Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K - 10K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""SemEval 2015: Aspect-based Sentiment Analysis""" | |
import csv | |
import json | |
import os | |
import datasets | |
_DESCRIPTION = """\ | |
This dataset is built as a playground for aspect-based sentiment analysis. | |
""" | |
_HOMEPAGE = "https://alt.qcri.org/semeval2015/" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_TRAIN_LAPTOP_URL = "https://drive.google.com/uc?id=1Zvh4bZOZgSkIHrrA5WVvyPQO6-wWk4xQ" | |
_VAL_LAPTOP_URL = "https://drive.google.com/uc?id=14NgRdqcEHFfki0z49iMR8wqOEBnqdLH9" | |
_TRAIN_RESTAURANT_URL = "https://drive.google.com/uc?id=1fx1fWemdTYjonYSVfX-vcgU3KQa7C85V" | |
_VAL_RESTAURANT_URL = "https://drive.google.com/uc?id=1fHD0USeUgiLrnTo6zvRajk8whvsTVdAX" | |
DOMAINS = ['laptop', 'restaurant'] | |
class ABSAConfig(datasets.BuilderConfig): | |
"""SemEval 2015 - ABSA Configs""" | |
def __init__(self, domain: str, **kwargs): | |
if domain not in DOMAINS: | |
raise ValueError(f"Invalild domain: {domain}. Available domains: {DOMAINS}",) | |
name = domain | |
super(ABSAConfig, self).__init__(name=name, description=_DESCRIPTION, **kwargs) | |
self.domain = domain | |
self.url_train = _TRAIN_LAPTOP_URL if domain == 'laptop' else _TRAIN_RESTAURANT_URL | |
self.url_val = _VAL_LAPTOP_URL if domain == 'laptop' else _VAL_RESTAURANT_URL | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class ABSA(datasets.GeneratorBasedBuilder): | |
"""SemEval 2015: Aspect-based Sentiment Analysis.""" | |
_VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
ABSAConfig( | |
domain='laptop', | |
version=_VERSION | |
), | |
ABSAConfig( | |
domain='restaurant', | |
version=_VERSION | |
) | |
] | |
def _info(self): | |
if self.config.domain == 'restaurant': | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"aspects": datasets.Sequence({ | |
'term': datasets.Value("string"), | |
'polarity': datasets.Value("string"), | |
'from': datasets.Value("int16"), | |
'to': datasets.Value("int16"), | |
}), | |
"category": datasets.Sequence({ | |
'category': datasets.Value("string"), | |
'polarity': datasets.Value("string") | |
}) | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"aspects": datasets.Sequence({ | |
'term': datasets.Value("string"), | |
'polarity': datasets.Value("string"), | |
'from': datasets.Value("int16"), | |
'to': datasets.Value("int16"), | |
}) | |
} | |
) | |
# features = datasets.Features( | |
# { | |
# "id": datasets.Value("int16"), | |
# "text": datasets.Value("string"), | |
# "aspects": datasets.Sequence([{ | |
# 'term': datasets.Value("string"), | |
# 'polarity': datasets.Value("string"), | |
# 'from': datasets.Value("int8"), | |
# 'to': datasets.Value("int8"), | |
# }]), | |
# "category": datasets.Sequence([{ | |
# 'category': datasets.Value("string"), | |
# 'polarity': datasets.Value("string") | |
# }]) | |
# } | |
# ) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE | |
) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download(self.config.url_train) | |
val_path = dl_manager.download(self.config.url_val) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}) | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath): | |
"""Generate examples.""" | |
with open(filepath, 'r') as f: | |
contents = json.load(f) | |
for id_, row in enumerate(contents): | |
yield id_, row |