id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
115
70fdaeb2ac0b-8
property headers: Dict[str, str]# Get the token. property request_url: str# Get the request url. property table_info: str# Information about all tables in the database. pydantic model langchain.utilities.PythonREPL[source]# Simulates a standalone Python REPL. field globals: Optional[Dict] [Optional] (alias '_globals')# field locals: Optional[Dict] [Optional] (alias '_locals')# run(command: str) → str[source]# Run command with own globals/locals and returns anything printed. pydantic model langchain.utilities.SearxSearchWrapper[source]# Wrapper for Searx API. To use you need to provide the searx host by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. In some situations you might want to disable SSL verification, for example if you are running searx locally. You can do this by passing the named parameter unsecure. You can also pass the host url scheme as http to disable SSL. Example from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://localhost:8888") Example with SSL disabled:from langchain.utilities import SearxSearchWrapper # note the unsecure parameter is not needed if you pass the url scheme as # http searx = SearxSearchWrapper(searx_host="http://localhost:8888", unsecure=True) Validators disable_ssl_warnings » unsecure validate_params » all fields field aiosession: Optional[Any] = None# field categories: Optional[List[str]] = []# field engines: Optional[List[str]] = []# field headers: Optional[dict] = None# field k: int = 10#
https://python.langchain.com/en/latest/reference/modules/utilities.html
70fdaeb2ac0b-9
field headers: Optional[dict] = None# field k: int = 10# field params: dict [Optional]# field query_suffix: Optional[str] = ''# field searx_host: str = ''# field unsecure: bool = False# async aresults(query: str, num_results: int, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Asynchronously query with json results. Uses aiohttp. See results for more info. async arun(query: str, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Asynchronously version of run. results(query: str, num_results: int, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Run query through Searx API and returns the results with metadata. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. num_results – Limit the number of results to return. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns {snippet: The description of the result. title: The title of the result. link: The link to the result. engines: The engines used for the result. category: Searx category of the result. } Return type Dict with the following keys
https://python.langchain.com/en/latest/reference/modules/utilities.html
70fdaeb2ac0b-10
} Return type Dict with the following keys run(query: str, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Run query through Searx API and parse results. You can pass any other params to the searx query API. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns The result of the query. Return type str Raises ValueError – If an error occured with the query. Example This will make a query to the qwant engine: from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://my.searx.host") searx.run("what is the weather in France ?", engine="qwant") # the same result can be achieved using the `!` syntax of searx # to select the engine using `query_suffix` searx.run("what is the weather in France ?", query_suffix="!qwant") pydantic model langchain.utilities.SerpAPIWrapper[source]# Wrapper around SerpAPI. To use, you should have the google-search-results python package installed, and the environment variable SERPAPI_API_KEY set with your API key, or pass serpapi_api_key as a named parameter to the constructor. Example from langchain import SerpAPIWrapper serpapi = SerpAPIWrapper() field aiosession: Optional[aiohttp.client.ClientSession] = None#
https://python.langchain.com/en/latest/reference/modules/utilities.html
70fdaeb2ac0b-11
field aiosession: Optional[aiohttp.client.ClientSession] = None# field params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}# field serpapi_api_key: Optional[str] = None# async aresults(query: str) → dict[source]# Use aiohttp to run query through SerpAPI and return the results async. async arun(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result async. get_params(query: str) → Dict[str, str][source]# Get parameters for SerpAPI. results(query: str) → dict[source]# Run query through SerpAPI and return the raw result. run(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result. pydantic model langchain.utilities.TextRequestsWrapper[source]# Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. field aiosession: Optional[aiohttp.client.ClientSession] = None# field headers: Optional[Dict[str, str]] = None# async adelete(url: str, **kwargs: Any) → str[source]# DELETE the URL and return the text asynchronously. async aget(url: str, **kwargs: Any) → str[source]# GET the URL and return the text asynchronously. async apatch(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PATCH the URL and return the text asynchronously. async apost(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# POST to the URL and return the text asynchronously.
