Datasets:
Commit
·
f4ea8b7
1
Parent(s):
63353f2
add files
Browse files- README.md +147 -0
- causalqa.py +116 -0
- dataset_infos.json +1 -0
- source/dataset_description.txt +1 -0
- source/dataset_info.json +225 -0
- source/features_metadata.yaml +158 -0
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license: []
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
pretty_name: CausalQA
|
12 |
+
size_categories:
|
13 |
+
- 1M<n<10M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
tags:
|
17 |
+
- question-answering
|
18 |
+
- english
|
19 |
+
- causal
|
20 |
+
task_categories:
|
21 |
+
- question-answering
|
22 |
+
task_ids:
|
23 |
+
- extractive-qa
|
24 |
+
---
|
25 |
+
|
26 |
+
# Dataset Card for [Dataset Name]
|
27 |
+
|
28 |
+
## Table of Contents
|
29 |
+
- [Table of Contents](#table-of-contents)
|
30 |
+
- [Dataset Description](#dataset-description)
|
31 |
+
- [Dataset Summary](#dataset-summary)
|
32 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
33 |
+
- [Languages](#languages)
|
34 |
+
- [Dataset Structure](#dataset-structure)
|
35 |
+
- [Data Instances](#data-instances)
|
36 |
+
- [Data Fields](#data-fields)
|
37 |
+
- [Data Splits](#data-splits)
|
38 |
+
- [Dataset Creation](#dataset-creation)
|
39 |
+
- [Curation Rationale](#curation-rationale)
|
40 |
+
- [Source Data](#source-data)
|
41 |
+
- [Annotations](#annotations)
|
42 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
43 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
44 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
45 |
+
- [Discussion of Biases](#discussion-of-biases)
|
46 |
+
- [Other Known Limitations](#other-known-limitations)
|
47 |
+
- [Additional Information](#additional-information)
|
48 |
+
- [Dataset Curators](#dataset-curators)
|
49 |
+
- [Licensing Information](#licensing-information)
|
50 |
+
- [Citation Information](#citation-information)
|
51 |
+
- [Contributions](#contributions)
|
52 |
+
|
53 |
+
## Dataset Description
|
54 |
+
|
55 |
+
- **Homepage:**
|
56 |
+
- **Repository:**
|
57 |
+
- **Paper:**
|
58 |
+
- **Leaderboard:**
|
59 |
+
- **Point of Contact:**
|
60 |
+
|
61 |
+
### Dataset Summary
|
62 |
+
|
63 |
+
[More Information Needed]
|
64 |
+
|
65 |
+
### Supported Tasks and Leaderboards
|
66 |
+
|
67 |
+
[More Information Needed]
|
68 |
+
|
69 |
+
### Languages
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
## Dataset Structure
|
74 |
+
|
75 |
+
### Data Instances
|
76 |
+
|
77 |
+
[More Information Needed]
|
78 |
+
|
79 |
+
### Data Fields
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Data Splits
|
84 |
+
|
85 |
+
[More Information Needed]
|
86 |
+
|
87 |
+
## Dataset Creation
|
88 |
+
|
89 |
+
### Curation Rationale
|
90 |
+
|
91 |
+
[More Information Needed]
|
92 |
+
|
93 |
+
### Source Data
|
94 |
+
|
95 |
+
#### Initial Data Collection and Normalization
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
#### Who are the source language producers?
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
### Annotations
|
104 |
+
|
105 |
+
#### Annotation process
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
#### Who are the annotators?
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
### Personal and Sensitive Information
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
## Considerations for Using the Data
|
118 |
+
|
119 |
+
### Social Impact of Dataset
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
### Discussion of Biases
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Other Known Limitations
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
## Additional Information
|
132 |
+
|
133 |
+
### Dataset Curators
|
134 |
+
|
135 |
+
[More Information Needed]
|
136 |
+
|
137 |
+
### Licensing Information
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
### Citation Information
|
142 |
+
|
143 |
+
[More Information Needed]
|
144 |
+
|
145 |
+
### Contributions
|
146 |
+
|
147 |
+
Thanks to [@alamhanz](https://github.com/alamhanz) and [@andreaschandra](https://github.com/andreaschandra) for adding this dataset.
|
causalqa.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Causal QA : """
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import csv
|
6 |
+
import yaml
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
class CausalqaConfig(datasets.BuilderConfig):
|
11 |
+
"""BuilderConfig for causalqa."""
