id
stringlengths 14
16
| text
stringlengths 29
2.73k
| source
stringlengths 49
115
|
---|---|---|
0fc1e61dbe7d-25 | {'action': 'on_llm_start', 'name': 'OpenAI', 'step': 7, 'starts': 5, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\n\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who is the wife of the person who sang summer of 69?\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\nThought:'} | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-26 | {'action': 'on_llm_end', 'token_usage_prompt_tokens': 242, 'token_usage_completion_tokens': 28, 'token_usage_total_tokens': 270, 'model_name': 'text-davinci-003', 'step': 8, 'starts': 5, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'text': ' I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 94.66, 'flesch_kincaid_grade': 2.7, 'smog_index': 0.0, 'coleman_liau_index': 4.73, 'automated_readability_index': 4.0, 'dale_chall_readability_score': 7.16, 'difficult_words': 2, 'linsear_write_formula': 4.25, 'gunning_fog': 4.2, 'text_standard': '4th and 5th grade', 'fernandez_huerta': 124.13, 'szigriszt_pazos': 119.2, 'gutierrez_polini': 52.26, 'crawford': 0.7, 'gulpease_index': 74.7, 'osman': 84.2}
I need to find out who Bryan Adams is married to.
Action: Search | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-27 | I need to find out who Bryan Adams is married to.
Action: Search
Action Input: "Who is Bryan Adams married to"{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who is Bryan Adams married to', 'log': ' I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"', 'step': 9, 'starts': 6, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 3, 'tool_ends': 1, 'agent_ends': 0}
{'action': 'on_tool_start', 'input_str': 'Who is Bryan Adams married to', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 10, 'starts': 7, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 1, 'agent_ends': 0}
Observation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ... | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-28 | Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...', 'step': 11, 'starts': 7, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0} | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-29 | {'action': 'on_llm_start', 'name': 'OpenAI', 'step': 12, 'starts': 8, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\n\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-30 | to the original input question\n\nBegin!\n\nQuestion: Who is the wife of the person who sang summer of 69?\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\nAction: Search\nAction Input: "Who sang summer of 69"\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\nThought: I need to find out who Bryan Adams is married to.\nAction: Search\nAction Input: "Who is Bryan Adams married to"\nObservation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\nThought:'} | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-31 | {'action': 'on_llm_end', 'token_usage_prompt_tokens': 314, 'token_usage_completion_tokens': 18, 'token_usage_total_tokens': 332, 'model_name': 'text-davinci-003', 'step': 13, 'starts': 8, 'ends': 5, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'text': ' I now know the final answer.\nFinal Answer: Bryan Adams has never been married.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 81.29, 'flesch_kincaid_grade': 3.7, 'smog_index': 0.0, 'coleman_liau_index': 5.75, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 7.37, 'difficult_words': 1, 'linsear_write_formula': 2.5, 'gunning_fog': 2.8, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 115.7, 'szigriszt_pazos': 110.84, 'gutierrez_polini': 49.79, 'crawford': 0.7, 'gulpease_index': 85.4, 'osman': 83.14}
I now know the final answer.
Final Answer: Bryan Adams has never been married. | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-32 | I now know the final answer.
Final Answer: Bryan Adams has never been married.
{'action': 'on_agent_finish', 'output': 'Bryan Adams has never been married.', 'log': ' I now know the final answer.\nFinal Answer: Bryan Adams has never been married.', 'step': 14, 'starts': 8, 'ends': 6, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}
> Finished chain.
{'action': 'on_chain_end', 'outputs': 'Bryan Adams has never been married.', 'step': 15, 'starts': 8, 'ends': 7, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 1, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}
{'action_records': action name step starts ends errors text_ctr \
0 on_llm_start OpenAI 1 1 0 0 0
1 on_llm_start OpenAI 1 1 0 0 0
2 on_llm_start OpenAI 1 1 0 0 0
3 on_llm_start OpenAI 1 1 0 0 0 | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-33 | 4 on_llm_start OpenAI 1 1 0 0 0
.. ... ... ... ... ... ... ...
66 on_tool_end NaN 11 7 4 0 0
67 on_llm_start OpenAI 12 8 4 0 0
68 on_llm_end NaN 13 8 5 0 0
69 on_agent_finish NaN 14 8 6 0 0
70 on_chain_end NaN 15 8 7 0 0
chain_starts chain_ends llm_starts ... gulpease_index osman input \
0 0 0 1 ... NaN NaN NaN
1 0 0 1 ... NaN NaN NaN
2 0 0 1 ... NaN NaN NaN
3 0 0 1 ... NaN NaN NaN
4 0 0 1 ... NaN NaN NaN
.. ... ... ... ... ... ... ...
66 1 0 2 ... NaN NaN NaN
67 1 0 3 ... NaN NaN NaN
68 1 0 3 ... 85.4 83.14 NaN
69 1 0 3 ... NaN NaN NaN | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-34 | 69 1 0 3 ... NaN NaN NaN
70 1 1 3 ... NaN NaN NaN
tool tool_input log \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
.. ... ... ...
66 NaN NaN NaN
67 NaN NaN NaN
68 NaN NaN NaN
69 NaN NaN I now know the final answer.\nFinal Answer: B...
70 NaN NaN NaN
input_str description output \
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
.. ... ... ...
66 NaN NaN Bryan Adams has never married. In the 1990s, h...
67 NaN NaN NaN
68 NaN NaN NaN
69 NaN NaN Bryan Adams has never been married.
70 NaN NaN NaN
outputs
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
.. ...
66 NaN
67 NaN
68 NaN
69 NaN
70 Bryan Adams has never been married.
[71 rows x 47 columns], 'session_analysis': prompt_step prompts name \
0 2 Answer the following questions as best you can... OpenAI | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-35 | 0 2 Answer the following questions as best you can... OpenAI
1 7 Answer the following questions as best you can... OpenAI
2 12 Answer the following questions as best you can... OpenAI
output_step output \
0 3 I need to find out who sang summer of 69 and ...
1 8 I need to find out who Bryan Adams is married...
2 13 I now know the final answer.\nFinal Answer: B...
token_usage_total_tokens token_usage_prompt_tokens \
0 223 189
1 270 242
2 332 314
token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \
0 34 91.61 3.8
1 28 94.66 2.7
2 18 81.29 3.7
... difficult_words linsear_write_formula gunning_fog \
0 ... 2 5.75 5.4
1 ... 2 4.25 4.2
2 ... 1 2.50 2.8
text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \
0 3rd and 4th grade 121.07 119.50 54.91
1 4th and 5th grade 124.13 119.20 52.26 | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
0fc1e61dbe7d-36 | 2 3rd and 4th grade 115.70 110.84 49.79
crawford gulpease_index osman
0 0.9 72.7 92.16
1 0.7 74.7 84.20
2 0.7 85.4 83.14
[3 rows x 24 columns]}
Could not update last created model in Task 988bd727b0e94a29a3ac0ee526813545, Task status 'completed' cannot be updated
Tips and Next Steps#
Make sure you always use a unique name argument for the clearml_callback.flush_tracker function. If not, the model parameters used for a run will override the previous run!
If you close the ClearML Callback using clearml_callback.flush_tracker(..., finish=True) the Callback cannot be used anymore. Make a new one if you want to keep logging.
Check out the rest of the open source ClearML ecosystem, there is a data version manager, a remote execution agent, automated pipelines and much more!
previous
Chroma
next
Cohere
Contents
Getting API Credentials
Setting Up
Scenario 1: Just an LLM
Scenario 2: Creating an agent with tools
Tips and Next Steps
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/clearml_tracking.html |
5c7a50c19896-0 | .md
.pdf
Hugging Face
Contents
Installation and Setup
Wrappers
LLM
Embeddings
Tokenizer
Datasets
Hugging Face#
This page covers how to use the Hugging Face ecosystem (including the Hugging Face Hub) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.
Installation and Setup#
If you want to work with the Hugging Face Hub:
Install the Hub client library with pip install huggingface_hub
Create a Hugging Face account (it’s free!)
Create an access token and set it as an environment variable (HUGGINGFACEHUB_API_TOKEN)
If you want work with the Hugging Face Python libraries:
Install pip install transformers for working with models and tokenizers
Install pip install datasets for working with datasets
Wrappers#
LLM#
There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for models that support the following tasks: text2text-generation, text-generation
To use the local pipeline wrapper:
from langchain.llms import HuggingFacePipeline
To use a the wrapper for a model hosted on Hugging Face Hub:
from langchain.llms import HuggingFaceHub
For a more detailed walkthrough of the Hugging Face Hub wrapper, see this notebook
Embeddings#
There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for sentence-transformers models.
To use the local pipeline wrapper:
from langchain.embeddings import HuggingFaceEmbeddings
To use a the wrapper for a model hosted on Hugging Face Hub:
from langchain.embeddings import HuggingFaceHubEmbeddings | https://python.langchain.com/en/latest/ecosystem/huggingface.html |
5c7a50c19896-1 | from langchain.embeddings import HuggingFaceHubEmbeddings
For a more detailed walkthrough of this, see this notebook
Tokenizer#
There are several places you can use tokenizers available through the transformers package.
By default, it is used to count tokens for all LLMs.
You can also use it to count tokens when splitting documents with
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_huggingface_tokenizer(...)
For a more detailed walkthrough of this, see this notebook
Datasets#
The Hugging Face Hub has lots of great datasets that can be used to evaluate your LLM chains.
For a detailed walkthrough of how to use them to do so, see this notebook
previous
Helicone
next
Jina
Contents
Installation and Setup
Wrappers
LLM
Embeddings
Tokenizer
Datasets
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/huggingface.html |
9b854f12f238-0 | .md
.pdf
Wolfram Alpha Wrapper
Contents
Installation and Setup
Wrappers
Utility
Tool
Wolfram Alpha Wrapper#
This page covers how to use the Wolfram Alpha API within LangChain.
It is broken into two parts: installation and setup, and then references to specific Wolfram Alpha wrappers.
