id
stringlengths 14
16
| text
stringlengths 29
2.73k
| source
stringlengths 49
115
|
---|---|---|
679c2d8e6653-20 | Create a chain from an LLM.
classmethod get_principles(names: Optional[List[str]] = None) → List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple][source]#
property input_keys: List[str]#
Defines the input keys.
property output_keys: List[str]#
Defines the output keys.
pydantic model langchain.chains.ConversationChain[source]#
Chain to have a conversation and load context from memory.
Example
from langchain import ConversationChain, OpenAI
conversation = ConversationChain(llm=OpenAI())
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_prompt_input_variables » all fields
field memory: langchain.schema.BaseMemory [Optional]#
Default memory store.
field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n{history}\nHuman: {input}\nAI:', template_format='f-string', validate_template=True)#
Default conversation prompt to use.
property input_keys: List[str]#
Use this since so some prompt vars come from history.
pydantic model langchain.chains.ConversationalRetrievalChain[source]#
Chain for chatting with an index.
Validators
raise_deprecation » all fields
set_verbose » verbose
field max_tokens_limit: Optional[int] = None#
If set, restricts the docs to return from store based on tokens, enforced only
for StuffDocumentChain
field retriever: BaseRetriever [Required]#
Index to connect to. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-21 | field retriever: BaseRetriever [Required]#
Index to connect to.
classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, retriever: langchain.schema.BaseRetriever, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), chain_type: str = 'stuff', verbose: bool = False, combine_docs_chain_kwargs: Optional[Dict] = None, **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]#
Load chain from LLM.
pydantic model langchain.chains.GraphQAChain[source]#
Chain for question-answering against a graph.
Validators
raise_deprecation » all fields
set_verbose » verbose
field entity_extraction_chain: LLMChain [Required]#
field graph: NetworkxEntityGraph [Required]#
field qa_chain: LLMChain [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-22 | field qa_chain: LLMChain [Required]#
classmethod from_llm(llm: langchain.llms.base.BaseLLM, qa_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="Use the following knowledge triplets to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), entity_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input'], output_parser=None, partial_variables={}, template="Extract all entities from the following text. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return.\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I'm working with Sam.\nOutput: Langchain, Sam\nEND OF EXAMPLE\n\nBegin!\n\n{input}\nOutput:", template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.graph_qa.base.GraphQAChain[source]#
Initialize from LLM.
pydantic model langchain.chains.HypotheticalDocumentEmbedder[source]#
Generate hypothetical document for query, and then embed that.
Based on https://arxiv.org/abs/2212.10496
Validators
raise_deprecation » all fields | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-23 | Validators
raise_deprecation » all fields
set_verbose » verbose
field base_embeddings: Embeddings [Required]#
field llm_chain: LLMChain [Required]#
combine_embeddings(embeddings: List[List[float]]) → List[float][source]#
Combine embeddings into final embeddings.
embed_documents(texts: List[str]) → List[List[float]][source]#
Call the base embeddings.
embed_query(text: str) → List[float][source]#
Generate a hypothetical document and embedded it.
classmethod from_llm(llm: langchain.llms.base.BaseLLM, base_embeddings: langchain.embeddings.base.Embeddings, prompt_key: str, **kwargs: Any) → langchain.chains.hyde.base.HypotheticalDocumentEmbedder[source]#
Load and use LLMChain for a specific prompt key.
property input_keys: List[str]#
Input keys for Hyde’s LLM chain.
property output_keys: List[str]#
Output keys for Hyde’s LLM chain.
pydantic model langchain.chains.LLMBashChain[source]#
Chain that interprets a prompt and executes bash code to perform bash operations.
Example
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain.from_llm(OpenAI())
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_prompt » all fields
field llm: Optional[BaseLanguageModel] = None#
[Deprecated] LLM wrapper to use.
field llm_chain: LLMChain [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-24 | field llm_chain: LLMChain [Required]#
field prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=BashOutputParser(), partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True)#
[Deprecated] | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-25 | [Deprecated]
classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=BashOutputParser(), partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.llm_bash.base.LLMBashChain[source]#
pydantic model langchain.chains.LLMChain[source]#
Chain to run queries against LLMs.