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
data_features,
|
16 |
+
data_url,
|
17 |
+
citation,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
"""BuilderConfig for GLUE.
|
21 |
+
Args:
|
22 |
+
data_features: `dict[string, string]`, map from the name of the feature
|
23 |
+
dict for each text field to the name of the column in the tsv file
|
24 |
+
data_url: `dict[string, string]`, url to download the zip file from
|
25 |
+
citation: `string`, citation for the data set
|
26 |
+
process_label: `Function[string, any]`, function taking in the raw value
|
27 |
+
of the label and processing it to the form required by the label feature
|
28 |
+
**kwargs: keyword arguments forwarded to super.
|
29 |
+
"""
|
30 |
+
super(CausalqaConfig, self).__init__(**kwargs)
|
31 |
+
self.data_features = data_features
|
32 |
+
self.data_url = data_url
|
33 |
+
self.citation = citation
|
34 |
+
|
35 |
+
def OneBuild(data_info,feat_meta):
|
36 |
+
main_name = [*data_info][0]
|
37 |
+
submain_name = data_info[main_name].keys()
|
38 |
+
all_config = []
|
39 |
+
for k in submain_name:
|
40 |
+
fm_temp = feat_meta[main_name][k]
|
41 |
+
one_data_info = data_info[main_name][k]
|
42 |
+
cqa_config = CausalqaConfig(
|
43 |
+
name="{}.{}".format(main_name,k),
|
44 |
+
description=one_data_info["description"],
|
45 |
+
version=datasets.Version(one_data_info["version"], ""),
|
46 |
+
data_features=fm_temp,
|
47 |
+
data_url=one_data_info["url_data"],
|
48 |
+
citation=one_data_info["citation"]
|
49 |
+
)
|
50 |
+
all_config.append(cqa_config)
|
51 |
+
return all_config
|
52 |
+
|
53 |
+
print(os.listdir())
|
54 |
+
|
55 |
+
_FILE_PATH = os.getcwd()
|
56 |
+
_PATH_SOURCE = os.path.join(_FILE_PATH, 'source')
|
57 |
+
_PATH_METADATA = os.path.join(_PATH_SOURCE, 'features_metadata.yaml')
|
58 |
+
_FILE_URL = json.load(open(os.path.join(_PATH_SOURCE, 'dataset_info.json')))
|
59 |
+
_CAUSALQA_DESCRIPTION = ''.join(open(os.path.join(_PATH_SOURCE, 'dataset_description.txt')).readlines())
|
60 |
+
_HOMEPAGE = _FILE_URL['homepage']
|
61 |
+
|
62 |
+
all_files = _FILE_URL['files']
|
63 |
+
|
64 |
+
class CausalQA(datasets.GeneratorBasedBuilder):
|
65 |
+
"""CausalQA: An QA causal type dataset."""
|
66 |
+
with open(_PATH_METADATA, "r") as stream:
|
67 |
+
try:
|
68 |
+
fmeta = yaml.safe_load(stream)
|
69 |
+
except yaml.YAMLError as exc:
|
70 |
+
print(exc)
|
71 |
+
|
72 |
+
BUILDER_CONFIGS = []
|
73 |
+
for f in all_files:
|
74 |
+
BUILDER_CONFIGS += (OneBuild(f, fmeta))
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
self.features = {feat: datasets.Value(self.config.data_features[feat])
|
78 |
+
for feat in self.config.data_features}
|
79 |
+
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
description=_CAUSALQA_DESCRIPTION,
|
82 |
+
features=datasets.Features(self.features),
|
83 |
+
homepage=_HOMEPAGE
|
84 |
+
)
|
85 |
+
|
86 |
+
def _split_generators(self, dl_manager):
|
87 |
+
data_train = dl_manager.download(self.config.data_url['train'])
|
88 |
+
data_val = dl_manager.download(self.config.data_url['val'])
|
89 |
+
return [
|
90 |
+
datasets.SplitGenerator(
|
91 |
+
name=datasets.Split.TRAIN,
|
92 |
+
gen_kwargs={
|
93 |
+
"filepath": data_train
|
94 |
+
},
|
95 |
+
),
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name=datasets.Split.VALIDATION,
|
98 |
+
gen_kwargs={
|
99 |
+
"filepath": data_val ## keys (as parameters) is used during generate example
|
100 |
+
},
|
101 |
+
)
|
102 |
+
]
|
103 |
+
|
104 |
+
def _generate_examples(self, filepath):
|
105 |
+
"""Generate examples."""