Installation and Setup#
Install requirements with pip install wolframalpha
Go to wolfram alpha and sign up for a developer account here
Create an app and get your APP ID
Set your APP ID as an environment variable WOLFRAM_ALPHA_APPID
Wrappers#
Utility#
There exists a WolframAlphaAPIWrapper utility which wraps this API. To import this utility:
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
For a more detailed walkthrough of this wrapper, see this notebook.
Tool#
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
from langchain.agents import load_tools
tools = load_tools(["wolfram-alpha"])
For more information on this, see this page
previous
Weaviate
next
Writer
Contents
Installation and Setup
Wrappers
Utility
Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/wolfram_alpha.html |
3e156585ff22-0 | .md
.pdf
AtlasDB
Contents
Installation and Setup
Wrappers
VectorStore
AtlasDB#
This page covers how to use Nomic’s Atlas ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Atlas wrappers.
Installation and Setup#
Install the Python package with pip install nomic
Nomic is also included in langchains poetry extras poetry install -E all
Wrappers#
VectorStore#
There exists a wrapper around the Atlas neural database, allowing you to use it as a vectorstore.
This vectorstore also gives you full access to the underlying AtlasProject object, which will allow you to use the full range of Atlas map interactions, such as bulk tagging and automatic topic modeling.
Please see the Atlas docs for more detailed information.
To import this vectorstore:
from langchain.vectorstores import AtlasDB
For a more detailed walkthrough of the AtlasDB wrapper, see this notebook
previous
Apify
next
Banana
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/atlas.html |
cefe2fb6ad25-0 | .md
.pdf
GooseAI
Contents
Installation and Setup
Wrappers
LLM
GooseAI#
This page covers how to use the GooseAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific GooseAI wrappers.
Installation and Setup#
Install the Python SDK with pip install openai
Get your GooseAI api key from this link here.
Set the environment variable (GOOSEAI_API_KEY).
import os
os.environ["GOOSEAI_API_KEY"] = "YOUR_API_KEY"
Wrappers#
LLM#
There exists an GooseAI LLM wrapper, which you can access with:
from langchain.llms import GooseAI
previous
Google Serper Wrapper
next
GPT4All
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/gooseai.html |
f40b6094d334-0 | .md
.pdf
Llama.cpp
Contents
Installation and Setup
Wrappers
LLM
Embeddings
Llama.cpp#
This page covers how to use llama.cpp within LangChain.
It is broken into two parts: installation and setup, and then references to specific Llama-cpp wrappers.
Installation and Setup#
Install the Python package with pip install llama-cpp-python
Download one of the supported models and convert them to the llama.cpp format per the instructions
Wrappers#
LLM#
There exists a LlamaCpp LLM wrapper, which you can access with
from langchain.llms import LlamaCpp
For a more detailed walkthrough of this, see this notebook
Embeddings#
There exists a LlamaCpp Embeddings wrapper, which you can access with
from langchain.embeddings import LlamaCppEmbeddings
For a more detailed walkthrough of this, see this notebook
previous
LanceDB
next
Metal
Contents
Installation and Setup
Wrappers
LLM
Embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/llamacpp.html |
d130bdacb905-0 | .md
.pdf
Replicate
Contents
Installation and Setup
Calling a model
Replicate#
This page covers how to run models on Replicate within LangChain.
Installation and Setup#
Create a Replicate account. Get your API key and set it as an environment variable (REPLICATE_API_TOKEN)
Install the Replicate python client with pip install replicate
Calling a model#
Find a model on the Replicate explore page, and then paste in the model name and version in this format: owner-name/model-name:version
For example, for this dolly model, click on the API tab. The model name/version would be: "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"
Only the model param is required, but any other model parameters can also be passed in with the format input={model_param: value, ...}
For example, if we were running stable diffusion and wanted to change the image dimensions:
Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})
Note that only the first output of a model will be returned.
From here, we can initialize our model:
llm = Replicate(model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5")
And run it:
prompt = """ | https://python.langchain.com/en/latest/ecosystem/replicate.html |
d130bdacb905-1 | And run it:
prompt = """
Answer the following yes/no question by reasoning step by step.
Can a dog drive a car?
"""
llm(prompt)
We can call any Replicate model (not just LLMs) using this syntax. For example, we can call Stable Diffusion:
text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions':'512x512'})
image_output = text2image("A cat riding a motorcycle by Picasso")
previous
Redis
next
Runhouse
Contents
Installation and Setup
Calling a model
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/replicate.html |
4e0347a92ad2-0 | .md
.pdf
Metal
Contents
What is Metal?
Quick start
Metal#
This page covers how to use Metal within LangChain.
What is Metal?#
Metal is a managed retrieval & memory platform built for production. Easily index your data into Metal and run semantic search and retrieval on it.
Quick start#
Get started by creating a Metal account.
Then, you can easily take advantage of the MetalRetriever class to start retrieving your data for semantic search, prompting context, etc. This class takes a Metal instance and a dictionary of parameters to pass to the Metal API.
from langchain.retrievers import MetalRetriever
from metal_sdk.metal import Metal
metal = Metal("API_KEY", "CLIENT_ID", "INDEX_ID");
retriever = MetalRetriever(metal, params={"limit": 2})
docs = retriever.get_relevant_documents("search term")
previous
Llama.cpp
next
Milvus
Contents
What is Metal?
Quick start
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/metal.html |
27aea657ecea-0 | .md
.pdf
RWKV-4
Contents
Installation and Setup
Usage
RWKV
Model File
Rwkv-4 models -> recommended VRAM
RWKV-4#
This page covers how to use the RWKV-4 wrapper within LangChain.
It is broken into two parts: installation and setup, and then usage with an example.
Installation and Setup#
Install the Python package with pip install rwkv
Install the tokenizer Python package with pip install tokenizer
Download a RWKV model and place it in your desired directory
Download the tokens file
Usage#
RWKV#
To use the RWKV wrapper, you need to provide the path to the pre-trained model file and the tokenizer’s configuration.
from langchain.llms import RWKV
# Test the model
```python
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))
Model File#
You can find links to model file downloads at the RWKV-4-Raven repository.
Rwkv-4 models -> recommended VRAM#
RWKV VRAM
Model | 8bit | bf16/fp16 | fp32 | https://python.langchain.com/en/latest/ecosystem/rwkv.html |
27aea657ecea-1 | RWKV VRAM
Model | 8bit | bf16/fp16 | fp32
14B | 16GB | 28GB | >50GB
7B | 8GB | 14GB | 28GB
3B | 2.8GB| 6GB | 12GB
1b5 | 1.3GB| 3GB | 6GB
See the rwkv pip page for more information about strategies, including streaming and cuda support.
previous
Runhouse
next
SearxNG Search API
Contents
Installation and Setup
Usage
RWKV
Model File
Rwkv-4 models -> recommended VRAM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/rwkv.html |
26f1abd2f44d-0 | .md
.pdf
PromptLayer
Contents
Installation and Setup
Wrappers
LLM
PromptLayer#
This page covers how to use PromptLayer within LangChain.
It is broken into two parts: installation and setup, and then references to specific PromptLayer wrappers.
Installation and Setup#
If you want to work with PromptLayer:
Install the promptlayer python library pip install promptlayer
Create a PromptLayer account
Create an api token and set it as an environment variable (PROMPTLAYER_API_KEY)
Wrappers#
LLM#
There exists an PromptLayer OpenAI LLM wrapper, which you can access with
from langchain.llms import PromptLayerOpenAI
To tag your requests, use the argument pl_tags when instanializing the LLM
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(pl_tags=["langchain-requests", "chatbot"])
To get the PromptLayer request id, use the argument return_pl_id when instanializing the LLM
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(return_pl_id=True)
This will add the PromptLayer request ID in the generation_info field of the Generation returned when using .generate or .agenerate
For example:
llm_results = llm.generate(["hello world"])
for res in llm_results.generations:
print("pl request id: ", res[0].generation_info["pl_request_id"])
You can use the PromptLayer request ID to add a prompt, score, or other metadata to your request. Read more about it here.
This LLM is identical to the OpenAI LLM, except that
all your requests will be logged to your PromptLayer account
you can add pl_tags when instantializing to tag your requests on PromptLayer | https://python.langchain.com/en/latest/ecosystem/promptlayer.html |
26f1abd2f44d-1 | you can add pl_tags when instantializing to tag your requests on PromptLayer
you can add return_pl_id when instantializing to return a PromptLayer request id to use while tracking requests.
PromptLayer also provides native wrappers for PromptLayerChatOpenAI and PromptLayerOpenAIChat
previous
Prediction Guard
next
Qdrant
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/promptlayer.html |
fb440b5fd67d-0 | .ipynb
.pdf
Aim
Aim#
Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents.
With Aim, you can easily debug and examine an individual execution:
Additionally, you have the option to compare multiple executions side by side:
Aim is fully open source, learn more about Aim on GitHub.
Let’s move forward and see how to enable and configure Aim callback.
Tracking LangChain Executions with AimIn this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal.
!pip install aim
!pip install langchain
!pip install openai
!pip install google-search-results
import os
from datetime import datetime
from langchain.llms import OpenAI
from langchain.callbacks import AimCallbackHandler, StdOutCallbackHandler
Our examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .
We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key .
os.environ["OPENAI_API_KEY"] = "..."
os.environ["SERPAPI_API_KEY"] = "..."
The event methods of AimCallbackHandler accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run.
session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")
aim_callback = AimCallbackHandler(
repo=".", | https://python.langchain.com/en/latest/ecosystem/aim_tracking.html |
fb440b5fd67d-1 | aim_callback = AimCallbackHandler(
repo=".",
experiment_name="scenario 1: OpenAI LLM",
)
callbacks = [StdOutCallbackHandler(), aim_callback]
llm = OpenAI(temperature=0, callbacks=callbacks)
The flush_tracker function is used to record LangChain assets on Aim. By default, the session is reset rather than being terminated outright.
Scenario 1 In the first scenario, we will use OpenAI LLM.