Example
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
Validators
raise_deprecation » all fields
set_verbose » verbose
field llm: BaseLanguageModel [Required]#
field prompt: BasePromptTemplate [Required]#
Prompt object to use. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-26 | field prompt: BasePromptTemplate [Required]#
Prompt object to use.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None) → List[Dict[str, str]][source]#
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]][source]#
Call apply and then parse the results.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[langchain.callbacks.manager.AsyncCallbackManagerForChainRun] = None) → langchain.schema.LLMResult[source]#
Generate LLM result from inputs.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None) → List[Dict[str, str]][source]#
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]][source]#
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str[source]#
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-27 | Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]][source]#
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[langchain.callbacks.manager.AsyncCallbackManagerForChainRun] = None) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]#
Prepare prompts from inputs.
create_outputs(response: langchain.schema.LLMResult) → List[Dict[str, str]][source]#
Create outputs from response.
classmethod from_string(llm: langchain.base_language.BaseLanguageModel, template: str) → langchain.chains.base.Chain[source]#
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[langchain.callbacks.manager.CallbackManagerForChainRun] = None) → langchain.schema.LLMResult[source]#
Generate LLM result from inputs.
predict(callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str[source]#
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny") | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-28 | Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]][source]#
Call predict and then parse the results.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[langchain.callbacks.manager.CallbackManagerForChainRun] = None) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]#
Prepare prompts from inputs.
pydantic model langchain.chains.LLMCheckerChain[source]#
Chain for question-answering with self-verification.
Example
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain.from_llm(llm)
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
field check_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True)#
[Deprecated]
field create_draft_answer_prompt: PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True)#
[Deprecated] | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-29 | [Deprecated]
field list_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True)#
[Deprecated]
field llm: Optional[BaseLLM] = None#
[Deprecated] LLM wrapper to use.
field question_to_checked_assertions_chain: SequentialChain [Required]#
field revised_answer_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True)#
[Deprecated] Prompt to use when questioning the documents. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-30 | [Deprecated] Prompt to use when questioning the documents.
classmethod from_llm(llm: langchain.llms.base.BaseLLM, create_draft_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True), list_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True), check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.llm_checker.base.LLMCheckerChain[source]#
pydantic model langchain.chains.LLMMathChain[source]#
Chain that interprets a prompt and executes python code to do math.
Example
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain.from_llm(OpenAI())
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-31 | Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
field llm: Optional[BaseLanguageModel] = None#
[Deprecated] LLM wrapper to use.
field llm_chain: LLMChain [Required]#
field prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: {question}\n', template_format='f-string', validate_template=True)#
[Deprecated] Prompt to use to translate to python if necessary. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-32 | [Deprecated] Prompt to use to translate to python if necessary.
classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: {question}\n', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.llm_math.base.LLMMathChain[source]#
pydantic model langchain.chains.LLMRequestsChain[source]#
Chain that hits a URL and then uses an LLM to parse results.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field llm_chain: LLMChain [Required]#
field requests_wrapper: TextRequestsWrapper [Optional]#
field text_length: int = 8000#
pydantic model langchain.chains.LLMSummarizationCheckerChain[source]#
Chain for question-answering with self-verification.