|
106 |
+
csv.field_size_limit(1000000000)
|
107 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
108 |
+
csv_reader = csv.reader(csv_file, delimiter=",")
|
109 |
+
next(csv_reader)
|
110 |
+
|
111 |
+
## the yield depends on files features
|
112 |
+
for id_, row in enumerate(csv_reader):
|
113 |
+
existing_values = row
|
114 |
+
feature_names = [*self.features]
|
115 |
+
one_example_row = dict(zip(feature_names, existing_values))
|
116 |
+
yield id_, one_example_row
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eli5.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "eli5.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1174541, "num_examples": 117929, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 130497, "num_examples": 13104, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-FKsZknoDE7bh0fKucs8nNu72IKFxfuo": {"num_bytes": 820757, "checksum": "92304a6f44fee943c29e67c0097dbe287e4a420c101fb865d4d8d6098299a8c2"}, "https://drive.google.com/uc?id=108bG1CJMaqANIqLvxthuQvsZro-5qwbX": {"num_bytes": 91188, "checksum": "37d29f228db3a35e871c2124fe0b854f5a399951cda0a877891e7180ee080884"}}, "download_size": 911945, "post_processing_size": null, "dataset_size": 1305038, "size_in_bytes": 2216983}, "eli5.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "eli5.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1174541, "num_examples": 117929, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 130497, "num_examples": 13104, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11FfVASpa-Agie4AJfEPdjkR-QrvEO5Sd": {"num_bytes": 820757, "checksum": "92304a6f44fee943c29e67c0097dbe287e4a420c101fb865d4d8d6098299a8c2"}, "https://drive.google.com/uc?id=11XlFn79xGSGmPu-TU2SYariQgg2bby2h": {"num_bytes": 91188, "checksum": "37d29f228db3a35e871c2124fe0b854f5a399951cda0a877891e7180ee080884"}}, "download_size": 911945, "post_processing_size": null, "dataset_size": 1305038, "size_in_bytes": 2216983}, "gooaq.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "gooaq.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 95226834, "num_examples": 146253, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 20122, "num_examples": 33, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=10A8rPzMECn3s-qXSZRGKnlDMx5h6-U6k": {"num_bytes": 93129949, "checksum": "9cd916d9ab41e70df0f6feec2d5818dfe733209cfa4803e5cfb033ebbba0133c"}, "https://drive.google.com/uc?id=10PNaYwLxFBfjm2AMM65sp-kRs9rE-8_A": {"num_bytes": 19740, "checksum": "3c127cd582e52889b7a78dc7084333d646019054a39ca9d6849d2ea8fa156a6f"}}, "download_size": 93149689, "post_processing_size": null, "dataset_size": 95246956, "size_in_bytes": 188396645}, "gooaq.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "gooaq.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85723336, "num_examples": 131657, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 9523620, "num_examples": 14629, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=10cZ6Kx7v_UHzHkvBgduoiJ7Ny3aeO-Ww": {"num_bytes": 83835750, "checksum": "1e72feb89d26e6fc2bac718115c4a8aca63f6f6278d75585952e61976ea9dd77"}, "https://drive.google.com/uc?id=11YdwCGTaw7jKk612tRc2T6NSYRUgmAjk": {"num_bytes": 9313939, "checksum": "0e48376bde7400059cc874aca3864e39909ad51a6dbb97ba6ff5e2d7b05ab331"}}, "download_size": 93149689, "post_processing_size": null, "dataset_size": 95246956, "size_in_bytes": 188396645}, "hotpotqa.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "hotpotqa.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4465930, "num_examples": 355, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 437034, "num_examples": 35, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=103bDQK53aT1wIFbJqe9B8Usi0_TCROBT": {"num_bytes": 4484332, "checksum": "0b954243ecbf904cc3ae0b7b85b922380f2febd6a802fb5ab04ac313198f1705"}, "https://drive.google.com/uc?id=1-ZSJNCjxdh5wEifkVVseieYYu45tVbEN": {"num_bytes": 438660, "checksum": "2f5151490204e71fcb63d17288c2907666125ca1f35601935d2e8a7101df100f"}}, "download_size": 4922992, "post_processing_size": null, "dataset_size": 4902964, "size_in_bytes": 9825956}, "hotpotqa.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "hotpotqa.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4393383, "num_examples": 351, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 509581, "num_examples": 39, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11GYpcyT98XTomZhQxai5OLrTFoTGrfJJ": {"num_bytes": 4411273, "checksum": "6ba37d116a3bd64e88e63a613e7d74122ec749e8ee9195dc8c90ced03b1bf57c"}, "https://drive.google.com/uc?id=11B-cH_N8VIyLFCyM_l4dWfkOURXf4ky-": {"num_bytes": 511719, "checksum": "992d67501169f1624572d897eda080f4bb08df1321bba18e64f559473156a9e9"}}, "download_size": 4922992, "post_processing_size": null, "dataset_size": 4902964, "size_in_bytes": 9825956}, "msmarco.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "msmarco.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 169604379, "num_examples": 23011, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 17559831, "num_examples": 2558, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-jMNHG6rS9b6TnRZ6iNbjRLXRwr8Znb_": {"num_bytes": 169308630, "checksum": "6d08c5da8205fd0ea8313d0e9bcc032b88ee5c53ce9a96081659be57a5157d61"}, "https://drive.google.com/uc?id=1-BtYcEWwgaD0aI5hHCHFXCZOZu8I2e8o": {"num_bytes": 17527966, "checksum": "01cea9955ec48381b9933179b6174642f65be72148b286128a5c0bbe89e25005"}}, "download_size": 186836596, "post_processing_size": null, "dataset_size": 187164210, "size_in_bytes": 374000806}, "msmarco.