# scenario 1 - LLM
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
aim_callback.flush_tracker(
langchain_asset=llm,
experiment_name="scenario 2: Chain with multiple SubChains on multiple generations",
)
Scenario 2 Scenario two involves chaining with multiple SubChains across multiple generations.
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# scenario 2 - Chain
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [
{"title": "documentary about good video games that push the boundary of game design"},
{"title": "the phenomenon behind the remarkable speed of cheetahs"},
{"title": "the best in class mlops tooling"},
]
synopsis_chain.apply(test_prompts)
aim_callback.flush_tracker(
langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools"
) | https://python.langchain.com/en/latest/ecosystem/aim_tracking.html |
fb440b5fd67d-2 | )
Scenario 3 The third scenario involves an agent with tools.
from langchain.agents import initialize_agent, load_tools
from langchain.agents import AgentType
# scenario 3 - Agent with Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=callbacks,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)
> Entering new AgentExecutor chain...
I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.
Action: Search
Action Input: "Leo DiCaprio girlfriend"
Observation: Leonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ...
Thought: I need to find out Camila Morrone's age
Action: Search
Action Input: "Camila Morrone age"
Observation: 25 years
Thought: I need to calculate 25 raised to the 0.43 power
Action: Calculator
Action Input: 25^0.43
Observation: Answer: 3.991298452658078
Thought: I now know the final answer
Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078.
> Finished chain.
previous
AI21 Labs
next
AnalyticDB
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/ecosystem/aim_tracking.html |
fb440b5fd67d-3 | AnalyticDB
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/aim_tracking.html |
a64940054703-0 | .md
.pdf
Zilliz
Contents
Installation and Setup
Wrappers
VectorStore
Zilliz#
This page covers how to use the Zilliz Cloud ecosystem within LangChain.
Zilliz uses the Milvus integration.
It is broken into two parts: installation and setup, and then references to specific Milvus wrappers.
Installation and Setup#
Install the Python SDK with pip install pymilvus
Wrappers#
VectorStore#
There exists a wrapper around Zilliz indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Milvus
For a more detailed walkthrough of the Miluvs wrapper, see this notebook
previous
Yeager.ai
next
Glossary
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/zilliz.html |
ce971239ed45-0 | .md
.pdf
CerebriumAI
Contents
Installation and Setup
Wrappers
LLM
CerebriumAI#
This page covers how to use the CerebriumAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.
Installation and Setup#
Install with pip install cerebrium
Get an CerebriumAI api key and set it as an environment variable (CEREBRIUMAI_API_KEY)
Wrappers#
LLM#
There exists an CerebriumAI LLM wrapper, which you can access with
from langchain.llms import CerebriumAI
previous
Banana
next
Chroma
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/cerebriumai.html |
aa08a6976ac6-0 | .md
.pdf
Hazy Research
Contents
Installation and Setup
Wrappers
LLM
Hazy Research#
This page covers how to use the Hazy Research ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.
Installation and Setup#
To use the manifest, install it with pip install manifest-ml
Wrappers#
LLM#
There exists an LLM wrapper around Hazy Research’s manifest library.
manifest is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.
To use this wrapper:
from langchain.llms.manifest import ManifestWrapper
previous
Graphsignal
next
Helicone
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/hazy_research.html |
9b0bc929a5b9-0 | .ipynb
.pdf
Comet
Contents
Install Comet and Dependencies
Initialize Comet and Set your Credentials
Set OpenAI and SerpAPI credentials
Scenario 1: Using just an LLM
Scenario 2: Using an LLM in a Chain
Scenario 3: Using An Agent with Tools
Scenario 4: Using Custom Evaluation Metrics
Comet#
In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with Comet.
Example Project: Comet with LangChain
Install Comet and Dependencies#
%pip install comet_ml langchain openai google-search-results spacy textstat pandas
import sys
!{sys.executable} -m spacy download en_core_web_sm
Initialize Comet and Set your Credentials#
You can grab your Comet API Key here or click the link after initializing Comet
import comet_ml
comet_ml.init(project_name="comet-example-langchain")
Set OpenAI and SerpAPI credentials#
You will need an OpenAI API Key and a SerpAPI API Key to run the following examples
import os
os.environ["OPENAI_API_KEY"] = "..."
#os.environ["OPENAI_ORGANIZATION"] = "..."
os.environ["SERPAPI_API_KEY"] = "..."
Scenario 1: Using just an LLM#
from datetime import datetime
from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler
from langchain.llms import OpenAI
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=True,
stream_logs=True,
tags=["llm"],
visualizations=["dep"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True) | https://python.langchain.com/en/latest/ecosystem/comet_tracking.html |
9b0bc929a5b9-1 | llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)
llm_result = llm.generate(["Tell me a joke", "Tell me a poem", "Tell me a fact"] * 3)
print("LLM result", llm_result)
comet_callback.flush_tracker(llm, finish=True)
Scenario 2: Using an LLM in a Chain#
from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
comet_callback = CometCallbackHandler(
complexity_metrics=True,
project_name="comet-example-langchain",
stream_logs=True,
tags=["synopsis-chain"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
print(synopsis_chain.apply(test_prompts))
comet_callback.flush_tracker(synopsis_chain, finish=True)
Scenario 3: Using An Agent with Tools#
from langchain.agents import initialize_agent, load_tools
from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler
from langchain.llms import OpenAI
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=True, | https://python.langchain.com/en/latest/ecosystem/comet_tracking.html |
9b0bc929a5b9-2 | project_name="comet-example-langchain",
complexity_metrics=True,
stream_logs=True,
tags=["agent"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent="zero-shot-react-description",
callbacks=callbacks,
verbose=True,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
comet_callback.flush_tracker(agent, finish=True)
Scenario 4: Using Custom Evaluation Metrics#
The CometCallbackManager also allows you to define and use Custom Evaluation Metrics to assess generated outputs from your model. Let’s take a look at how this works.
In the snippet below, we will use the ROUGE metric to evaluate the quality of a generated summary of an input prompt.
%pip install rouge-score
from rouge_score import rouge_scorer
from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
class Rouge:
def __init__(self, reference):
self.reference = reference
self.scorer = rouge_scorer.RougeScorer(["rougeLsum"], use_stemmer=True)
def compute_metric(self, generation, prompt_idx, gen_idx):
prediction = generation.text
results = self.scorer.score(target=self.reference, prediction=prediction)
return { | https://python.langchain.com/en/latest/ecosystem/comet_tracking.html |
9b0bc929a5b9-3 | return {
"rougeLsum_score": results["rougeLsum"].fmeasure,
"reference": self.reference,
}
reference = """
The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.
It was the first structure to reach a height of 300 metres.
It is now taller than the Chrysler Building in New York City by 5.2 metres (17 ft)
Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France .
"""
rouge_score = Rouge(reference=reference)
template = """Given the following article, it is your job to write a summary.
Article:
{article}
Summary: This is the summary for the above article:"""
prompt_template = PromptTemplate(input_variables=["article"], template=template)
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=False,
stream_logs=True,
tags=["custom_metrics"],
custom_metrics=rouge_score.compute_metric,
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)
test_prompts = [
{
"article": """
The tower is 324 metres (1,063 ft) tall, about the same height as
an 81-storey building, and the tallest structure in Paris. Its base is square,
measuring 125 metres (410 ft) on each side.
During its construction, the Eiffel Tower surpassed the
Washington Monument to become the tallest man-made structure in the world,
a title it held for 41 years until the Chrysler Building | https://python.langchain.com/en/latest/ecosystem/comet_tracking.html |
9b0bc929a5b9-4 | a title it held for 41 years until the Chrysler Building
in New York City was finished in 1930.
It was the first structure to reach a height of 300 metres.
Due to the addition of a broadcasting aerial at the top of the tower in 1957,
it is now taller than the Chrysler Building by 5.2 metres (17 ft).
Excluding transmitters, the Eiffel Tower is the second tallest
free-standing structure in France after the Millau Viaduct.
"""
}
]
print(synopsis_chain.apply(test_prompts, callbacks=callbacks))
comet_callback.flush_tracker(synopsis_chain, finish=True)
previous
Cohere
next
Databerry
Contents
Install Comet and Dependencies
Initialize Comet and Set your Credentials
Set OpenAI and SerpAPI credentials
Scenario 1: Using just an LLM
Scenario 2: Using an LLM in a Chain
Scenario 3: Using An Agent with Tools
Scenario 4: Using Custom Evaluation Metrics
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/comet_tracking.html |
ccb3149f6101-0 | .md
.pdf
MyScale
Contents
Introduction
Installation and Setup
Setting up envrionments
Wrappers
VectorStore
MyScale#
This page covers how to use MyScale vector database within LangChain.
It is broken into two parts: installation and setup, and then references to specific MyScale wrappers.
With MyScale, you can manage both structured and unstructured (vectorized) data, and perform joint queries and analytics on both types of data using SQL. Plus, MyScale’s cloud-native OLAP architecture, built on top of ClickHouse, enables lightning-fast data processing even on massive datasets.
Introduction#
Overview to MyScale and High performance vector search
You can now register on our SaaS and start a cluster now!
If you are also interested in how we managed to integrate SQL and vector, please refer to this document for further syntax reference.
We also deliver with live demo on huggingface! Please checkout our huggingface space! They search millions of vector within a blink!
Installation and Setup#
Install the Python SDK with pip install clickhouse-connect
Setting up envrionments#
There are two ways to set up parameters for myscale index.
Environment Variables
Before you run the app, please set the environment variable with export:
export MYSCALE_URL='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ...
You can easily find your account, password and other info on our SaaS. For details please refer to this document
Every attributes under MyScaleSettings can be set with prefix MYSCALE_ and is case insensitive.
Create MyScaleSettings object with parameters
from langchain.vectorstores import MyScale, MyScaleSettings
config = MyScaleSetting(host="<your-backend-url>", port=8443, ...)
index = MyScale(embedding_function, config) | https://python.langchain.com/en/latest/ecosystem/myscale.html |
ccb3149f6101-1 | index = MyScale(embedding_function, config)
index.add_documents(...)