Example
from langchain import OpenAI, LLMSummarizationCheckerChain | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-33 | Example
from langchain import OpenAI, LLMSummarizationCheckerChain
llm = OpenAI(temperature=0.0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm)
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
field are_all_true_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True)#
[Deprecated] | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-34 | [Deprecated]
field check_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True)#
[Deprecated]
field create_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True)#
[Deprecated]
field llm: Optional[BaseLLM] = None#
[Deprecated] LLM wrapper to use.
field max_checks: int = 2#
Maximum number of times to check the assertions. Default to double-checking. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-35 | Maximum number of times to check the assertions. Default to double-checking.
field revised_summary_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true of false. If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True)#
[Deprecated]
field sequential_chain: SequentialChain [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-36 | classmethod from_llm(llm: langchain.llms.base.BaseLLM, create_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True), check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_summary_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-37 | are some assertions that have been fact checked and are labeled as true of false. If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True), are_all_true_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-38 | The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True), verbose: bool = False, **kwargs: Any) → langchain.chains.llm_summarization_checker.base.LLMSummarizationCheckerChain[source]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-39 | pydantic model langchain.chains.MapReduceChain[source]#
Map-reduce chain.
Validators
raise_deprecation » all fields
set_verbose » verbose
field combine_documents_chain: BaseCombineDocumentsChain [Required]#
Chain to use to combine documents.
field text_splitter: TextSplitter [Required]#
Text splitter to use.
classmethod from_params(llm: langchain.llms.base.BaseLLM, prompt: langchain.prompts.base.BasePromptTemplate, text_splitter: langchain.text_splitter.TextSplitter, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.chains.mapreduce.MapReduceChain[source]#
Construct a map-reduce chain that uses the chain for map and reduce.
pydantic model langchain.chains.OpenAIModerationChain[source]#
Pass input through a moderation endpoint.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.chains import OpenAIModerationChain
moderation = OpenAIModerationChain()
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field error: bool = False#
Whether or not to error if bad content was found.
field model_name: Optional[str] = None#
Moderation model name to use.
field openai_api_key: Optional[str] = None#
field openai_organization: Optional[str] = None#
pydantic model langchain.chains.OpenAPIEndpointChain[source]#
Chain interacts with an OpenAPI endpoint using natural language.
Validators | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-40 | Chain interacts with an OpenAPI endpoint using natural language.
Validators
raise_deprecation » all fields
set_verbose » verbose
field api_operation: APIOperation [Required]#
field api_request_chain: LLMChain [Required]#
field api_response_chain: Optional[LLMChain] = None#
field param_mapping: _ParamMapping [Required]#
field requests: Requests [Optional]#
field return_intermediate_steps: bool = False#
deserialize_json_input(serialized_args: str) → dict[source]#
Use the serialized typescript dictionary.
Resolve the path, query params dict, and optional requestBody dict.
classmethod from_api_operation(operation: langchain.tools.openapi.utils.api_models.APIOperation, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → OpenAPIEndpointChain[source]#
Create an OpenAPIEndpointChain from an operation and a spec.
classmethod from_url_and_method(spec_url: str, path: str, method: str, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any) → OpenAPIEndpointChain[source]#
Create an OpenAPIEndpoint from a spec at the specified url.
pydantic model langchain.chains.PALChain[source]#
Implements Program-Aided Language Models.