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "msmarco.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 168417032, "num_examples": 23012, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 18827061, "num_examples": 2557, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=111RXRWuNk2CMhDbzY2gIudmcB70lsQSy": {"num_bytes": 168122339, "checksum": "6be361f3386c2e30ed59572b7a25bec3afafef65da9a19ded4c6efaa79f43f50"}, "https://drive.google.com/uc?id=11OLGeEkS6Wkv3q5ObNAinim5hqB5UU4D": {"num_bytes": 18794406, "checksum": "426c0716422d6298caeda64663ca29d0758e007d32b00849064003cdb07b40c2"}}, "download_size": 186916745, "post_processing_size": null, "dataset_size": 187244093, "size_in_bytes": 374160838}, "naturalquestions.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "naturalquestions.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 111644341, "num_examples": 1137, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 7074666, "num_examples": 71, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-M_G-V7p0XvGmw3JWtOSfeAlrGLMu8U3": {"num_bytes": 111709402, "checksum": "7f74571bec9b0f55c5c527d831e547e0f860e3c241a5b06e7a6de5148deecd03"}, "https://drive.google.com/uc?id=1-hjnE4TvEp76eznP14DHIsqYnitY0rNW": {"num_bytes": 7078462, "checksum": "90b0130b16bdd3e429cbc07b094270748327127f841538a98d8dda1ac83f6897"}}, "download_size": 118787864, "post_processing_size": null, "dataset_size": 118719007, "size_in_bytes": 237506871}, "naturalquestions.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "naturalquestions.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 107149045, "num_examples": 1087, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=118ALG23_Ayi7qrAAdExJKLiN21Xy7VO5": {"num_bytes": 107204249, "checksum": "993fc8e988edcc5b85984578adc77c03e42699b1ce5244e19eb2918a480a5d5e"}, "https://drive.google.com/uc?id=11L8JW9llwDI-vg2LSXL4NmnHbOOHETBr": {"num_bytes": 1103, "checksum": "9010e5a841cf0acfb13facfaa2c3318bc8118020ec071d15de099eb9a628fd01"}}, "download_size": 107205352, "post_processing_size": null, "dataset_size": 107149045, "size_in_bytes": 214354397}, "newsqa.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "newsqa.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4671092, "num_examples": 623, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 253141, "num_examples": 29, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-hvqrR98PcajkorCvFvqz4fcuinZfgvr": {"num_bytes": 4680426, "checksum": "7a92c04b59de7fd565c6bcb9f70285638d9796a53fd7c7138df9016f22b78c6f"}, "https://drive.google.com/uc?id=1-oZbc9QFvuDfxzDhwotOYwvcLfFbCJQC": {"num_bytes": 253785, "checksum": "1ac723e5500a33b5803bc004217d97ea1b37c345666e9080d5a1926b4d2e2ef3"}}, "download_size": 4934211, "post_processing_size": null, "dataset_size": 4924233, "size_in_bytes": 9858444}, "newsqa.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "newsqa.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4422767, "num_examples": 586, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 513622, "num_examples": 66, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11mraicFI6bb6KFcUl3unZxW0OSGg18UB": {"num_bytes": 4431727, "checksum": "dd3959b6f0d73c034d159bc6abd58bddd3eccd8262742c172662ff9f676725cb"}, "https://drive.google.com/uc?id=10rM5-BYr1mrSVSRFqgiFuQdYvKuCDzD1": {"num_bytes": 514773, "checksum": "5b99daa84e3a1cd33a27bae3b419961183286e981df2f96b150096388508a3ee"}}, "download_size": 4946500, "post_processing_size": null, "dataset_size": 4936389, "size_in_bytes": 9882889}, "paq.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "paq.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1009499834, "num_examples": 692645, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 112181249, "num_examples": 76961, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=10PrKt6kEgq07SNss5rZizRcqQxcxS84X": {"num_bytes": 1002956199, "checksum": "bc5aa81e12bb689b47442ba65ad8be41f99b8aed6a88a1cdf7addd11d3ec652a"}, "https://drive.google.com/uc?id=1-kuu0RihKcve-EGFtwjYz8jOdN6rXbcM": {"num_bytes": 111450221, "checksum": "3be6746245b3479a3a4e0f1144ce5bfb09e5dad1976e9996e9a22ba38cf11955"}}, "download_size": 1114406420, "post_processing_size": null, "dataset_size": 1121681083, "size_in_bytes": 2236087503}, "paq.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "paq.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1009499834, "num_examples": 692645, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 112181249, "num_examples": 76961, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11W8G2mmQ78LBwet5GFvwvNu5hfPWOblN": {"num_bytes": 1002956199, "checksum": "bc5aa81e12bb689b47442ba65ad8be41f99b8aed6a88a1cdf7addd11d3ec652a"}, "https://drive.google.com/uc?id=10iItHXCfQ9wIsFmDUIMjdXbOSapRCAwj": {"num_bytes": 111450221, "checksum": "3be6746245b3479a3a4e0f1144ce5bfb09e5dad1976e9996e9a22ba38cf11955"}}, "download_size": 1114406420, "post_processing_size": null, "dataset_size": 1121681083, "size_in_bytes": 2236087503}, "searchqa.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "searchqa.