Wrappers#
supported functions:
add_texts
add_documents
from_texts
from_documents
similarity_search
asimilarity_search
similarity_search_by_vector
asimilarity_search_by_vector
similarity_search_with_relevance_scores
VectorStore#
There exists a wrapper around MyScale database, allowing you to use it as a vectorstore,
whether for semantic search or similar example retrieval.
To import this vectorstore:
from langchain.vectorstores import MyScale
For a more detailed walkthrough of the MyScale wrapper, see this notebook
previous
Modal
next
NLPCloud
Contents
Introduction
Installation and Setup
Setting up envrionments
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/myscale.html |
a73d5c86dbc5-0 | .md
.pdf
LanceDB
Contents
Installation and Setup
Wrappers
VectorStore
LanceDB#
This page covers how to use LanceDB within LangChain.
It is broken into two parts: installation and setup, and then references to specific LanceDB wrappers.
Installation and Setup#
Install the Python SDK with pip install lancedb
Wrappers#
VectorStore#
There exists a wrapper around LanceDB databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import LanceDB
For a more detailed walkthrough of the LanceDB wrapper, see this notebook
previous
Jina
next
Llama.cpp
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/lancedb.html |
2731e39eed5b-0 | .md
.pdf
Google Serper Wrapper
Contents
Setup
Wrappers
Utility
Output
Tool
Google Serper Wrapper#
This page covers how to use the Serper Google Search API within LangChain. Serper is a low-cost Google Search API that can be used to add answer box, knowledge graph, and organic results data from Google Search.
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
Setup#
Go to serper.dev to sign up for a free account
Get the api key and set it as an environment variable (SERPER_API_KEY)
Wrappers#
Utility#
There exists a GoogleSerperAPIWrapper utility which wraps this API. To import this utility:
from langchain.utilities import GoogleSerperAPIWrapper
You can use it as part of a Self Ask chain:
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
import os
os.environ["SERPER_API_KEY"] = ""
os.environ['OPENAI_API_KEY'] = ""
llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search"
)
]
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
Output#
Entering new AgentExecutor chain...
Yes.
Follow up: Who is the reigning men's U.S. Open champion? | https://python.langchain.com/en/latest/ecosystem/google_serper.html |
2731e39eed5b-1 | Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain
> Finished chain.
'El Palmar, Spain'
For a more detailed walkthrough of this wrapper, see this notebook.
Tool#
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
from langchain.agents import load_tools
tools = load_tools(["google-serper"])
For more information on this, see this page
previous
Google Search Wrapper
next
GooseAI
Contents
Setup
Wrappers
Utility
Output
Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/google_serper.html |
2d74d6478c8a-0 | .md
.pdf
Tair
Contents
Installation and Setup
Wrappers
VectorStore
Tair#
This page covers how to use the Tair ecosystem within LangChain.
Installation and Setup#
Install Tair Python SDK with pip install tair.
Wrappers#
VectorStore#
There exists a wrapper around TairVector, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Tair
For a more detailed walkthrough of the Tair wrapper, see this notebook
previous
StochasticAI
next
Unstructured
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/tair.html |
8fbf035318e1-0 | .md
.pdf
Qdrant
Contents
Installation and Setup
Wrappers
VectorStore
Qdrant#
This page covers how to use the Qdrant ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Qdrant wrappers.
Installation and Setup#
Install the Python SDK with pip install qdrant-client
Wrappers#
VectorStore#
There exists a wrapper around Qdrant indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Qdrant
For a more detailed walkthrough of the Qdrant wrapper, see this notebook
previous
PromptLayer
next
Redis
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/qdrant.html |
6cfc32aa065f-0 | .md
.pdf
DeepInfra
Contents
Installation and Setup
Wrappers
LLM
DeepInfra#
This page covers how to use the DeepInfra ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific DeepInfra wrappers.
Installation and Setup#
Get your DeepInfra api key from this link here.
Get an DeepInfra api key and set it as an environment variable (DEEPINFRA_API_TOKEN)
Wrappers#
LLM#
There exists an DeepInfra LLM wrapper, which you can access with
from langchain.llms import DeepInfra
previous
Databerry
next
Deep Lake
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/deepinfra.html |
275b084e9790-0 | .md
.pdf
AnalyticDB
Contents
VectorStore
AnalyticDB#
This page covers how to use the AnalyticDB ecosystem within LangChain.
VectorStore#
There exists a wrapper around AnalyticDB, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import AnalyticDB
For a more detailed walkthrough of the AnalyticDB wrapper, see this notebook
previous
Aim
next
Apify
Contents
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/analyticdb.html |
d6477a78b1bc-0 | .md
.pdf
OpenAI
Contents
Installation and Setup
Wrappers
LLM
Embeddings
Tokenizer
Moderation
OpenAI#
This page covers how to use the OpenAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenAI wrappers.
Installation and Setup#
Install the Python SDK with pip install openai
Get an OpenAI api key and set it as an environment variable (OPENAI_API_KEY)
If you want to use OpenAI’s tokenizer (only available for Python 3.9+), install it with pip install tiktoken
Wrappers#
LLM#
There exists an OpenAI LLM wrapper, which you can access with
from langchain.llms import OpenAI
If you are using a model hosted on Azure, you should use different wrapper for that:
from langchain.llms import AzureOpenAI
For a more detailed walkthrough of the Azure wrapper, see this notebook
Embeddings#
There exists an OpenAI Embeddings wrapper, which you can access with
from langchain.embeddings import OpenAIEmbeddings
For a more detailed walkthrough of this, see this notebook
Tokenizer#
There are several places you can use the tiktoken tokenizer. By default, it is used to count tokens
for OpenAI LLMs.
You can also use it to count tokens when splitting documents with
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_tiktoken_encoder(...)
For a more detailed walkthrough of this, see this notebook
Moderation#
You can also access the OpenAI content moderation endpoint with
from langchain.chains import OpenAIModerationChain
For a more detailed walkthrough of this, see this notebook
previous
NLPCloud
next
OpenSearch
Contents
Installation and Setup
Wrappers
LLM
Embeddings
Tokenizer | https://python.langchain.com/en/latest/ecosystem/openai.html |
d6477a78b1bc-1 | Contents
Installation and Setup
Wrappers
LLM
Embeddings
Tokenizer
Moderation
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/openai.html |
f8fe94b9a57a-0 | .md
.pdf
AI21 Labs
Contents
Installation and Setup
Wrappers
LLM
AI21 Labs#
This page covers how to use the AI21 ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.
Installation and Setup#
Get an AI21 api key and set it as an environment variable (AI21_API_KEY)
Wrappers#
LLM#
There exists an AI21 LLM wrapper, which you can access with
from langchain.llms import AI21
previous
LangChain Ecosystem
next
Aim
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/ai21.html |
63732503b4c5-0 | .md
.pdf
Deep Lake
Contents
Why Deep Lake?
More Resources
Installation and Setup
Wrappers
VectorStore
Deep Lake#
This page covers how to use the Deep Lake ecosystem within LangChain.
Why Deep Lake?#
More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
Not only stores embeddings, but also the original data with automatic version control.
Truly serverless. Doesn’t require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
More Resources#
Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data
Twitter the-algorithm codebase analysis with Deep Lake
Here is whitepaper and academic paper for Deep Lake
Here is a set of additional resources available for review: Deep Lake, Getting Started and Tutorials
Installation and Setup#
Install the Python package with pip install deeplake
Wrappers#
VectorStore#
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import DeepLake
For a more detailed walkthrough of the Deep Lake wrapper, see this notebook
previous
DeepInfra
next
ForefrontAI
Contents
Why Deep Lake?
More Resources
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/deeplake.html |
36abf52c9802-0 | .md
.pdf
Weaviate
Contents
Installation and Setup
Wrappers
VectorStore
Weaviate#
This page covers how to use the Weaviate ecosystem within LangChain.
What is Weaviate?
Weaviate in a nutshell:
Weaviate is an open-source database of the type vector search engine.
Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.
Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.
Weaviate has a GraphQL-API to access your data easily.
We aim to bring your vector search set up to production to query in mere milliseconds (check our open source benchmarks to see if Weaviate fits your use case).
Get to know Weaviate in the basics getting started guide in under five minutes.
Weaviate in detail:
Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.
Installation and Setup#
Install the Python SDK with pip install weaviate-client
Wrappers#
VectorStore#
There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Weaviate | https://python.langchain.com/en/latest/ecosystem/weaviate.html |
36abf52c9802-1 | To import this vectorstore:
from langchain.vectorstores import Weaviate
For a more detailed walkthrough of the Weaviate wrapper, see this notebook
previous
Weights & Biases
next
Wolfram Alpha Wrapper
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/weaviate.html |
36c50832fe39-0 | .md
.pdf
Prediction Guard
Contents
Installation and Setup
LLM Wrapper
Example usage
Prediction Guard#
This page covers how to use the Prediction Guard ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.
Installation and Setup#
Install the Python SDK with pip install predictionguard
Get an Prediction Guard access token (as described here) and set it as an environment variable (PREDICTIONGUARD_TOKEN)
LLM Wrapper#
There exists a Prediction Guard LLM wrapper, which you can access with
from langchain.llms import PredictionGuard
You can provide the name of your Prediction Guard “proxy” as an argument when initializing the LLM:
pgllm = PredictionGuard(name="your-text-gen-proxy")
Alternatively, you can use Prediction Guard’s default proxy for SOTA LLMs:
pgllm = PredictionGuard(name="default-text-gen")
You can also provide your access token directly as an argument:
pgllm = PredictionGuard(name="default-text-gen", token="<your access token>")
Example usage#
Basic usage of the LLM wrapper:
from langchain.llms import PredictionGuard
pgllm = PredictionGuard(name="default-text-gen")
pgllm("Tell me a joke")
Basic LLM Chaining with the Prediction Guard wrapper:
from langchain import PromptTemplate, LLMChain
from langchain.llms import PredictionGuard
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=PredictionGuard(name="default-text-gen"), verbose=True)
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.predict(question=question)
previous | https://python.langchain.com/en/latest/ecosystem/predictionguard.html |
36c50832fe39-1 | llm_chain.predict(question=question)
previous
PipelineAI
next
PromptLayer
Contents
Installation and Setup
LLM Wrapper
Example usage
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/predictionguard.html |
534b2757e7eb-0 | .md
.pdf
OpenSearch
Contents
Installation and Setup
Wrappers
VectorStore
OpenSearch#
This page covers how to use the OpenSearch ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
Installation and Setup#
Install the Python package with pip install opensearch-py
Wrappers#
VectorStore#
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.