https://python.langchain.com/en/latest/reference/modules/utilities.html
70fdaeb2ac0b-12
POST to the URL and return the text asynchronously. async aput(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PUT the URL and return the text asynchronously. delete(url: str, **kwargs: Any) → str[source]# DELETE the URL and return the text. get(url: str, **kwargs: Any) → str[source]# GET the URL and return the text. patch(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PATCH the URL and return the text. post(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# POST to the URL and return the text. put(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PUT the URL and return the text. property requests: langchain.requests.Requests# pydantic model langchain.utilities.WikipediaAPIWrapper[source]# Wrapper around WikipediaAPI. To use, you should have the wikipedia python package installed. This wrapper will use the Wikipedia API to conduct searches and fetch page summaries. By default, it will return the page summaries of the top-k results of an input search. field lang: str = 'en'# field top_k_results: int = 3# fetch_formatted_page_summary(page: str) → Optional[str][source]# run(query: str) → str[source]# Run Wikipedia search and get page summaries. pydantic model langchain.utilities.WolframAlphaAPIWrapper[source]# Wrapper for Wolfram Alpha. Docs for using: Go to wolfram alpha and sign up for a developer account Create an app and get your APP ID Save your APP ID into WOLFRAM_ALPHA_APPID env variable
https://python.langchain.com/en/latest/reference/modules/utilities.html
70fdaeb2ac0b-13
Save your APP ID into WOLFRAM_ALPHA_APPID env variable pip install wolframalpha field wolfram_alpha_appid: Optional[str] = None# run(query: str) → str[source]# Run query through WolframAlpha and parse result. previous Agent Toolkits next Experimental Modules By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/utilities.html
5dae1c72a85d-0
.rst .pdf Output Parsers Output Parsers# pydantic model langchain.output_parsers.CommaSeparatedListOutputParser[source]# Parse out comma separated lists. get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(text: str) → List[str][source]# Parse the output of an LLM call. pydantic model langchain.output_parsers.GuardrailsOutputParser[source]# field guard: Any = None# classmethod from_rail(rail_file: str, num_reasks: int = 1) → langchain.output_parsers.rail_parser.GuardrailsOutputParser[source]# classmethod from_rail_string(rail_str: str, num_reasks: int = 1) → langchain.output_parsers.rail_parser.GuardrailsOutputParser[source]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(text: str) → Dict[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters text – output of language model Returns structured output pydantic model langchain.output_parsers.ListOutputParser[source]# Class to parse the output of an LLM call to a list. abstract parse(text: str) → List[str][source]# Parse the output of an LLM call. pydantic model langchain.output_parsers.OutputFixingParser[source]# Wraps a parser and tries to fix parsing errors. field parser: langchain.schema.BaseOutputParser[langchain.output_parsers.fix.T] [Required]# field retry_chain: langchain.chains.llm.LLMChain [Required]#
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
5dae1c72a85d-1
field retry_chain: langchain.chains.llm.LLMChain [Required]# classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, parser: langchain.schema.BaseOutputParser[langchain.output_parsers.fix.T], prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['completion', 'error', 'instructions'], output_parser=None, partial_variables={}, template='Instructions:\n--------------\n{instructions}\n--------------\nCompletion:\n--------------\n{completion}\n--------------\n\nAbove, the Completion did not satisfy the constraints given in the Instructions.\nError:\n--------------\n{error}\n--------------\n\nPlease try again. Please only respond with an answer that satisfies the constraints laid out in the Instructions:', template_format='f-string', validate_template=True)) → langchain.output_parsers.fix.OutputFixingParser[langchain.output_parsers.fix.T][source]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(completion: str) → langchain.output_parsers.fix.T[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters text – output of language model Returns structured output pydantic model langchain.output_parsers.PydanticOutputParser[source]# field pydantic_object: Type[langchain.output_parsers.pydantic.T] [Required]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(text: str) → langchain.output_parsers.pydantic.T[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
5dae1c72a85d-2
