IBYDMT / dataset_lib /datasets.py
jacopoteneggi's picture
Update datasets
e582574 verified
raw
history blame
2.01 kB
import os
from PIL import Image
from torchvision.datasets import VisionDataset
from torchvision.datasets.folder import find_classes, make_dataset
from dataset_lib.config import Constants as c
def get_dataset(dataset, transform=None, workdir=c.WORKDIR):
data_dir = os.path.join(workdir, "data")
if dataset == "imagenette":
root_dir = os.path.join(data_dir, "imagenette2")
train_dataset = Imagenette(root_dir, train=True, transform=transform)
test_dataset = Imagenette(root_dir, train=False, transform=transform)
return {"train": train_dataset, "test": test_dataset}
class Imagenette(VisionDataset):
_WNID_TO_CLASS = {
"n01440764": ("tench", "Tinca tinca"),
"n02102040": ("English springer", "English springer spaniel"),
"n02979186": ("cassette player",),
"n03000684": ("chainsaw", "chain saw"),
"n03028079": ("church", "church building"),
"n03394916": ("French horn", "horn"),
"n03417042": ("garbage truck", "dustcart"),
"n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"),
"n03445777": ("golf ball",),
"n03888257": ("parachute", "chute"),
}
def __init__(self, root, train=True, transform=None):
super().__init__(root, transform=transform)
self.train = train
self._split = "train" if train else "test"
self._image_root = os.path.join(root, self._split)
self.wnids, self.wnid_to_idx = find_classes(self._image_root)
self.classes = [self._WNID_TO_CLASS[wnid][0] for wnid in self.wnids]
self._samples = make_dataset(
self._image_root, self.wnid_to_idx, extensions=".jpeg"
)
def __len__(self):
return len(self._samples)
def __getitem__(self, idx):
path, label = self._samples[idx]
image = Image.open(path).convert("RGB")
if self.transform is not None:
image = self.transform(image)
return image, label