To import this vectorstore:
from langchain.vectorstores import OpenSearchVectorSearch
For a more detailed walkthrough of the OpenSearch wrapper, see this notebook
previous
OpenAI
next
Petals
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/opensearch.html |
c7b6013e2b53-0 | .md
.pdf
Google Search Wrapper
Contents
Installation and Setup
Wrappers
Utility
Tool
Google Search Wrapper#
This page covers how to use the Google Search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific Google Search wrapper.
Installation and Setup#
Install requirements with pip install google-api-python-client
Set up a Custom Search Engine, following these instructions
Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables GOOGLE_API_KEY and GOOGLE_CSE_ID respectively
Wrappers#
Utility#
There exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:
from langchain.utilities import GoogleSearchAPIWrapper
For a more detailed walkthrough of this wrapper, see this notebook.
Tool#
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
from langchain.agents import load_tools
tools = load_tools(["google-search"])
For more information on this, see this page
previous
ForefrontAI
next
Google Serper Wrapper
Contents
Installation and Setup
Wrappers
Utility
Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/google_search.html |
71e3aed9f0d6-0 | .md
.pdf
Jina
Contents
Installation and Setup
Wrappers
Embeddings
Jina#
This page covers how to use the Jina ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
Installation and Setup#
Install the Python SDK with pip install jina
Get a Jina AI Cloud auth token from here and set it as an environment variable (JINA_AUTH_TOKEN)
Wrappers#
Embeddings#
There exists a Jina Embeddings wrapper, which you can access with
from langchain.embeddings import JinaEmbeddings
For a more detailed walkthrough of this, see this notebook
previous
Hugging Face
next
LanceDB
Contents
Installation and Setup
Wrappers
Embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/jina.html |
dd65867a3b55-0 | .md
.pdf
Yeager.ai
Contents
What is Yeager.ai?
yAgents
How to use?
Creating and Executing Tools with yAgents
Yeager.ai#
This page covers how to use Yeager.ai to generate LangChain tools and agents.
What is Yeager.ai?#
Yeager.ai is an ecosystem designed to simplify the process of creating AI agents and tools.
It features yAgents, a No-code LangChain Agent Builder, which enables users to build, test, and deploy AI solutions with ease. Leveraging the LangChain framework, yAgents allows seamless integration with various language models and resources, making it suitable for developers, researchers, and AI enthusiasts across diverse applications.
yAgents#
Low code generative agent designed to help you build, prototype, and deploy Langchain tools with ease.
How to use?#
pip install yeagerai-agent
yeagerai-agent
Go to http://127.0.0.1:7860
This will install the necessary dependencies and set up yAgents on your system. After the first run, yAgents will create a .env file where you can input your OpenAI API key. You can do the same directly from the Gradio interface under the tab “Settings”.
OPENAI_API_KEY=<your_openai_api_key_here>
We recommend using GPT-4,. However, the tool can also work with GPT-3 if the problem is broken down sufficiently.
Creating and Executing Tools with yAgents#
yAgents makes it easy to create and execute AI-powered tools. Here’s a brief overview of the process:
Create a tool: To create a tool, provide a natural language prompt to yAgents. The prompt should clearly describe the tool’s purpose and functionality. For example:
create a tool that returns the n-th prime number | https://python.langchain.com/en/latest/ecosystem/yeagerai.html |
dd65867a3b55-1 | create a tool that returns the n-th prime number
Load the tool into the toolkit: To load a tool into yAgents, simply provide a command to yAgents that says so. For example:
load the tool that you just created it into your toolkit
Execute the tool: To run a tool or agent, simply provide a command to yAgents that includes the name of the tool and any required parameters. For example:
generate the 50th prime number
You can see a video of how it works here.
As you become more familiar with yAgents, you can create more advanced tools and agents to automate your work and enhance your productivity.
For more information, see yAgents’ Github or our docs
previous
Writer
next
Zilliz
Contents
What is Yeager.ai?
yAgents
How to use?
Creating and Executing Tools with yAgents
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/yeagerai.html |
2624326beeb9-0 | .md
.pdf
Graphsignal
Contents
Installation and Setup
Tracing and Monitoring
Graphsignal#
This page covers how to use Graphsignal to trace and monitor LangChain. Graphsignal enables full visibility into your application. It provides latency breakdowns by chains and tools, exceptions with full context, data monitoring, compute/GPU utilization, OpenAI cost analytics, and more.
Installation and Setup#
Install the Python library with pip install graphsignal
Create free Graphsignal account here
Get an API key and set it as an environment variable (GRAPHSIGNAL_API_KEY)
Tracing and Monitoring#
Graphsignal automatically instruments and starts tracing and monitoring chains. Traces and metrics are then available in your Graphsignal dashboards.
Initialize the tracer by providing a deployment name:
import graphsignal
graphsignal.configure(deployment='my-langchain-app-prod')
To additionally trace any function or code, you can use a decorator or a context manager:
@graphsignal.trace_function
def handle_request():
chain.run("some initial text")
with graphsignal.start_trace('my-chain'):
chain.run("some initial text")
Optionally, enable profiling to record function-level statistics for each trace.
with graphsignal.start_trace(
'my-chain', options=graphsignal.TraceOptions(enable_profiling=True)):
chain.run("some initial text")
See the Quick Start guide for complete setup instructions.
previous
GPT4All
next
Hazy Research
Contents
Installation and Setup
Tracing and Monitoring
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/graphsignal.html |
aef2b1b23ffc-0 | .md
.pdf
Redis
Contents
Installation and Setup
Wrappers
Cache
Standard Cache
Semantic Cache
VectorStore
Retriever
Memory
Vector Store Retriever Memory
Chat Message History Memory
Redis#
This page covers how to use the Redis ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Redis wrappers.
Installation and Setup#
Install the Redis Python SDK with pip install redis
Wrappers#
Cache#
The Cache wrapper allows for Redis to be used as a remote, low-latency, in-memory cache for LLM prompts and responses.
Standard Cache#
The standard cache is the Redis bread & butter of use case in production for both open source and enterprise users globally.
To import this cache:
from langchain.cache import RedisCache
To use this cache with your LLMs:
import langchain
import redis
redis_client = redis.Redis.from_url(...)
langchain.llm_cache = RedisCache(redis_client)
Semantic Cache#
Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore.
To import this cache:
from langchain.cache import RedisSemanticCache
To use this cache with your LLMs:
import langchain
import redis
# use any embedding provider...
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
redis_url = "redis://localhost:6379"
langchain.llm_cache = RedisSemanticCache(
embedding=FakeEmbeddings(),
redis_url=redis_url
)
VectorStore#
The vectorstore wrapper turns Redis into a low-latency vector database for semantic search or LLM content retrieval.
To import this vectorstore:
from langchain.vectorstores import Redis | https://python.langchain.com/en/latest/ecosystem/redis.html |
aef2b1b23ffc-1 | To import this vectorstore:
from langchain.vectorstores import Redis
For a more detailed walkthrough of the Redis vectorstore wrapper, see this notebook.
Retriever#
The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call .as_retriever() on the base vectorstore class.
Memory#
Redis can be used to persist LLM conversations.
Vector Store Retriever Memory#
For a more detailed walkthrough of the VectorStoreRetrieverMemory wrapper, see this notebook.
Chat Message History Memory#
For a detailed example of Redis to cache conversation message history, see this notebook.
previous
Qdrant
next
Replicate
Contents
Installation and Setup
Wrappers
Cache
Standard Cache
Semantic Cache
VectorStore
Retriever
Memory
Vector Store Retriever Memory
Chat Message History Memory
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/redis.html |
f29edd57a935-0 | .ipynb
.pdf
Weights & Biases
Weights & Biases#
This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.
Run in Colab: https://colab.research.google.com/drive/1DXH4beT4HFaRKy_Vm4PoxhXVDRf7Ym8L?usp=sharing
View Report: https://wandb.ai/a-sh0ts/langchain_callback_demo/reports/Prompt-Engineering-LLMs-with-LangChain-and-W-B–VmlldzozNjk1NTUw#👋-how-to-build-a-callback-in-langchain-for-better-prompt-engineering
!pip install wandb
!pip install pandas
!pip install textstat
!pip install spacy
!python -m spacy download en_core_web_sm
import os
os.environ["WANDB_API_KEY"] = ""
# os.environ["OPENAI_API_KEY"] = ""
# os.environ["SERPAPI_API_KEY"] = ""
from datetime import datetime
from langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandler
from langchain.llms import OpenAI
Callback Handler that logs to Weights and Biases.
Parameters:
job_type (str): The type of job.
project (str): The project to log to.
entity (str): The entity to log to.
tags (list): The tags to log.
group (str): The group to log to.
name (str): The name of the run.
notes (str): The notes to log.
visualize (bool): Whether to visualize the run. | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
f29edd57a935-1 | visualize (bool): Whether to visualize the run.
complexity_metrics (bool): Whether to log complexity metrics.
stream_logs (bool): Whether to stream callback actions to W&B
Default values for WandbCallbackHandler(...)
visualize: bool = False,
complexity_metrics: bool = False,
stream_logs: bool = False,
NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy
"""Main function.
This function is used to try the callback handler.
