|
import os |
|
|
|
from PIL import Image |
|
from torchvision.datasets import VisionDataset |
|
from torchvision.datasets.folder import find_classes, make_dataset |
|
|
|
from dataset_lib.config import Constants as c |
|
|
|
|
|
def get_dataset(dataset, transform=None, workdir=c.WORKDIR): |
|
data_dir = os.path.join(workdir, "data") |
|
|
|
if dataset == "imagenette": |
|
root_dir = os.path.join(data_dir, "imagenette2") |
|
train_dataset = Imagenette(root_dir, train=True, transform=transform) |
|
test_dataset = Imagenette(root_dir, train=False, transform=transform) |
|
return {"train": train_dataset, "test": test_dataset} |
|
|
|
|
|
class Imagenette(VisionDataset): |
|
_WNID_TO_CLASS = { |
|
"n01440764": ("tench", "Tinca tinca"), |
|
"n02102040": ("English springer", "English springer spaniel"), |
|
"n02979186": ("cassette player",), |
|
"n03000684": ("chainsaw", "chain saw"), |
|
"n03028079": ("church", "church building"), |
|
"n03394916": ("French horn", "horn"), |
|
"n03417042": ("garbage truck", "dustcart"), |
|
"n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), |
|
"n03445777": ("golf ball",), |
|
"n03888257": ("parachute", "chute"), |
|
} |
|
|
|
def __init__(self, root, train=True, transform=None): |
|
super().__init__(root, transform=transform) |
|
self.train = train |
|
|
|
self._split = "train" if train else "test" |
|
self._image_root = os.path.join(root, self._split) |
|
|
|
self.wnids, self.wnid_to_idx = find_classes(self._image_root) |
|
self.classes = [self._WNID_TO_CLASS[wnid][0] for wnid in self.wnids] |
|
|
|
self._samples = make_dataset( |
|
self._image_root, self.wnid_to_idx, extensions=".jpeg" |
|
) |
|
|
|
def __len__(self): |
|
return len(self._samples) |
|
|
|
def __getitem__(self, idx): |
|
path, label = self._samples[idx] |
|
image = Image.open(path).convert("RGB") |
|
|
|
if self.transform is not None: |
|
image = self.transform(image) |
|
|
|
return image, label |
|
|