and parses it into some structure. Parameters text – output of language model Returns structured output pydantic model langchain.output_parsers.RegexDictParser[source]# Class to parse the output into a dictionary. field no_update_value: Optional[str] = None# field output_key_to_format: Dict[str, str] [Required]# field regex_pattern: str = "{}:\\s?([^.'\\n']*)\\.?"# parse(text: str) → Dict[str, str][source]# Parse the output of an LLM call. pydantic model langchain.output_parsers.RegexParser[source]# Class to parse the output into a dictionary. field default_output_key: Optional[str] = None# field output_keys: List[str] [Required]# field regex: str [Required]# parse(text: str) → Dict[str, str][source]# Parse the output of an LLM call. pydantic model langchain.output_parsers.ResponseSchema[source]# field description: str [Required]# field name: str [Required]# pydantic model langchain.output_parsers.RetryOutputParser[source]# Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt and the completion to another LLM, and telling it the completion did not satisfy criteria in the prompt. field parser: langchain.schema.BaseOutputParser[langchain.output_parsers.retry.T] [Required]# field retry_chain: langchain.chains.llm.LLMChain [Required]#
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
5dae1c72a85d-3
field retry_chain: langchain.chains.llm.LLMChain [Required]# classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, parser: langchain.schema.BaseOutputParser[langchain.output_parsers.retry.T], prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['completion', 'prompt'], output_parser=None, partial_variables={}, template='Prompt:\n{prompt}\nCompletion:\n{completion}\n\nAbove, the Completion did not satisfy the constraints given in the Prompt.\nPlease try again:', template_format='f-string', validate_template=True)) → langchain.output_parsers.retry.RetryOutputParser[langchain.output_parsers.retry.T][source]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(completion: str) → langchain.output_parsers.retry.T[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters text – output of language model Returns structured output parse_with_prompt(completion: str, prompt_value: langchain.schema.PromptValue) → langchain.output_parsers.retry.T[source]# Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output pydantic model langchain.output_parsers.RetryWithErrorOutputParser[source]# Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt, the completion, AND the error that was raised to another language and telling it that the completion
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
5dae1c72a85d-4
that was raised to another language and telling it that the completion did not work, and raised the given error. Differs from RetryOutputParser in that this implementation provides the error that was raised back to the LLM, which in theory should give it more information on how to fix it. field parser: langchain.schema.BaseOutputParser[langchain.output_parsers.retry.T] [Required]# field retry_chain: langchain.chains.llm.LLMChain [Required]# classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, parser: langchain.schema.BaseOutputParser[langchain.output_parsers.retry.T], prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['completion', 'error', 'prompt'], output_parser=None, partial_variables={}, template='Prompt:\n{prompt}\nCompletion:\n{completion}\n\nAbove, the Completion did not satisfy the constraints given in the Prompt.\nDetails: {error}\nPlease try again:', template_format='f-string', validate_template=True)) → langchain.output_parsers.retry.RetryWithErrorOutputParser[langchain.output_parsers.retry.T][source]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(completion: str) → langchain.output_parsers.retry.T[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters text – output of language model Returns structured output parse_with_prompt(completion: str, prompt_value: langchain.schema.PromptValue) → langchain.output_parsers.retry.T[source]# Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
5dae1c72a85d-5
The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output pydantic model langchain.output_parsers.StructuredOutputParser[source]# field response_schemas: List[langchain.output_parsers.structured.ResponseSchema] [Required]# classmethod from_response_schemas(response_schemas: List[langchain.output_parsers.structured.ResponseSchema]) → langchain.output_parsers.structured.StructuredOutputParser[source]# get_format_instructions() → str[source]# Instructions on how the LLM output should be formatted. parse(text: str) → Any[source]# Parse the output of an LLM call. A method which takes in a string (assumed output of language model ) and parses it into some structure. Parameters text – output of language model Returns structured output previous Example Selector next Chat Prompt Template By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/output_parsers.html
0d4c737e5152-0