Scenarios:
1. OpenAI LLM
2. Chain with multiple SubChains on multiple generations
3. Agent with Tools
"""
session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")
wandb_callback = WandbCallbackHandler(
job_type="inference",
project="langchain_callback_demo",
group=f"minimal_{session_group}",
name="llm",
tags=["test"],
)
callbacks = [StdOutCallbackHandler(), wandb_callback]
llm = OpenAI(temperature=0, callbacks=callbacks)
wandb: Currently logged in as: harrison-chase. Use `wandb login --relogin` to force relogin | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
f29edd57a935-2 | Tracking run with wandb version 0.14.0Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914Syncing run llm to Weights & Biases (docs) View project at https://wandb.ai/harrison-chase/langchain_callback_demo View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914wandb: WARNING The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.
# Defaults for WandbCallbackHandler.flush_tracker(...)
reset: bool = True,
finish: bool = False,
The flush_tracker function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the session outright.
# SCENARIO 1 - LLM
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
wandb_callback.flush_tracker(llm, name="simple_sequential") | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
f29edd57a935-3 | wandb_callback.flush_tracker(llm, name="simple_sequential")
Waiting for W&B process to finish... (success). View run llm at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)Find logs at: ./wandb/run-20230318_150408-e47j1914/logsTracking run with wandb version 0.14.0Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7huSyncing run simple_sequential to Weights & Biases (docs) View project at https://wandb.ai/harrison-chase/langchain_callback_demo View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# SCENARIO 2 - Chain
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [
{
"title": "documentary about good video games that push the boundary of game design"
},
{"title": "cocaine bear vs heroin wolf"},
{"title": "the best in class mlops tooling"},
]
synopsis_chain.apply(test_prompts) | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
f29edd57a935-4 | ]
synopsis_chain.apply(test_prompts)
wandb_callback.flush_tracker(synopsis_chain, name="agent")
Waiting for W&B process to finish... (success). View run simple_sequential at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7huSynced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)Find logs at: ./wandb/run-20230318_150534-jyxma7hu/logsTracking run with wandb version 0.14.0Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjqSyncing run agent to Weights & Biases (docs) View project at https://wandb.ai/harrison-chase/langchain_callback_demo View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq
from langchain.agents import initialize_agent, load_tools
from langchain.agents import AgentType
# SCENARIO 3 - Agent with Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?",
callbacks=callbacks,
)
wandb_callback.flush_tracker(agent, reset=False, finish=True)
> Entering new AgentExecutor chain...
I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.
Action: Search
Action Input: "Leo DiCaprio girlfriend" | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
f29edd57a935-5 | Action: Search
Action Input: "Leo DiCaprio girlfriend"
Observation: DiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.
Thought: I need to calculate her age raised to the 0.43 power.
Action: Calculator
Action Input: 26^0.43
Observation: Answer: 4.059182145592686
Thought: I now know the final answer.
Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.
> Finished chain.
Waiting for W&B process to finish... (success). View run agent at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjqSynced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)Find logs at: ./wandb/run-20230318_150550-wzy59zjq/logs
previous
Unstructured
next
Weaviate
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/wandb_tracking.html |
d4146ebfacd1-0 | .md
.pdf
SerpAPI
Contents
Installation and Setup
Wrappers
Utility
Tool
SerpAPI#
This page covers how to use the SerpAPI search APIs within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SerpAPI wrapper.
Installation and Setup#
Install requirements with pip install google-search-results
Get a SerpAPI api key and either set it as an environment variable (SERPAPI_API_KEY)
Wrappers#
Utility#
There exists a SerpAPI utility which wraps this API. To import this utility:
from langchain.utilities import SerpAPIWrapper
For a more detailed walkthrough of this wrapper, see this notebook.
Tool#
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
from langchain.agents import load_tools
tools = load_tools(["serpapi"])
For more information on this, see this page
previous
SearxNG Search API
next
StochasticAI
Contents
Installation and Setup
Wrappers
Utility
Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/serpapi.html |
92ba0b852fc6-0 | .md
.pdf
PipelineAI
Contents
Installation and Setup
Wrappers
LLM
PipelineAI#
This page covers how to use the PipelineAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific PipelineAI wrappers.
Installation and Setup#
Install with pip install pipeline-ai
Get a Pipeline Cloud api key and set it as an environment variable (PIPELINE_API_KEY)
Wrappers#
LLM#
There exists a PipelineAI LLM wrapper, which you can access with
from langchain.llms import PipelineAI
previous
Pinecone
next
Prediction Guard
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/pipelineai.html |
d793f93d4eed-0 | .md
.pdf
Helicone
Contents
What is Helicone?
Quick start
How to enable Helicone caching
How to use Helicone custom properties
Helicone#
This page covers how to use the Helicone ecosystem within LangChain.
What is Helicone?#
Helicone is an open source observability platform that proxies your OpenAI traffic and provides you key insights into your spend, latency and usage.
Quick start#
With your LangChain environment you can just add the following parameter.
export OPENAI_API_BASE="https://oai.hconeai.com/v1"
Now head over to helicone.ai to create your account, and add your OpenAI API key within our dashboard to view your logs.
How to enable Helicone caching#
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={"Helicone-Cache-Enabled": "true"})
text = "What is a helicone?"
print(llm(text))
Helicone caching docs
How to use Helicone custom properties#
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={
"Helicone-Property-Session": "24",
"Helicone-Property-Conversation": "support_issue_2",
"Helicone-Property-App": "mobile",
})
text = "What is a helicone?"
print(llm(text))
Helicone property docs
previous
Hazy Research
next
Hugging Face
Contents
What is Helicone?
Quick start
How to enable Helicone caching
How to use Helicone custom properties | https://python.langchain.com/en/latest/ecosystem/helicone.html |
d793f93d4eed-1 | Quick start
How to enable Helicone caching
How to use Helicone custom properties
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/helicone.html |
93013ac66d2a-0 | .md
.pdf
Milvus
Contents
Installation and Setup
Wrappers
VectorStore
Milvus#
This page covers how to use the Milvus ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Milvus wrappers.
Installation and Setup#
Install the Python SDK with pip install pymilvus
Wrappers#
VectorStore#
There exists a wrapper around Milvus indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Milvus
For a more detailed walkthrough of the Miluvs wrapper, see this notebook
previous
Metal
next
Modal
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/milvus.html |
9bc0b1ad8ad5-0 | .md
.pdf
GPT4All
Contents
Installation and Setup
Usage
GPT4All
Model File
GPT4All#
This page covers how to use the GPT4All wrapper within LangChain. The tutorial is divided into two parts: installation and setup, followed by usage with an example.
Installation and Setup#
Install the Python package with pip install pyllamacpp
Download a GPT4All model and place it in your desired directory
Usage#
GPT4All#
To use the GPT4All wrapper, you need to provide the path to the pre-trained model file and the model’s configuration.
from langchain.llms import GPT4All
# Instantiate the model. Callbacks support token-wise streaming
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Generate text
response = model("Once upon a time, ")
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.
To stream the model’s predictions, add in a CallbackManager.
from langchain.llms import GPT4All
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# There are many CallbackHandlers supported, such as
# from langchain.callbacks.streamlit import StreamlitCallbackHandler
callbacks = [StreamingStdOutCallbackHandler()]
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Generate text. Tokens are streamed through the callback manager.
model("Once upon a time, ", callbacks=callbacks)
Model File#
You can find links to model file downloads in the pyllamacpp repository.
For a more detailed walkthrough of this, see this notebook
previous
GooseAI
next
Graphsignal
Contents | https://python.langchain.com/en/latest/ecosystem/gpt4all.html |
9bc0b1ad8ad5-1 | previous
GooseAI
next
Graphsignal
Contents
Installation and Setup
Usage
GPT4All
Model File
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/gpt4all.html |
0833a8f562c5-0 | .md
.pdf
StochasticAI
Contents
Installation and Setup
Wrappers
LLM
StochasticAI#
This page covers how to use the StochasticAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.
Installation and Setup#
Install with pip install stochasticx
Get an StochasticAI api key and set it as an environment variable (STOCHASTICAI_API_KEY)
Wrappers#
LLM#
There exists an StochasticAI LLM wrapper, which you can access with
from langchain.llms import StochasticAI
previous
SerpAPI
next
Tair
Contents
Installation and Setup
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/stochasticai.html |
9258ef80daf5-0 | .md
.pdf
SearxNG Search API
Contents
Installation and Setup
Self Hosted Instance:
Wrappers
Utility
Tool
SearxNG Search API#
This page covers how to use the SearxNG search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.
Installation and Setup#
While it is possible to utilize the wrapper in conjunction with public searx
instances these instances frequently do not permit API
access (see note on output format below) and have limitations on the frequency
of requests. It is recommended to opt for a self-hosted instance instead.
Self Hosted Instance:#
See this page for installation instructions.
When you install SearxNG, the only active output format by default is the HTML format.
You need to activate the json format to use the API. This can be done by adding the following line to the settings.yml file:
search:
formats:
- html
- json
You can make sure that the API is working by issuing a curl request to the API endpoint:
curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888
This should return a JSON object with the results.
Wrappers#
Utility#
To use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:
1. the named parameter searx_host when creating the instance.
2. exporting the environment variable SEARXNG_HOST.
You can use the wrapper to get results from a SearxNG instance.
from langchain.utilities import SearxSearchWrapper
s = SearxSearchWrapper(searx_host="http://localhost:8888")
s.run("what is a large language model?") | https://python.langchain.com/en/latest/ecosystem/searx.html |
9258ef80daf5-1 | s.run("what is a large language model?")
Tool#
You can also load this wrapper as a Tool (to use with an Agent).
You can do this with:
from langchain.agents import load_tools
tools = load_tools(["searx-search"],
searx_host="http://localhost:8888",
engines=["github"])
Note that we could optionally pass custom engines to use.
If you want to obtain results with metadata as json you can use:
tools = load_tools(["searx-search-results-json"],
searx_host="http://localhost:8888",
num_results=5)
For more information on tools, see this page
previous
RWKV-4
next
SerpAPI
Contents
Installation and Setup
Self Hosted Instance:
Wrappers
Utility
Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/searx.html |
deb0b75fe3d4-0 | .md
.pdf
Runhouse
Contents
Installation and Setup
Self-hosted LLMs
Self-hosted Embeddings
Runhouse#
This page covers how to use the Runhouse ecosystem within LangChain.