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 31403453, "num_examples": 663, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 5578556, "num_examples": 117, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-AOYSVQf4GI7UnXcZ2EYbDXszHetjdrS": {"num_bytes": 31416040, "checksum": "f615faee688b858cf08a30b31032a64b8df7ff3cca042b0b3bbbefdbd35fb1de"}, "https://drive.google.com/uc?id=1-ZCCflByWZ3sBE_Hxirhfy9KQQ8d2ABN": {"num_bytes": 5581361, "checksum": "804944d505f0940060703b75b103321f8338cddb7bb0c782151cdede1d4896d8"}}, "download_size": 36997401, "post_processing_size": null, "dataset_size": 36982009, "size_in_bytes": 73979410}, "searchqa.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "int64", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "searchqa.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33071979, "num_examples": 702, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 3910030, "num_examples": 78, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11ivqoK_aVjK6RpaT_QWjqJ3V9VMvw190": {"num_bytes": 33085689, "checksum": "d3a679a077bcc12c7e1f12f3504d4a5ec194d14ba20ec37c4db068ea536f6192"}, "https://drive.google.com/uc?id=11Uvh0s17N7hvwfPF75x0Ko6xdccfsZcl": {"num_bytes": 3911712, "checksum": "1cdc105f2d926210e70df5dadcf6457925cee057a9c06e13142cc3ef0d4b3203"}}, "download_size": 36997401, "post_processing_size": null, "dataset_size": 36982009, "size_in_bytes": 73979410}, "squad2.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "squad2.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5461054, "num_examples": 2957, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 549784, "num_examples": 252, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=10Akh_VNH5Kvp0BiKbq9irA-u5zgdoxPy": {"num_bytes": 5421114, "checksum": "8369ea80f63e550153051e63173ba0ecc5a9409e02e5b06839af483620191633"}, "https://drive.google.com/uc?id=10QszRRFigIz_bAWuhOkn3r3dngHLpDSy": {"num_bytes": 546425, "checksum": "ae2fa26d97f826c8496765c06767a71d5141c47860b2fc9f9b6df70cd288c807"}}, "download_size": 5967539, "post_processing_size": null, "dataset_size": 6010838, "size_in_bytes": 11978377}, "squad2.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "squad2.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5374088, "num_examples": 2888, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 589922, "num_examples": 321, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=110xR1sye2Qx-QrrOPb3IDLhkjLCqG1Zy": {"num_bytes": 5335047, "checksum": "f0f9202725d14c2ad867f0e7767112e8e7f059ece2de0b5fbeaae8dc5f9ff804"}, "https://drive.google.com/uc?id=1144-Zt5-b8nFZOgUXbnk7l-RLSHTnJmN": {"num_bytes": 585542, "checksum": "b4ed07a2def1a3ea6d482b52f5815701a5651f41cdc0a0306b08e2ec5bac58ad"}}, "download_size": 5920589, "post_processing_size": null, "dataset_size": 5964010, "size_in_bytes": 11884599}, "triviaqa.original-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "triviaqa.original-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11278937, "num_examples": 637, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 1229922, "num_examples": 66, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=1-lb4JylW7olUzbLJBaBqNK-HAcxulxEI": {"num_bytes": 11279573, "checksum": "8ebce60165aabfee8b3faab4999da9e06c615d1d46e10c4f5368069b11ecbc02"}, "https://drive.google.com/uc?id=1-T0LHqgSvKyIx6YehQ-TrBOhJqygV-Si": {"num_bytes": 1230213, "checksum": "1fd4524f83484d90275a945ecbcacbcca089db0d79bb534df1232b7ac3d5f70e"}}, "download_size": 12509786, "post_processing_size": null, "dataset_size": 12508859, "size_in_bytes": 25018645}, "triviaqa.random-split": {"description": "Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Bl\u00fcbaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.", "citation": "", "homepage": "https://github.com/jakartaresearch", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_processed": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "context_processed": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "answer_processed": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "causalqa", "config_name": "triviaqa.random-split", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11358699, "num_examples": 632, "dataset_name": "causalqa"}, "validation": {"name": "validation", "num_bytes": 1268034, "num_examples": 71, "dataset_name": "causalqa"}}, "download_checksums": {"https://drive.google.com/uc?id=11-y9PSfAAP8-L8PtBd_51RaA-5MjsvPH": {"num_bytes": 11359562, "checksum": "27067cb12e15f7177c83bf5eebe666890d50bd24c629101a3e89fba24576c023"}, "https://drive.google.com/uc?id=11WzPoeBLWbfMyR8xozfl-xMOSqevIIrs": {"num_bytes": 1268294, "checksum": "bae89fd42b101dca27b03dc354f4c34ed78fbccd7e2640f2e65d4e01fd0f16cd"}}, "download_size": 12627856, "post_processing_size": null, "dataset_size": 12626733, "size_in_bytes": 25254589}}
|
source/dataset_description.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Causal Question Answering Dataset is machine reading comprehension dataset from 10 QA datasets that are filtered using regex to get causal question. The dataset is from a paper titled CausalQA: A Benchmark for Causal Question Answering. 2022. Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Blübaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast. In COLING.
