_A;
|
|
|
STANDARDS=Big_B(temp(1:size_targs),:); clear temp size_stds size_targs;
|
|
|
elseif size_stds<size_targs
|
|
|
temp=shuffle(1:size_targs);
|
|
|
TARGETS=Big_A(:,:,temp(1:size_stds)); clear temp size_stds size_targs;
|
|
|
STANDARDS=Big_B;
|
|
|
else
|
|
|
TARGETS=Big_A;
|
|
|
STANDARDS=Big_B;
|
|
|
end
|
|
|
AllData = cat(1,TARGETS,STANDARDS);
|
|
|
GROUPS = [ones(1,size(TARGETS,1)),zeros(1,size(STANDARDS,1))];
|
|
|
Size_Per_Set = size(AllData,1) .* .5;
|
|
|
|
|
|
|
|
|
if strmatch(Xval,'5X'); testsize = floor(.2*Size_Per_Set);
|
|
|
elseif strmatch(Xval,'10X'); testsize = floor(.1*Size_Per_Set);
|
|
|
elseif strmatch(Xval,'LOO'); testsize = 1;
|
|
|
end
|
|
|
trainsize = Size_Per_Set-testsize;
|
|
|
|
|
|
ForRand = shuffle(1:Size_Per_Set);
|
|
|
TrainBool_T = zeros(1,Size_Per_Set); TrainBool_T(ForRand(1:trainsize))=1;
|
|
|
Test1Bool_T = zeros(1,Size_Per_Set); Test1Bool_T(ForRand(trainsize+1:trainsize+testsize))=1;
|
|
|
|
|
|
ForRand = shuffle(1:Size_Per_Set);
|
|
|
TrainBool_S = zeros(1,Size_Per_Set); TrainBool_S(ForRand(1:trainsize))=1;
|
|
|
Test1Bool_S = zeros(1,Size_Per_Set); Test1Bool_S(ForRand(trainsize+1:trainsize+testsize))=1;
|
|
|
|
|
|
TrainBool = [TrainBool_T TrainBool_S];
|
|
|
Test1Bool = [Test1Bool_T Test1Bool_S];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_train = AllData(TrainBool==1,:);
|
|
|
|
|
|
x_mean = mean(x_train); x_std = std(x_train);
|
|
|
x_train_norm = (x_train - repmat(x_mean,size(x_train,1),1));
|
|
|
x_train_norm = x_train_norm./repmat(x_std,size(x_train,1),1);
|
|
|
y_train = GROUPS(TrainBool==1);
|
|
|
|
|
|
|
|
|
xtstset1 = AllData(Test1Bool == 1,:);
|
|
|
|
|
|
xtstset1_norm = (xtstset1-repmat(x_mean,size(xtstset1,1),1));
|
|
|
xtstset1_norm = xtstset1_norm./ repmat(x_std,size(xtstset1,1),1);
|
|
|
y_tstset1 = GROUPS(Test1Bool==1);
|
|
|
|
|
|
|
|
|
|
|
|
norm{1}(rep,:) = x_mean;
|
|
|
norm{2}(rep,:) = x_std;
|
|
|
|
|
|
x_train = x_train_norm;
|
|
|
x_test1 = xtstset1_norm;
|
|
|
|
|
|
|
|
|
SVMModel = fitcsvm(x_train,y_train','KernelFunction','linear');
|
|
|
[label,score] = predict(SVMModel,x_test1);
|
|
|
|
|
|
acc=label==y_tstset1';
|
|
|
Aset_acc(rep,:)=acc(1:length(acc)/2);
|
|
|
Bset_acc(rep,:)=acc((length(acc)/2)+1:end);
|
|
|
|
|
|
Aset_score(find(Test1Bool_T==1),rep)=score(1:length(acc)/2,1);
|
|
|
Bset_score(find(Test1Bool_S==1),rep)=score((length(acc)/2)+1:length(acc),1);
|
|
|
|
|
|
|
|
|
clearvars -except Aset_acc Bset_acc Aset_score Bset_score rep Big_A Big_B InData Xval TITLE iterations
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
save(['SVM_',TITLE,'_',Xval,'_iter',num2str(iterations),'.mat'],'Aset_acc','Bset_acc','Aset_score','Bset_score');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|