.rst .pdf Docstore Docstore# Wrappers on top of docstores. class langchain.docstore.InMemoryDocstore(_dict: Dict[str, langchain.schema.Document])[source]# Simple in memory docstore in the form of a dict. add(texts: Dict[str, langchain.schema.Document]) → None[source]# Add texts to in memory dictionary. search(search: str) → Union[str, langchain.schema.Document][source]# Search via direct lookup. class langchain.docstore.Wikipedia[source]# Wrapper around wikipedia API. search(search: str) → Union[str, langchain.schema.Document][source]# Try to search for wiki page. If page exists, return the page summary, and a PageWithLookups object. If page does not exist, return similar entries. previous Indexes next Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/docstore.html
bb5236069ce5-0
.rst .pdf SerpAPI SerpAPI# For backwards compatiblity. pydantic model langchain.serpapi.SerpAPIWrapper[source]# Wrapper around SerpAPI. To use, you should have the google-search-results python package installed, and the environment variable SERPAPI_API_KEY set with your API key, or pass serpapi_api_key as a named parameter to the constructor. Example from langchain import SerpAPIWrapper serpapi = SerpAPIWrapper() field aiosession: Optional[aiohttp.client.ClientSession] = None# field params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}# field serpapi_api_key: Optional[str] = None# async aresults(query: str) → dict[source]# Use aiohttp to run query through SerpAPI and return the results async. async arun(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result async. get_params(query: str) → Dict[str, str][source]# Get parameters for SerpAPI. results(query: str) → dict[source]# Run query through SerpAPI and return the raw result. run(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result. By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/serpapi.html
f527a9930db1-0
.rst .pdf Experimental Modules Contents Autonomous Agents Generative Agents Experimental Modules# This module contains experimental modules and reproductions of existing work using LangChain primitives. Autonomous Agents# Here, we document the BabyAGI and AutoGPT classes from the langchain.experimental module. class langchain.experimental.BabyAGI(*, memory: Optional[langchain.schema.BaseMemory] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, verbose: bool = None, task_list: collections.deque = None, task_creation_chain: langchain.chains.base.Chain, task_prioritization_chain: langchain.chains.base.Chain, execution_chain: langchain.chains.base.Chain, task_id_counter: int = 1, vectorstore: langchain.vectorstores.base.VectorStore, max_iterations: Optional[int] = None)[source]# Controller model for the BabyAGI agent. model Config[source]# Configuration for this pydantic object. arbitrary_types_allowed = True# execute_task(objective: str, task: str, k: int = 5) → str[source]# Execute a task. classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, verbose: bool = False, task_execution_chain: Optional[langchain.chains.base.Chain] = None, **kwargs: Dict[str, Any]) → langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI[source]# Initialize the BabyAGI Controller. get_next_task(result: str, task_description: str, objective: str) → List[Dict][source]# Get the next task.
https://python.langchain.com/en/latest/reference/modules/experimental.html
f527a9930db1-1
Get the next task. property input_keys: List[str]# Input keys this chain expects. property output_keys: List[str]# Output keys this chain expects. prioritize_tasks(this_task_id: int, objective: str) → List[Dict][source]# Prioritize tasks. class langchain.experimental.AutoGPT(ai_name: str, memory: langchain.vectorstores.base.VectorStoreRetriever, chain: langchain.chains.llm.LLMChain, output_parser: langchain.experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser, tools: List[langchain.tools.base.BaseTool], feedback_tool: Optional[langchain.tools.human.tool.HumanInputRun] = None)[source]# Agent class for interacting with Auto-GPT. Generative Agents# Here, we document the GenerativeAgent and GenerativeAgentMemory classes from the langchain.experimental module. class langchain.experimental.GenerativeAgent(*, name: str, age: Optional[int] = None, traits: str = 'N/A', status: str, memory: langchain.experimental.generative_agents.memory.GenerativeAgentMemory, llm: langchain.base_language.BaseLanguageModel, verbose: bool = False, summary: str = '', summary_refresh_seconds: int = 3600, last_refreshed: datetime.datetime = None, daily_summaries: List[str] = None)[source]# A character with memory and innate characteristics. model Config[source]# Configuration for this pydantic object. arbitrary_types_allowed = True# field age: Optional[int] = None# The optional age of the character. field daily_summaries: List[str] [Optional]# Summary of the events in the plan that the agent took. generate_dialogue_response(observation: str) → Tuple[bool, str][source]# React to a given observation.