|
source/dataset_info.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"homepage": "https://github.com/jakartaresearch",
|
3 |
+
"files": [
|
4 |
+
{
|
5 |
+
"eli5": {
|
6 |
+
"original-split": {
|
7 |
+
"description": "",
|
8 |
+
"version": "1.0.0",
|
9 |
+
"citation": "",
|
10 |
+
"url_data": {
|
11 |
+
"train": "https://drive.google.com/uc?id=1-FKsZknoDE7bh0fKucs8nNu72IKFxfuo",
|
12 |
+
"val": "https://drive.google.com/uc?id=108bG1CJMaqANIqLvxthuQvsZro-5qwbX"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"random-split": {
|
16 |
+
"description": "",
|
17 |
+
"version": "1.0.0",
|
18 |
+
"citation": "",
|
19 |
+
"url_data": {
|
20 |
+
"train": "https://drive.google.com/uc?id=11FfVASpa-Agie4AJfEPdjkR-QrvEO5Sd",
|
21 |
+
"val": "https://drive.google.com/uc?id=11XlFn79xGSGmPu-TU2SYariQgg2bby2h"
|
22 |
+
}
|
23 |
+
}
|
24 |
+
}
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"gooaq": {
|
28 |
+
"original-split": {
|
29 |
+
"description": "",
|
30 |
+
"version": "1.0.0",
|
31 |
+
"citation": "",
|
32 |
+
"url_data": {
|
33 |
+
"train": "https://drive.google.com/uc?id=10A8rPzMECn3s-qXSZRGKnlDMx5h6-U6k",
|
34 |
+
"val": "https://drive.google.com/uc?id=10PNaYwLxFBfjm2AMM65sp-kRs9rE-8_A"
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"random-split": {
|
38 |
+
"description": "",
|
39 |
+
"version": "1.0.0",
|
40 |
+
"citation": "",
|
41 |
+
"url_data": {
|
42 |
+
"train": "https://drive.google.com/uc?id=10cZ6Kx7v_UHzHkvBgduoiJ7Ny3aeO-Ww",
|
43 |
+
"val": "https://drive.google.com/uc?id=11YdwCGTaw7jKk612tRc2T6NSYRUgmAjk"
|
44 |
+
}
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"hotpotqa": {
|
50 |
+
"original-split": {
|
51 |
+
"description": "",
|
52 |
+
"version": "1.0.0",
|
53 |
+
"citation": "",
|
54 |
+
"url_data": {
|
55 |
+
"train": "https://drive.google.com/uc?id=103bDQK53aT1wIFbJqe9B8Usi0_TCROBT",
|
56 |
+
"val": "https://drive.google.com/uc?id=1-ZSJNCjxdh5wEifkVVseieYYu45tVbEN"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"random-split": {
|
60 |
+
"description": "",
|
61 |
+
"version": "1.0.0",
|
62 |
+
"citation": "",
|
63 |
+
"url_data": {
|
64 |
+
"train": "https://drive.google.com/uc?id=11GYpcyT98XTomZhQxai5OLrTFoTGrfJJ",
|
65 |
+
"val": "https://drive.google.com/uc?id=11B-cH_N8VIyLFCyM_l4dWfkOURXf4ky-"
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"msmarco": {
|
72 |
+
"original-split": {
|
73 |
+
"description": "",
|
74 |
+
"version": "1.0.0",
|
75 |
+
"citation": "",
|
76 |
+
"url_data": {
|
77 |
+
"train": "https://drive.google.com/uc?id=1-jMNHG6rS9b6TnRZ6iNbjRLXRwr8Znb_",
|
78 |
+
"val": "https://drive.google.com/uc?id=1-BtYcEWwgaD0aI5hHCHFXCZOZu8I2e8o"
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"random-split": {
|
82 |
+
"description": "",
|
83 |
+
"version": "1.0.0",
|
84 |
+
"citation": "",
|
85 |
+
"url_data": {
|
86 |
+
"train": "https://drive.google.com/uc?id=111RXRWuNk2CMhDbzY2gIudmcB70lsQSy",
|
87 |
+
"val": "https://drive.google.com/uc?id=11OLGeEkS6Wkv3q5ObNAinim5hqB5UU4D"
|
88 |
+
}
|
89 |
+
}
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"naturalquestions": {
|
94 |
+
"original-split": {
|
95 |
+
"description": "",
|
96 |
+
"version": "1.0.0",
|
97 |
+
"citation": "",
|
98 |
+
"url_data": {
|
99 |
+
"train": "https://drive.google.com/uc?id=1-M_G-V7p0XvGmw3JWtOSfeAlrGLMu8U3",
|
100 |
+
"val": "https://drive.google.com/uc?id=1-hjnE4TvEp76eznP14DHIsqYnitY0rNW"
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"random-split": {
|
104 |
+
"description": "",
|
105 |
+
"version": "1.0.0",
|
106 |
+
"citation": "",
|
107 |
+
"url_data": {
|
108 |
+
"train": "https://drive.google.com/uc?id=118ALG23_Ayi7qrAAdExJKLiN21Xy7VO5",
|
109 |
+
"val": "https://drive.google.com/uc?id=11L8JW9llwDI-vg2LSXL4NmnHbOOHETBr"
|
110 |
+
}
|
111 |
+
}
|
112 |
+
}
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"newsqa": {
|
116 |
+
"original-split": {
|
117 |
+
"description": "",
|
118 |
+
"version": "1.0.0",
|
119 |
+
"citation": "",
|
120 |
+
"url_data": {
|
121 |