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
field get_answer_expr: str = 'print(solution())'# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-41 | set_verbose » verbose
field get_answer_expr: str = 'print(solution())'#
field llm: Optional[BaseLanguageModel] = None#
[Deprecated]
field llm_chain: LLMChain [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-42 | field prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\n\n# solution in Python:\n\n\ndef solution():\n """Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""\n money_initial = 23\n bagels = 5\n bagel_cost = 3\n money_spent = bagels * bagel_cost\n money_left = money_initial - money_spent\n result = money_left\n return result\n\n\n\n\n\nQ: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?\n\n# solution in Python:\n\n\ndef solution():\n """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?"""\n golf_balls_initial = | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-43 | end of wednesday?"""\n golf_balls_initial = 58\n golf_balls_lost_tuesday = 23\n golf_balls_lost_wednesday = 2\n golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday\n result = golf_balls_left\n return result\n\n\n\n\n\nQ: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?\n\n# solution in Python:\n\n\ndef solution():\n """There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?"""\n computers_initial = 9\n computers_per_day = 5\n num_days = 4 # 4 days between monday and thursday\n computers_added = computers_per_day * num_days\n computers_total = computers_initial + computers_added\n result = computers_total\n return result\n\n\n\n\n\nQ: Shawn has five toys. For Christmas, he got two toys each | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-44 | toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?\n\n# solution in Python:\n\n\ndef solution():\n """Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?"""\n toys_initial = 5\n mom_toys = 2\n dad_toys = 2\n total_received = mom_toys + dad_toys\n total_toys = toys_initial + total_received\n result = total_toys\n return result\n\n\n\n\n\nQ: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?\n\n# solution in Python:\n\n\ndef solution():\n """Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?"""\n jason_lollipops_initial = 20\n jason_lollipops_after = 12\n denny_lollipops = | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-45 | = 12\n denny_lollipops = jason_lollipops_initial - jason_lollipops_after\n result = denny_lollipops\n return result\n\n\n\n\n\nQ: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?\n\n# solution in Python:\n\n\ndef solution():\n """Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?"""\n leah_chocolates = 32\n sister_chocolates = 42\n total_chocolates = leah_chocolates + sister_chocolates\n chocolates_eaten = 35\n chocolates_left = total_chocolates - chocolates_eaten\n result = chocolates_left\n return result\n\n\n\n\n\nQ: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n\n# solution in Python:\n\n\ndef solution():\n """If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-46 | and 2 more cars arrive, how many cars are in the parking lot?"""\n cars_initial = 3\n cars_arrived = 2\n total_cars = cars_initial + cars_arrived\n result = total_cars\n return result\n\n\n\n\n\nQ: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n\n# solution in Python:\n\n\ndef solution():\n """There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?"""\n trees_initial = 15\n trees_after = 21\n trees_added = trees_after - trees_initial\n result = trees_added\n return result\n\n\n\n\n\nQ: {question}\n\n# solution in Python:\n\n\n', template_format='f-string', validate_template=True)# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-47 | [Deprecated]
field python_globals: Optional[Dict[str, Any]] = None#
field python_locals: Optional[Dict[str, Any]] = None#
field return_intermediate_steps: bool = False#
field stop: str = '\n\n'#
classmethod from_colored_object_prompt(llm: langchain.base_language.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]#
Load PAL from colored object prompt.
classmethod from_math_prompt(llm: langchain.base_language.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]#
Load PAL from math prompt.
pydantic model langchain.chains.QAGenerationChain[source]#
Validators
raise_deprecation » all fields
set_verbose » verbose
field input_key: str = 'text'#
field k: Optional[int] = None#
field llm_chain: LLMChain [Required]#
field output_key: str = 'questions'#
field text_splitter: TextSplitter = <langchain.text_splitter.RecursiveCharacterTextSplitter object>#
classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) → langchain.chains.qa_generation.base.QAGenerationChain[source]#
property input_keys: List[str]#
Input keys this chain expects.
property output_keys: List[str]#
Output keys this chain expects.
pydantic model langchain.chains.QAWithSourcesChain[source]#
Question answering with sources over documents.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_naming » all fields
pydantic model langchain.chains.RetrievalQA[source]#
Chain for question-answering against an index.
Example | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-48 | Chain for question-answering against an index.
Example
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
Validators
raise_deprecation » all fields
set_verbose » verbose
field retriever: BaseRetriever [Required]#
pydantic model langchain.chains.RetrievalQAWithSourcesChain[source]#
Question-answering with sources over an index.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_naming » all fields
field max_tokens_limit: int = 3375#
Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true
field reduce_k_below_max_tokens: bool = False#
Reduce the number of results to return from store based on tokens limit
field retriever: langchain.schema.BaseRetriever [Required]#
Index to connect to.
pydantic model langchain.chains.SQLDatabaseChain[source]#
Chain for interacting with SQL Database.