It is broken into three parts: installation and setup, LLMs, and Embeddings.
Installation and Setup#
Install the Python SDK with pip install runhouse
If you’d like to use on-demand cluster, check your cloud credentials with sky check
Self-hosted LLMs#
For a basic self-hosted LLM, you can use the SelfHostedHuggingFaceLLM class. For more
custom LLMs, you can use the SelfHostedPipeline parent class.
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
For a more detailed walkthrough of the Self-hosted LLMs, see this notebook
Self-hosted Embeddings#
There are several ways to use self-hosted embeddings with LangChain via Runhouse.
For a basic self-hosted embedding from a Hugging Face Transformers model, you can use
the SelfHostedEmbedding class.
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
For a more detailed walkthrough of the Self-hosted Embeddings, see this notebook
previous
Replicate
next
RWKV-4
Contents
Installation and Setup
Self-hosted LLMs
Self-hosted Embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/runhouse.html |
98a74deb0816-0 | .md
.pdf
Banana
Contents
Installation and Setup
Define your Banana Template
Build the Banana app
Wrappers
LLM
Banana#
This page covers how to use the Banana ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
Installation and Setup#
Install with pip install banana-dev
Get an Banana api key and set it as an environment variable (BANANA_API_KEY)
Define your Banana Template#
If you want to use an available language model template you can find one here.
This template uses the Palmyra-Base model by Writer.
You can check out an example Banana repository here.
Build the Banana app#
Banana Apps must include the “output” key in the return json.
There is a rigid response structure.
# Return the results as a dictionary
result = {'output': result}
An example inference function would be:
def inference(model_inputs:dict) -> dict:
global model
global tokenizer
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
) | https://python.langchain.com/en/latest/ecosystem/bananadev.html |
98a74deb0816-1 | bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result
You can find a full example of a Banana app here.
Wrappers#
LLM#
There exists an Banana LLM wrapper, which you can access with
from langchain.llms import Banana
You need to provide a model key located in the dashboard:
llm = Banana(model_key="YOUR_MODEL_KEY")
previous
AtlasDB
next
CerebriumAI
Contents
Installation and Setup
Define your Banana Template
Build the Banana app
Wrappers
LLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/bananadev.html |
bb847ac258ce-0 | .md
.pdf
Unstructured
Contents
Installation and Setup
Wrappers
Data Loaders
Unstructured#
This page covers how to use the unstructured
ecosystem within LangChain. The unstructured package from
Unstructured.IO extracts clean text from raw source documents like
PDFs and Word documents.
This page is broken into two parts: installation and setup, and then references to specific
unstructured wrappers.
Installation and Setup#
If you are using a loader that runs locally, use the following steps to get unstructured and
its dependencies running locally.
Install the Python SDK with pip install "unstructured[local-inference]"
Install the following system dependencies if they are not already available on your system.
Depending on what document types you’re parsing, you may not need all of these.
libmagic-dev (filetype detection)
poppler-utils (images and PDFs)
tesseract-ocr(images and PDFs)
libreoffice (MS Office docs)
pandoc (EPUBs)
If you are parsing PDFs using the "hi_res" strategy, run the following to install the detectron2 model, which
unstructured uses for layout detection:
pip install "detectron2@git+https://github.com/facebookresearch/detectron2.git@e2ce8dc#egg=detectron2"
If detectron2 is not installed, unstructured will fallback to processing PDFs
using the "fast" strategy, which uses pdfminer directly and doesn’t require
detectron2.
If you want to get up and running with less set up, you can
simply run pip install unstructured and use UnstructuredAPIFileLoader or
UnstructuredAPIFileIOLoader. That will process your document using the hosted Unstructured API. | https://python.langchain.com/en/latest/ecosystem/unstructured.html |
bb847ac258ce-1 | UnstructuredAPIFileIOLoader. That will process your document using the hosted Unstructured API.
Note that currently (as of 1 May 2023) the Unstructured API is open, but it will soon require
an API. The Unstructured documentation page will have
instructions on how to generate an API key once they’re available. Check out the instructions
here
if you’d like to self-host the Unstructured API or run it locally.
Wrappers#
Data Loaders#
The primary unstructured wrappers within langchain are data loaders. The following
shows how to use the most basic unstructured data loader. There are other file-specific
data loaders available in the langchain.document_loaders module.
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("state_of_the_union.txt")
loader.load()
If you instantiate the loader with UnstructuredFileLoader(mode="elements"), the loader
will track additional metadata like the page number and text type (i.e. title, narrative text)
when that information is available.
previous
Tair
next
Weights & Biases
Contents
Installation and Setup
Wrappers
Data Loaders
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/unstructured.html |
8f819f9b1315-0 | .md
.pdf
Chroma
Contents
Installation and Setup
Wrappers
VectorStore
Chroma#
This page covers how to use the Chroma ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.
Installation and Setup#
Install the Python package with pip install chromadb
Wrappers#
VectorStore#
There exists a wrapper around Chroma vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores import Chroma
For a more detailed walkthrough of the Chroma wrapper, see this notebook
previous
CerebriumAI
next
ClearML Integration
Contents
Installation and Setup
Wrappers
VectorStore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/chroma.html |
38bdbd4e80c3-0 | .md
.pdf
Apify
Contents
Overview
Installation and Setup
Wrappers
Utility
Loader
Apify#
This page covers how to use Apify within LangChain.
Overview#
Apify is a cloud platform for web scraping and data extraction,
which provides an ecosystem of more than a thousand
ready-made apps called Actors for various scraping, crawling, and extraction use cases.
This integration enables you run Actors on the Apify platform and load their results into LangChain to feed your vector
indexes with documents and data from the web, e.g. to generate answers from websites with documentation,
blogs, or knowledge bases.
Installation and Setup#
Install the Apify API client for Python with pip install apify-client
Get your Apify API token and either set it as
an environment variable (APIFY_API_TOKEN) or pass it to the ApifyWrapper as apify_api_token in the constructor.
Wrappers#
Utility#
You can use the ApifyWrapper to run Actors on the Apify platform.
from langchain.utilities import ApifyWrapper
For a more detailed walkthrough of this wrapper, see this notebook.
Loader#
You can also use our ApifyDatasetLoader to get data from Apify dataset.
from langchain.document_loaders import ApifyDatasetLoader
For a more detailed walkthrough of this loader, see this notebook.
previous
AnalyticDB
next
AtlasDB
Contents
Overview
Installation and Setup
Wrappers
Utility
Loader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/apify.html |
3c81e89f5f81-0 | .md
.pdf
PGVector
Contents
Installation
Setup
Wrappers
VectorStore
Usage
PGVector#
This page covers how to use the Postgres PGVector ecosystem within LangChain
It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
Installation#
Install the Python package with pip install pgvector
Setup#
The first step is to create a database with the pgvector extension installed.
Follow the steps at PGVector Installation Steps to install the database and the extension. The docker image is the easiest way to get started.
Wrappers#
VectorStore#
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
from langchain.vectorstores.pgvector import PGVector
Usage#
For a more detailed walkthrough of the PGVector Wrapper, see this notebook
previous
Petals
next
Pinecone
Contents
Installation
Setup
Wrappers
VectorStore
Usage
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/pgvector.html |
7b1fd0e431ae-0 | .md
.pdf
Databerry
Contents
What is Databerry?
Quick start
Databerry#
This page covers how to use the Databerry within LangChain.
What is Databerry?#
Databerry is an open source document retrievial platform that helps to connect your personal data with Large Language Models.
Quick start#
Retrieving documents stored in Databerry from LangChain is very easy!
from langchain.retrievers import DataberryRetriever
retriever = DataberryRetriever(
datastore_url="https://api.databerry.ai/query/clg1xg2h80000l708dymr0fxc",
# api_key="DATABERRY_API_KEY", # optional if datastore is public
# top_k=10 # optional
)
docs = retriever.get_relevant_documents("What's Databerry?")
previous
Comet
next
DeepInfra
Contents
What is Databerry?
Quick start
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/ecosystem/databerry.html |
345198c2a111-0 | .rst
.pdf
Prompts
Prompts#
The reference guides here all relate to objects for working with Prompts.
PromptTemplates
Example Selector
Output Parsers
previous
How to serialize prompts
next
PromptTemplates
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/prompts.html |
3931dd3eab87-0 | .rst
.pdf
Agents
Agents#
Reference guide for Agents and associated abstractions.
Agents
Tools
Agent Toolkits
previous
Memory
next
Agents
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/agents.html |
ca1dab1ce4c0-0 | .rst
.pdf
Models
Models#
LangChain provides interfaces and integrations for a number of different types of models.
LLMs
Chat Models
Embeddings
previous
API References
next
Chat Models
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/models.html |
1ccf7058e5a1-0 | .md
.pdf
Integrations
Integrations#
Besides the installation of this python package, you will also need to install packages and set environment variables depending on which chains you want to use.
Note: the reason these packages are not included in the dependencies by default is that as we imagine scaling this package, we do not want to force dependencies that are not needed.
The following use cases require specific installs and api keys:
OpenAI:
Install requirements with pip install openai
Get an OpenAI api key and either set it as an environment variable (OPENAI_API_KEY) or pass it to the LLM constructor as openai_api_key.
Cohere:
Install requirements with pip install cohere
Get a Cohere api key and either set it as an environment variable (COHERE_API_KEY) or pass it to the LLM constructor as cohere_api_key.
GooseAI:
Install requirements with pip install openai
Get an GooseAI api key and either set it as an environment variable (GOOSEAI_API_KEY) or pass it to the LLM constructor as gooseai_api_key.
Hugging Face Hub
Install requirements with pip install huggingface_hub
Get a Hugging Face Hub api token and either set it as an environment variable (HUGGINGFACEHUB_API_TOKEN) or pass it to the LLM constructor as huggingfacehub_api_token.