https://python.langchain.com/en/latest/reference/modules/experimental.html
f527a9930db1-2
React to a given observation. generate_reaction(observation: str) → Tuple[bool, str][source]# React to a given observation. get_full_header(force_refresh: bool = False) → str[source]# Return a full header of the agent’s status, summary, and current time. get_summary(force_refresh: bool = False) → str[source]# Return a descriptive summary of the agent. field last_refreshed: datetime.datetime [Optional]# The last time the character’s summary was regenerated. field llm: langchain.base_language.BaseLanguageModel [Required]# The underlying language model. field memory: langchain.experimental.generative_agents.memory.GenerativeAgentMemory [Required]# The memory object that combines relevance, recency, and ‘importance’. field name: str [Required]# The character’s name. field status: str [Required]# The traits of the character you wish not to change. summarize_related_memories(observation: str) → str[source]# Summarize memories that are most relevant to an observation. field summary: str = ''# Stateful self-summary generated via reflection on the character’s memory. field summary_refresh_seconds: int = 3600# How frequently to re-generate the summary. field traits: str = 'N/A'# Permanent traits to ascribe to the character.
https://python.langchain.com/en/latest/reference/modules/experimental.html
f527a9930db1-3
field traits: str = 'N/A'# Permanent traits to ascribe to the character. class langchain.experimental.GenerativeAgentMemory(*, llm: langchain.base_language.BaseLanguageModel, memory_retriever: langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever, verbose: bool = False, reflection_threshold: Optional[float] = None, current_plan: List[str] = [], importance_weight: float = 0.15, aggregate_importance: float = 0.0, max_tokens_limit: int = 1200, queries_key: str = 'queries', most_recent_memories_token_key: str = 'recent_memories_token', add_memory_key: str = 'add_memory', relevant_memories_key: str = 'relevant_memories', relevant_memories_simple_key: str = 'relevant_memories_simple', most_recent_memories_key: str = 'most_recent_memories')[source]# add_memory(memory_content: str) → List[str][source]# Add an observation or memory to the agent’s memory. field aggregate_importance: float = 0.0# Track the sum of the ‘importance’ of recent memories. Triggers reflection when it reaches reflection_threshold. clear() → None[source]# Clear memory contents. field current_plan: List[str] = []# The current plan of the agent. fetch_memories(observation: str) → List[langchain.schema.Document][source]# Fetch related memories. field importance_weight: float = 0.15# How much weight to assign the memory importance. field llm: langchain.base_language.BaseLanguageModel [Required]# The core language model. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Return key-value pairs given the text input to the chain.