+
"train": "https://drive.google.com/uc?id=1-hvqrR98PcajkorCvFvqz4fcuinZfgvr",
|
122 |
+
"val": "https://drive.google.com/uc?id=1-oZbc9QFvuDfxzDhwotOYwvcLfFbCJQC"
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"random-split": {
|
126 |
+
"description": "",
|
127 |
+
"version": "1.0.0",
|
128 |
+
"citation": "",
|
129 |
+
"url_data": {
|
130 |
+
"train": "https://drive.google.com/uc?id=11mraicFI6bb6KFcUl3unZxW0OSGg18UB",
|
131 |
+
"val": "https://drive.google.com/uc?id=10rM5-BYr1mrSVSRFqgiFuQdYvKuCDzD1"
|
132 |
+
}
|
133 |
+
}
|
134 |
+
}
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"paq": {
|
138 |
+
"original-split": {
|
139 |
+
"description": "",
|
140 |
+
"version": "1.0.0",
|
141 |
+
"citation": "",
|
142 |
+
"url_data": {
|
143 |
+
"train": "https://drive.google.com/uc?id=10PrKt6kEgq07SNss5rZizRcqQxcxS84X",
|
144 |
+
"val": "https://drive.google.com/uc?id=1-kuu0RihKcve-EGFtwjYz8jOdN6rXbcM"
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"random-split": {
|
148 |
+
"description": "",
|
149 |
+
"version": "1.0.0",
|
150 |
+
"citation": "",
|
151 |
+
"url_data": {
|
152 |
+
"train": "https://drive.google.com/uc?id=11W8G2mmQ78LBwet5GFvwvNu5hfPWOblN",
|
153 |
+
"val": "https://drive.google.com/uc?id=10iItHXCfQ9wIsFmDUIMjdXbOSapRCAwj"
|
154 |
+
}
|
155 |
+
}
|
156 |
+
}
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"searchqa": {
|
160 |
+
"original-split": {
|
161 |
+
"description": "",
|
162 |
+
"version": "1.0.0",
|
163 |
+
"citation": "",
|
164 |
+
"url_data": {
|
165 |
+
"train": "https://drive.google.com/uc?id=1-AOYSVQf4GI7UnXcZ2EYbDXszHetjdrS",
|
166 |
+
"val": "https://drive.google.com/uc?id=1-ZCCflByWZ3sBE_Hxirhfy9KQQ8d2ABN"
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"random-split": {
|
170 |
+
"description": "",
|
171 |
+
"version": "1.0.0",
|
172 |
+
"citation": "",
|
173 |
+
"url_data": {
|
174 |
+
"train": "https://drive.google.com/uc?id=11ivqoK_aVjK6RpaT_QWjqJ3V9VMvw190",
|
175 |
+
"val": "https://drive.google.com/uc?id=11Uvh0s17N7hvwfPF75x0Ko6xdccfsZcl"
|
176 |
+
}
|
177 |
+
}
|
178 |
+
}
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"squad2": {
|
182 |
+
"original-split": {
|
183 |
+
"description": "",
|
184 |
+
"version": "1.0.0",
|
185 |
+
"citation": "",
|
186 |
+
"url_data": {
|
187 |
+
"train": "https://drive.google.com/uc?id=10Akh_VNH5Kvp0BiKbq9irA-u5zgdoxPy",
|
188 |
+
"val": "https://drive.google.com/uc?id=10QszRRFigIz_bAWuhOkn3r3dngHLpDSy"
|
189 |
+
}
|
190 |
+
},
|
191 |
+
"random-split": {
|
192 |
+
"description": "",
|
193 |
+
"version": "1.0.0",
|
194 |
+
"citation": "",
|
195 |
+
"url_data": {
|
196 |
+
"train": "https://drive.google.com/uc?id=110xR1sye2Qx-QrrOPb3IDLhkjLCqG1Zy",
|
197 |
+
"val": "https://drive.google.com/uc?id=1144-Zt5-b8nFZOgUXbnk7l-RLSHTnJmN"
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"triviaqa": {
|
204 |
+
"original-split": {
|
205 |
+
"description": "",
|
206 |
+
"version": "1.0.0",
|
207 |
+
"citation": "",
|
208 |
+
"url_data": {
|
209 |
+
"train": "https://drive.google.com/uc?id=1-lb4JylW7olUzbLJBaBqNK-HAcxulxEI",
|
210 |
+
"val": "https://drive.google.com/uc?id=1-T0LHqgSvKyIx6YehQ-TrBOhJqygV-Si"
|
211 |
+
}
|
212 |
+
},
|
213 |
+
"random-split": {
|
214 |
+
"description": "",
|
215 |
+
"version": "1.0.0",
|
216 |
+
"citation": "",
|
217 |
+
"url_data": {
|
218 |
+
"train": "https://drive.google.com/uc?id=11-y9PSfAAP8-L8PtBd_51RaA-5MjsvPH",
|
219 |
+
"val": "https://drive.google.com/uc?id=11WzPoeBLWbfMyR8xozfl-xMOSqevIIrs"
|
220 |
+
}
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
]
|
225 |
+
}
|
source/features_metadata.yaml
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
eli5:
|
2 |
+
original-split:
|
3 |
+
id: string
|
4 |
+
random-split:
|
5 |
+
id: string
|
6 |
+
gooaq:
|
7 |
+
original-split:
|
8 |
+
id: int64
|
9 |
+
question: string
|
10 |
+
question_processed: string
|
11 |
+
context: string
|
12 |
+
context_processed: string
|
13 |
+
answer: string
|
14 |
+
answer_processed: string
|
15 |
+