Petals:
Install requirements with pip install petals
Get an GooseAI api key and either set it as an environment variable (HUGGINGFACE_API_KEY) or pass it to the LLM constructor as huggingface_api_key.
CerebriumAI:
Install requirements with pip install cerebrium
Get a Cerebrium api key and either set it as an environment variable (CEREBRIUMAI_API_KEY) or pass it to the LLM constructor as cerebriumai_api_key. | https://python.langchain.com/en/latest/reference/integrations.html |
1ccf7058e5a1-1 | PromptLayer:
Install requirements with pip install promptlayer (be sure to be on version 0.1.62 or higher)
Get an API key from promptlayer.com and set it using promptlayer.api_key=<API KEY>
SerpAPI:
Install requirements with pip install google-search-results
Get a SerpAPI api key and either set it as an environment variable (SERPAPI_API_KEY) or pass it to the LLM constructor as serpapi_api_key.
GoogleSearchAPI:
Install requirements with pip install google-api-python-client
Get a Google api key and either set it as an environment variable (GOOGLE_API_KEY) or pass it to the LLM constructor as google_api_key. You will also need to set the GOOGLE_CSE_ID environment variable to your custom search engine id. You can pass it to the LLM constructor as google_cse_id as well.
WolframAlphaAPI:
Install requirements with pip install wolframalpha
Get a Wolfram Alpha api key and either set it as an environment variable (WOLFRAM_ALPHA_APPID) or pass it to the LLM constructor as wolfram_alpha_appid.
NatBot:
Install requirements with pip install playwright
Wikipedia:
Install requirements with pip install wikipedia
Elasticsearch:
Install requirements with pip install elasticsearch
Set up Elasticsearch backend. If you want to do locally, this is a good guide.
FAISS:
Install requirements with pip install faiss for Python 3.7 and pip install faiss-cpu for Python 3.10+.
MyScale
Install requirements with pip install clickhouse-connect. For documentations, please refer to this document.
Manifest:
Install requirements with pip install manifest-ml (Note: this is only available in Python 3.8+ currently).
OpenSearch:
Install requirements with pip install opensearch-py | https://python.langchain.com/en/latest/reference/integrations.html |
1ccf7058e5a1-2 | OpenSearch:
Install requirements with pip install opensearch-py
If you want to set up OpenSearch on your local, here
DeepLake:
Install requirements with pip install deeplake
LlamaCpp:
Install requirements with pip install llama-cpp-python
Download model and convert following llama.cpp instructions
Milvus:
Install requirements with pip install pymilvus
In order to setup a local cluster, take a look here.
Zilliz:
Install requirements with pip install pymilvus
To get up and running, take a look here.
If you are using the NLTKTextSplitter or the SpacyTextSplitter, you will also need to install the appropriate models. For example, if you want to use the SpacyTextSplitter, you will need to install the en_core_web_sm model with python -m spacy download en_core_web_sm. Similarly, if you want to use the NLTKTextSplitter, you will need to install the punkt model with python -m nltk.downloader punkt.
previous
Installation
next
API References
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/integrations.html |
e81be8e6f2eb-0 | .md
.pdf
Installation
Contents
Official Releases
Installing from source
Installation#
Official Releases#
LangChain is available on PyPi, so to it is easily installable with:
pip install langchain
That will install the bare minimum requirements of LangChain.
A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc.
By default, the dependencies needed to do that are NOT installed.
However, there are two other ways to install LangChain that do bring in those dependencies.
To install modules needed for the common LLM providers, run:
pip install langchain[llms]
To install all modules needed for all integrations, run:
pip install langchain[all]
Note that if you are using zsh, you’ll need to quote square brackets when passing them as an argument to a command, for example:
pip install 'langchain[all]'
Installing from source#
If you want to install from source, you can do so by cloning the repo and running:
pip install -e .
previous
SQL Question Answering Benchmarking: Chinook
next
Integrations
Contents
Official Releases
Installing from source
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/installation.html |
01c72ccf2345-0 | .rst
.pdf
Indexes
Indexes#
Indexes refer to ways to structure documents so that LLMs can best interact with them.
LangChain has a number of modules that help you load, structure, store, and retrieve documents.
Docstore
Text Splitter
Document Loaders
Vector Stores
Retrievers
Document Compressors
Document Transformers
previous
Embeddings
next
Docstore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/indexes.html |
f879ad3027eb-0 | .rst
.pdf
Example Selector
Example Selector#
Logic for selecting examples to include in prompts.
pydantic model langchain.prompts.example_selector.LengthBasedExampleSelector[source]#
Select examples based on length.
Validators
calculate_example_text_lengths » example_text_lengths
field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]#
Prompt template used to format the examples.
field examples: List[dict] [Required]#
A list of the examples that the prompt template expects.
field get_text_length: Callable[[str], int] = <function _get_length_based>#
Function to measure prompt length. Defaults to word count.
field max_length: int = 2048#
Max length for the prompt, beyond which examples are cut.
add_example(example: Dict[str, str]) → None[source]#
Add new example to list.
select_examples(input_variables: Dict[str, str]) → List[dict][source]#
Select which examples to use based on the input lengths.
pydantic model langchain.prompts.example_selector.MaxMarginalRelevanceExampleSelector[source]#
ExampleSelector that selects examples based on Max Marginal Relevance.
This was shown to improve performance in this paper:
https://arxiv.org/pdf/2211.13892.pdf
field fetch_k: int = 20#
Number of examples to fetch to rerank.
classmethod from_examples(examples: List[dict], embeddings: langchain.embeddings.base.Embeddings, vectorstore_cls: Type[langchain.vectorstores.base.VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, fetch_k: int = 20, **vectorstore_cls_kwargs: Any) → langchain.prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector[source]#
Create k-shot example selector using example list and embeddings. | https://python.langchain.com/en/latest/reference/modules/example_selector.html |
f879ad3027eb-1 | Create k-shot example selector using example list and embeddings.
Reshuffles examples dynamically based on query similarity.
Parameters
examples – List of examples to use in the prompt.
embeddings – An iniialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls – A vector store DB interface class, e.g. FAISS.
k – Number of examples to select
input_keys – If provided, the search is based on the input variables
instead of all variables.
vectorstore_cls_kwargs – optional kwargs containing url for vector store
Returns
The ExampleSelector instantiated, backed by a vector store.
select_examples(input_variables: Dict[str, str]) → List[dict][source]#
Select which examples to use based on semantic similarity.
pydantic model langchain.prompts.example_selector.SemanticSimilarityExampleSelector[source]#
Example selector that selects examples based on SemanticSimilarity.
field example_keys: Optional[List[str]] = None#
Optional keys to filter examples to.
field input_keys: Optional[List[str]] = None#
Optional keys to filter input to. If provided, the search is based on
the input variables instead of all variables.
field k: int = 4#
Number of examples to select.
field vectorstore: langchain.vectorstores.base.VectorStore [Required]#
VectorStore than contains information about examples.
add_example(example: Dict[str, str]) → str[source]#
Add new example to vectorstore.
classmethod from_examples(examples: List[dict], embeddings: langchain.embeddings.base.Embeddings, vectorstore_cls: Type[langchain.vectorstores.base.VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, **vectorstore_cls_kwargs: Any) → langchain.prompts.example_selector.semantic_similarity.SemanticSimilarityExampleSelector[source]# | https://python.langchain.com/en/latest/reference/modules/example_selector.html |
f879ad3027eb-2 | Create k-shot example selector using example list and embeddings.
Reshuffles examples dynamically based on query similarity.
Parameters
examples – List of examples to use in the prompt.
embeddings – An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls – A vector store DB interface class, e.g. FAISS.
k – Number of examples to select
input_keys – If provided, the search is based on the input variables
instead of all variables.
vectorstore_cls_kwargs – optional kwargs containing url for vector store
Returns
The ExampleSelector instantiated, backed by a vector store.
select_examples(input_variables: Dict[str, str]) → List[dict][source]#
Select which examples to use based on semantic similarity.
previous
PromptTemplates
next
Output Parsers
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/modules/example_selector.html |
c9b7d85f6498-0 | .rst
.pdf
Memory
Memory#
pydantic model langchain.memory.ChatMessageHistory[source]#
field messages: List[langchain.schema.BaseMessage] = []#
add_ai_message(message: str) → None[source]#
Add an AI message to the store
add_user_message(message: str) → None[source]#
Add a user message to the store
clear() → None[source]#
Remove all messages from the store
pydantic model langchain.memory.CombinedMemory[source]#
Class for combining multiple memories’ data together.
Validators
check_repeated_memory_variable » memories
field memories: List[langchain.schema.BaseMemory] [Required]#
For tracking all the memories that should be accessed.
clear() → None[source]#
Clear context from this session for every memory.
load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]#
Load all vars from sub-memories.
save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]#
Save context from this session for every memory.
property memory_variables: List[str]#
All the memory variables that this instance provides.
pydantic model langchain.memory.ConversationBufferMemory[source]#
Buffer for storing conversation memory.
field ai_prefix: str = 'AI'#
field human_prefix: str = 'Human'#
load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]#
Return history buffer.
property buffer: Any#
String buffer of memory.
pydantic model langchain.memory.ConversationBufferWindowMemory[source]#
Buffer for storing conversation memory.
field ai_prefix: str = 'AI'#
field human_prefix: str = 'Human'#
field k: int = 5# | https://python.langchain.com/en/latest/reference/modules/memory.html |
c9b7d85f6498-1 | field human_prefix: str = 'Human'#
field k: int = 5#
load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]#
Return history buffer.
property buffer: List[langchain.schema.BaseMessage]#
String buffer of memory.
pydantic model langchain.memory.ConversationEntityMemory[source]#
Entity extractor & summarizer to memory.
field ai_prefix: str = 'AI'#
field chat_history_key: str = 'history'#
field entity_cache: List[str] = []# | https://python.langchain.com/en/latest/reference/modules/memory.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.