jaagli commited on
Commit
83133a2
1 Parent(s): bc182e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -1708,4 +1708,65 @@ configs:
1708
  data_files:
1709
  - split: train
1710
  path: data/train-*
 
 
 
 
 
 
 
1711
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708
  data_files:
1709
  - split: train
1710
  path: data/train-*
1711
+ task_categories:
1712
+ - image-classification
1713
+ language:
1714
+ - en
1715
+ size_categories:
1716
+ - 10K<n<100K
1717
+ pretty_name: en
1718
  ---
1719
+
1720
+ # Dataset Description
1721
+
1722
+ "EN-CLDI" (en-cldi) contains 1690 classes, which contains images paired with verbs and adjectives. Each word within this set is unique and paired with at least 22 images..
1723
+
1724
+ It is the English subset of CLDI (cross-lingual dictionary induction) dataset from ([Hartmann and Søgaard, 2018](https://aclanthology.org/W18-3021/)).
1725
+
1726
+ # How to Use
1727
+
1728
+ ```python
1729
+ from datasets import load_dataset
1730
+
1731
+ # Load the dataset
1732
+ common_words = load_dataset("jaagli/en-cldi", split="train")
1733
+ ```
1734
+
1735
+ # Citation
1736
+
1737
+ ```
1738
+ @misc{li2024visionlanguagemodelsshare,
1739
+ title={Do Vision and Language Models Share Concepts? A Vector Space Alignment Study},
1740
+ author={Jiaang Li and Yova Kementchedjhieva and Constanza Fierro and Anders Søgaard},
1741
+ year={2024},
1742
+ eprint={2302.06555},
1743
+ archivePrefix={arXiv},
1744
+ primaryClass={cs.CL},
1745
+ url={https://arxiv.org/abs/2302.06555},
1746
+ }
1747
+ ```
1748
+ ```
1749
+ @inproceedings{hartmann-sogaard-2018-limitations,
1750
+ title = "Limitations of Cross-Lingual Learning from Image Search",
1751
+ author = "Hartmann, Mareike and
1752
+ S{\o}gaard, Anders",
1753
+ editor = "Augenstein, Isabelle and
1754
+ Cao, Kris and
1755
+ He, He and
1756
+ Hill, Felix and
1757
+ Gella, Spandana and
1758
+ Kiros, Jamie and
1759
+ Mei, Hongyuan and
1760
+ Misra, Dipendra",
1761
+ booktitle = "Proceedings of the Third Workshop on Representation Learning for {NLP}",
1762
+ month = jul,
1763
+ year = "2018",
1764
+ address = "Melbourne, Australia",
1765
+ publisher = "Association for Computational Linguistics",
1766
+ url = "https://aclanthology.org/W18-3021",
1767
+ doi = "10.18653/v1/W18-3021",
1768
+ pages = "159--163",
1769
+ abstract = "Cross-lingual representation learning is an important step in making NLP scale to all the world{'}s languages. Previous work on bilingual lexicon induction suggests that it is possible to learn cross-lingual representations of words based on similarities between images associated with these words. However, that work focused (almost exclusively) on the translation of nouns only. Here, we investigate whether the meaning of other parts-of-speech (POS), in particular adjectives and verbs, can be learned in the same way. Our experiments across five language pairs indicate that previous work does not scale to the problem of learning cross-lingual representations beyond simple nouns.",
1770
+ }
1771
+
1772
+ ```