random-split:
|
16 |
+
id: int64
|
17 |
+
question: string
|
18 |
+
question_processed: string
|
19 |
+
context: string
|
20 |
+
context_processed: string
|
21 |
+
answer: string
|
22 |
+
answer_processed: string
|
23 |
+
hotpotqa:
|
24 |
+
original-split:
|
25 |
+
id: string
|
26 |
+
question: string
|
27 |
+
question_processed: string
|
28 |
+
context: string
|
29 |
+
context_processed: string
|
30 |
+
answer: string
|
31 |
+
answer_processed: string
|
32 |
+
random-split:
|
33 |
+
id: string
|
34 |
+
question: string
|
35 |
+
question_processed: string
|
36 |
+
context: string
|
37 |
+
context_processed: string
|
38 |
+
answer: string
|
39 |
+
answer_processed: string
|
40 |
+
msmarco:
|
41 |
+
original-split:
|
42 |
+
id: int64
|
43 |
+
question: string
|
44 |
+
question_processed: string
|
45 |
+
context: string
|
46 |
+
context_processed: string
|
47 |
+
answer: string
|
48 |
+
answer_processed: string
|
49 |
+
random-split:
|
50 |
+
id: int64
|
51 |
+
question: string
|
52 |
+
question_processed: string
|
53 |
+
context: string
|
54 |
+
context_processed: string
|
55 |
+
answer: string
|
56 |
+
answer_processed: string
|
57 |
+
naturalquestions:
|
58 |
+
original-split:
|
59 |
+
id: int64
|
60 |
+
question: string
|
61 |
+
question_processed: string
|
62 |
+
context: string
|
63 |
+
context_processed: string
|
64 |
+
answer: string
|
65 |
+
answer_processed: string
|
66 |
+
random-split:
|
67 |
+
id: int64
|
68 |
+
question: string
|
69 |
+
question_processed: string
|
70 |
+
context: string
|
71 |
+
context_processed: string
|
72 |
+
answer: string
|
73 |
+
answer_processed: string
|
74 |
+
newsqa:
|
75 |
+
original-split:
|
76 |
+
id: string
|
77 |
+
question: string
|
78 |
+
question_processed: string
|
79 |
+
context: string
|
80 |
+
context_processed: string
|
81 |
+
answer: string
|
82 |
+
answer_processed: string
|
83 |
+
random-split:
|
84 |
+
id: string
|
85 |
+
question: string
|
86 |
+
question_processed: string
|
87 |
+
context: string
|
88 |
+
context_processed: string
|
89 |
+
answer: string
|
90 |
+
answer_processed: string
|
91 |
+
paq:
|
92 |
+
original-split:
|
93 |
+
id: int64
|
94 |
+
question: string
|
95 |
+
question_processed: string
|
96 |
+
context: string
|
97 |
+
context_processed: string
|
98 |
+
answer: string
|
99 |
+
answer_processed: string
|
100 |
+
random-split:
|
101 |
+
id: int64
|
102 |
+
question: string
|
103 |
+
question_processed: string
|
104 |
+
context: string
|
105 |
+
context_processed: string
|
106 |
+
answer: string
|
107 |
+
answer_processed: string
|
108 |
+
searchqa:
|
109 |
+
original-split:
|
110 |
+
id: int64
|
111 |
+
question: string
|
112 |
+
question_processed: string
|
113 |
+
context: string
|
114 |
+
context_processed: string
|
115 |
+
answer: string
|
116 |
+
answer_processed: string
|
117 |
+
random-split:
|
118 |
+
id: int64
|
119 |
+
question: string
|
120 |
+
question_processed: string
|
121 |
+
context: string
|
122 |
+
context_processed: string
|
123 |
+
answer: string
|
124 |
+
answer_processed: string
|
125 |
+
squad2:
|
126 |
+
original-split:
|
127 |
+
id: string
|
128 |
+
question: string
|
129 |
+
question_processed: string
|
130 |
+
context: string
|
131 |
+
context_processed: string
|
132 |
+
answer: string
|
133 |
+
answer_processed: string
|
134 |
+
random-split:
|
135 |
+
id: string
|
136 |
+
question: string
|
137 |
+
question_processed: string
|
138 |
+
context: string
|
139 |
+
context_processed: string
|
140 |
+
answer: string
|
141 |
+
answer_processed: string
|
142 |
+
triviaqa:
|
143 |
+
original-split:
|
144 |
+
id: string
|
145 |
+
question: string
|
146 |
+
question_processed: string
|
147 |
+
context: string
|
148 |
+
context_processed: string
|
149 |
+
answer: string
|
150 |
+
answer_processed: string
|
151 |
+
random-split:
|
152 |
+
id: string
|
153 |
+
question: string
|
154 |
+
question_processed: string
|
155 |
+
context: string
|
156 |
+
context_processed: string
|
157 |
+
answer: string
|
158 |
+
answer_processed: string
|