Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,67 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ruby dataset
|
2 |
+
|
3 |
+
**Custom ruby dataset**
|
4 |
+
- rspec_dataset
|
5 |
+
|
6 |
+
rspec dataset is
|
7 |
+
|
8 |
+
**Bigcode dataset**
|
9 |
+
|
10 |
+
- ruby-dataset
|
11 |
+
- shell-dataset
|
12 |
+
- python-dataset
|
13 |
+
- sql-dataset
|
14 |
+
|
15 |
+
## rspec dataset
|
16 |
+
|
17 |
+
I gathers specs for app/services from following repos. Because most of business logics are in app/services.
|
18 |
+
|
19 |
+
|
20 |
+
```py
|
21 |
+
REPO_URLS = [
|
22 |
+
'https://github.com/diaspora/diaspora.git',
|
23 |
+
'https://github.com/mastodon/mastodon.git',
|
24 |
+
'https://github.com/gitlabhq/gitlabhq.git',
|
25 |
+
'https://github.com/discourse/discourse.git',
|
26 |
+
'https://github.com/chatwoot/chatwoot.git',
|
27 |
+
'https://github.com/opf/openproject.git',
|
28 |
+
]
|
29 |
+
```
|
30 |
+
output
|
31 |
+
|
32 |
+
```sh
|
33 |
+
Repository Avg Source Lines Avg Test Lines Test Cases
|
34 |
+
diaspora 62 156 12
|
35 |
+
mastodon 97 131 59
|
36 |
+
gitlabhq 66 154 952
|
37 |
+
discourse 188 303 49
|
38 |
+
chatwoot 63 107 50
|
39 |
+
openproject 86 178 98
|
40 |
+
------------------------------------------------------------
|
41 |
+
Total 74 159 1220
|
42 |
+
------------------------------------------------------------
|
43 |
+
|
44 |
+
# avg_source_lines = [62, 97, 66, 188, 63, 86]
|
45 |
+
# avg_test_lines = [156, 131, 154, 303, 107, 178]
|
46 |
+
# test_cases = [12, 59, 952, 49, 50, 98]
|
47 |
+
|
48 |
+
# Assuming an average of 10 tokens per line of code, which is a rough average for programming languages
|
49 |
+
# tokens_per_line = 10
|
50 |
+
|
51 |
+
# Calculating the total tokens for source and test lines
|
52 |
+
# total_source_tokens = sum([lines * tokens_per_line for lines in avg_source_lines])
|
53 |
+
# total_test_tokens = sum([lines * tokens_per_line for lines in avg_test_lines])
|
54 |
+
|
55 |
+
# Total tokens
|
56 |
+
# total_tokens = total_source_tokens + total_test_tokens
|
57 |
+
|
58 |
+
# Average tokens per test case
|
59 |
+
# avg_tokens_per_test_case = total_tokens / sum(test_cases)
|
60 |
+
|
61 |
+
# total_tokens, avg_tokens_per_test_case
|
62 |
+
# -> (15910, 13.040983606557377)
|
63 |
+
```
|
64 |
+
|
65 |
+
When you prepare data for training or inference with an LLM, each example (in this case, each test case or code snippet) needs to fit within this context window. The average tokens per test case calculated earlier (approximately 13.04 tokens) is well within the limits of LLMs
|
66 |
+
|
67 |
+
|