https://python.langchain.com/en/latest/reference/modules/experimental.html
f527a9930db1-4
Return key-value pairs given the text input to the chain. field memory_retriever: langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever [Required]# The retriever to fetch related memories. property memory_variables: List[str]# Input keys this memory class will load dynamically. pause_to_reflect() → List[str][source]# Reflect on recent observations and generate ‘insights’. field reflection_threshold: Optional[float] = None# When aggregate_importance exceeds reflection_threshold, stop to reflect. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save the context of this model run to memory. previous Utilities next LangChain Ecosystem Contents Autonomous Agents Generative Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/experimental.html
dc10ed6d93e1-0
.rst .pdf Chat Models Chat Models# pydantic model langchain.chat_models.AzureChatOpenAI[source]# Wrapper around Azure OpenAI Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use deployment_name in the constructor to refer to the “Model deployment name” in the Azure portal. In addition, you should have the openai python package installed, and the following environment variables set or passed in constructor in lower case: - OPENAI_API_TYPE (default: azure) - OPENAI_API_KEY - OPENAI_API_BASE - OPENAI_API_VERSION For exmaple, if you have gpt-35-turbo deployed, with the deployment name 35-turbo-dev, the constructor should look like: Be aware the API version may change. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. field deployment_name: str = ''# field openai_api_base: str = ''# field openai_api_key: str = ''# field openai_api_type: str = 'azure'# field openai_api_version: str = ''# field openai_organization: str = ''# pydantic model langchain.chat_models.ChatAnthropic[source]# Wrapper around Anthropic’s large language model. To use, you should have the anthropic python package installed, and the environment variable ANTHROPIC_API_KEY set with your API key, or pass it as a named parameter to the constructor. Example field callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None# field callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None# field verbose: bool [Optional]#
https://python.langchain.com/en/latest/reference/modules/chat_models.html
dc10ed6d93e1-1
field verbose: bool [Optional]# Whether to print out response text. pydantic model langchain.chat_models.ChatGooglePalm[source]# Wrapper around Google’s PaLM Chat API. To use you must have the google.generativeai Python package installed and either: The GOOGLE_API_KEY` environment varaible set with your API key, or Pass your API key using the google_api_key kwarg to the ChatGoogle constructor. Example from langchain.chat_models import ChatGooglePalm chat = ChatGooglePalm() field google_api_key: Optional[str] = None# field model_name: str = 'models/chat-bison-001'# Model name to use. field n: int = 1# Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated. field temperature: Optional[float] = None# Run inference with this temperature. Must by in the closed interval [0.0, 1.0]. field top_k: Optional[int] = None# Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive. field top_p: Optional[float] = None# Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]. pydantic model langchain.chat_models.ChatOpenAI[source]# Wrapper around OpenAI Chat large language models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chat_models import ChatOpenAI
https://python.langchain.com/en/latest/reference/modules/chat_models.html
dc10ed6d93e1-2
Example from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") field max_retries: int = 6# Maximum number of retries to make when generating. field max_tokens: Optional[int] = None# Maximum number of tokens to generate. field model_kwargs: Dict[str, Any] [Optional]# Holds any model parameters valid for create call not explicitly specified. field model_name: str = 'gpt-3.5-turbo'# Model name to use. field n: int = 1# Number of chat completions to generate for each prompt. field openai_api_key: Optional[str] = None# field openai_organization: Optional[str] = None# field request_timeout: Optional[Union[float, Tuple[float, float]]] = None# Timeout for requests to OpenAI completion API. Default is 600 seconds. field streaming: bool = False# Whether to stream the results or not. field temperature: float = 0.7# What sampling temperature to use. completion_with_retry(**kwargs: Any) → Any[source]# Use tenacity to retry the completion call. get_num_tokens(text: str) → int[source]# Calculate num tokens with tiktoken package. get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int[source]# Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: openai/openai-cookbook main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb pydantic model langchain.chat_models.PromptLayerChatOpenAI[source]# Wrapper around OpenAI Chat large language models and PromptLayer.
https://python.langchain.com/en/latest/reference/modules/chat_models.html
dc10ed6d93e1-3
Wrapper around OpenAI Chat large language models and PromptLayer. To use, you should have the openai and promptlayer python package installed, and the environment variable OPENAI_API_KEY and PROMPTLAYER_API_KEY set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerChatOpenAI adds to optional :param pl_tags: List of strings to tag the request with. :param return_pl_id: If True, the PromptLayer request ID will be returned in the generation_info field of the Generation object. Example from langchain.chat_models import PromptLayerChatOpenAI openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo") field pl_tags: Optional[List[str]] = None# field return_pl_id: Optional[bool] = False# previous Models next Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/chat_models.html
521c8aa93adc-0
.rst .pdf Embeddings Embeddings# Wrappers around embedding modules. pydantic model langchain.embeddings.AlephAlphaAsymmetricSemanticEmbedding[source]# Wrapper for Aleph Alpha’s Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) field compress_to_size: Optional[int] = 128# Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim. field contextual_control_threshold: Optional[int] = None# Attention control parameters only apply to those tokens that have explicitly been set in the request. field control_log_additive: Optional[bool] = True# Apply controls on prompt items by adding the log(control_factor) to attention scores. field hosting: Optional[str] = 'https://api.aleph-alpha.com'# Optional parameter that specifies which datacenters may process the request. field model: Optional[str] = 'luminous-base'# Model name to use. field normalize: Optional[bool] = True# Should returned embeddings be normalized embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s asymmetric Document endpoint. Parameters texts – The list of texts to embed. Returns
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-1
Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.AlephAlphaSymmetricSemanticEmbedding[source]# The symmetric version of the Aleph Alpha’s semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric .. rubric:: Example embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s Document endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.CohereEmbeddings[source]# Wrapper around Cohere embedding models. To use, you should have the cohere python package installed, and the environment variable COHERE_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key") field model: str = 'large'# Model name to use. field truncate: Optional[str] = None# Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”) embed_documents(texts: List[str]) → List[List[float]][source]#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-2
embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Cohere’s embedding endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Cohere’s embedding endpoint. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.FakeEmbeddings[source]# embed_documents(texts: List[str]) → List[List[float]][source]# Embed search docs. embed_query(text: str) → List[float][source]# Embed query text. pydantic model langchain.embeddings.HuggingFaceEmbeddings[source]# Wrapper around sentence_transformers embedding models. To use, you should have the sentence_transformers python package installed. Example from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} hf = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) field cache_folder: Optional[str] = None# Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME enviroment variable. field encode_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass when calling the encode method of the model. field model_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass to the model. field model_name: str = 'sentence-transformers/all-mpnet-base-v2'# Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace transformer model. Parameters
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-3
Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.HuggingFaceHubEmbeddings[source]# Wrapper around HuggingFaceHub embedding models. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) field model_kwargs: Optional[dict] = None# Key word arguments to pass to the model. field repo_id: str = 'sentence-transformers/all-mpnet-base-v2'# Model name to use. field task: Optional[str] = 'feature-extraction'# Task to call the model with. embed_documents(texts: List[str]) → List[List[float]][source]# Call out to HuggingFaceHub’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to HuggingFaceHub’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-4
Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.HuggingFaceInstructEmbeddings[source]# Wrapper around sentence_transformers embedding models. To use, you should have the sentence_transformers and InstructorEmbedding python packages installed. Example from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs ) field cache_folder: Optional[str] = None# Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable. field embed_instruction: str = 'Represent the document for retrieval: '# Instruction to use for embedding documents. field model_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass to the model. field model_name: str = 'hkunlp/instructor-large'# Model name to use. field query_instruction: str = 'Represent the question for retrieving supporting documents: '# Instruction to use for embedding query. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace instruct model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace instruct model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.LlamaCppEmbeddings[source]# Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-5
To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: abetlen/llama-cpp-python Example from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") field f16_kv: bool = False# Use half-precision for key/value cache. field logits_all: bool = False# Return logits for all tokens, not just the last token. field n_batch: Optional[int] = 8# Number of tokens to process in parallel. Should be a number between 1 and n_ctx. field n_ctx: int = 512# Token context window. field n_parts: int = -1# Number of parts to split the model into. If -1, the number of parts is automatically determined. field n_threads: Optional[int] = None# Number of threads to use. If None, the number of threads is automatically determined. field seed: int = -1# Seed. If -1, a random seed is used. field use_mlock: bool = False# Force system to keep model in RAM. field vocab_only: bool = False# Only load the vocabulary, no weights. embed_documents(texts: List[str]) → List[List[float]][source]# Embed a list of documents using the Llama model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Embed a query using the Llama model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.OpenAIEmbeddings[source]#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-6
pydantic model langchain.embeddings.OpenAIEmbeddings[source]# Wrapper around OpenAI embedding models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and API_VERSION. The OPENAI_API_TYPE must be set to ‘azure’ and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", api_base="https://your-endpoint.openai.azure.com/", api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) field chunk_size: int = 1000# Maximum number of texts to embed in each batch field max_retries: int = 6# Maximum number of retries to make when generating. embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]# Call out to OpenAI’s embedding endpoint for embedding search docs.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-7
Call out to OpenAI’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to OpenAI’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns Embedding for the text. pydantic model langchain.embeddings.SagemakerEndpointEmbeddings[source]# Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html field content_handler: langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler [Required]# The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. field credentials_profile_name: Optional[str] = None# The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-8
credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html field endpoint_kwargs: Optional[Dict] = None# Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> field endpoint_name: str = ''# The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. field model_kwargs: Optional[Dict] = None# Key word arguments to pass to the model. field region_name: str = ''# The aws region where the Sagemaker model is deployed, eg. us-west-2. embed_documents(texts: List[str], chunk_size: int = 64) → List[List[float]][source]# Compute doc embeddings using a SageMaker Inference Endpoint. Parameters texts – The list of texts to embed. chunk_size – The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a SageMaker inference endpoint. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.SelfHostedEmbeddings[source]# Runs custom embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.).
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-9
cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example using a model load function:from langchain.embeddings import SelfHostedEmbeddings from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") def get_pipeline(): model_id = "facebook/bart-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu model_reqs=["./", "torch", "transformers"], ) Example passing in a pipeline path:from langchain.embeddings import SelfHostedHFEmbeddings import runhouse as rh from transformers import pipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") pipeline = pipeline(model="bert-base-uncased", task="feature-extraction") rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") embeddings = SelfHostedHFEmbeddings.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) Validators raise_deprecation » all fields set_verbose » verbose field inference_fn: Callable = <function _embed_documents># Inference function to extract the embeddings on the remote hardware. field inference_kwargs: Any = None# Any kwargs to pass to the model’s inference function.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-10
field inference_kwargs: Any = None# Any kwargs to pass to the model’s inference function. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed.s Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.SelfHostedHuggingFaceEmbeddings[source]# Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) Validators raise_deprecation » all fields set_verbose » verbose field hardware: Any = None# Remote hardware to send the inference function to. field inference_fn: Callable = <function _embed_documents># Inference function to extract the embeddings. field load_fn_kwargs: Optional[dict] = None# Key word arguments to pass to the model load function. field model_id: str = 'sentence-transformers/all-mpnet-base-v2'#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-11
field model_id: str = 'sentence-transformers/all-mpnet-base-v2'# Model name to use. field model_load_fn: Callable = <function load_embedding_model># Function to load the model remotely on the server. field model_reqs: List[str] = ['./', 'sentence_transformers', 'torch']# Requirements to install on hardware to inference the model. pydantic model langchain.embeddings.SelfHostedHuggingFaceInstructEmbeddings[source]# Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) Validators raise_deprecation » all fields set_verbose » verbose field embed_instruction: str = 'Represent the document for retrieval: '# Instruction to use for embedding documents. field model_id: str = 'hkunlp/instructor-large'# Model name to use. field model_reqs: List[str] = ['./', 'InstructorEmbedding', 'torch']# Requirements to install on hardware to inference the model. field query_instruction: str = 'Represent the question for retrieving supporting documents: '# Instruction to use for embedding query. embed_documents(texts: List[str]) → List[List[float]][source]#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
521c8aa93adc-12
embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace instruct model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace instruct model. Parameters text – The text to embed. Returns Embeddings for the text. langchain.embeddings.SentenceTransformerEmbeddings# alias of langchain.embeddings.huggingface.HuggingFaceEmbeddings pydantic model langchain.embeddings.TensorflowHubEmbeddings[source]# Wrapper around tensorflow_hub embedding models. To use, you should have the tensorflow_text python package installed. Example from langchain.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) field model_url: str = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'# Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a TensorflowHub embedding model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a TensorflowHub embedding model. Parameters text – The text to embed. Returns Embeddings for the text. previous Chat Models next Indexes By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/reference/modules/embeddings.html