Example
from langchain import SQLDatabaseChain, OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain.from_llm(OpenAI(), db)
Validators
raise_deprecation » all fields
raise_deprecation » all fields
set_verbose » verbose
field database: SQLDatabase [Required]#
SQL Database to connect to.
field llm: Optional[BaseLanguageModel] = None#
[Deprecated] LLM wrapper to use. | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-49 | [Deprecated] LLM wrapper to use.
field llm_chain: LLMChain [Required]#
field prompt: Optional[BasePromptTemplate] = None#
[Deprecated] Prompt to use to translate natural language to SQL.
field return_direct: bool = False#
Whether or not to return the result of querying the SQL table directly.
field return_intermediate_steps: bool = False#
Whether or not to return the intermediate steps along with the final answer.
field top_k: int = 5#
Number of results to return from the query
classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, db: langchain.sql_database.SQLDatabase, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) → langchain.chains.sql_database.base.SQLDatabaseChain[source]#
pydantic model langchain.chains.SQLDatabaseSequentialChain[source]#
Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
Validators
raise_deprecation » all fields
set_verbose » verbose
field decider_chain: LLMChain [Required]#
field return_intermediate_steps: bool = False#
field sql_chain: SQLDatabaseChain [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-50 | classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, database: langchain.sql_database.SQLDatabase, query_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input', 'table_info', 'dialect', 'top_k'], output_parser=None, partial_variables={}, template='Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: "Question here"\nSQLQuery: "SQL Query to run"\nSQLResult: "Result of the | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-51 | "SQL Query to run"\nSQLResult: "Result of the SQLQuery"\nAnswer: "Final answer here"\n\nOnly use the tables listed below.\n\n{table_info}\n\nQuestion: {input}', template_format='f-string', validate_template=True), decider_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['query', 'table_names'], output_parser=CommaSeparatedListOutputParser(), partial_variables={}, template='Given the below input question and list of potential tables, output a comma separated list of the table names that may be necessary to answer this question.\n\nQuestion: {query}\n\nTable Names: {table_names}\n\nRelevant Table Names:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.sql_database.base.SQLDatabaseSequentialChain[source]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-52 | Load the necessary chains.
pydantic model langchain.chains.SequentialChain[source]#
Chain where the outputs of one chain feed directly into next.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_chains » all fields
field chains: List[langchain.chains.base.Chain] [Required]#
field input_variables: List[str] [Required]#
field return_all: bool = False#
pydantic model langchain.chains.SimpleSequentialChain[source]#
Simple chain where the outputs of one step feed directly into next.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_chains » all fields
field chains: List[langchain.chains.base.Chain] [Required]#
field strip_outputs: bool = False#
pydantic model langchain.chains.TransformChain[source]#
Chain transform chain output.
Example
from langchain import TransformChain
transform_chain = TransformChain(input_variables=["text"],
output_variables["entities"], transform=func())
Validators
raise_deprecation » all fields
set_verbose » verbose
field input_variables: List[str] [Required]#
field output_variables: List[str] [Required]#
field transform: Callable[[Dict[str, str]], Dict[str, str]] [Required]#
pydantic model langchain.chains.VectorDBQA[source]#
Chain for question-answering against a vector database.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_search_type » all fields
field k: int = 4#
Number of documents to query for.
field search_kwargs: Dict[str, Any] [Optional]#
Extra search args.
field search_type: str = 'similarity'#
Search type to use over vectorstore. similarity or mmr.
field vectorstore: VectorStore [Required]# | https://python.langchain.com/en/latest/reference/modules/chains.html |
679c2d8e6653-53 | field vectorstore: VectorStore [Required]#
Vector Database to connect to.
pydantic model langchain.chains.VectorDBQAWithSourcesChain[source]#
Question-answering with sources over a vector database.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_naming » all fields
field k: int = 4#
Number of results to return from store
field max_tokens_limit: int = 3375#
Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true
field reduce_k_below_max_tokens: bool = False#
Reduce the number of results to return from store based on tokens limit
field search_kwargs: Dict[str, Any] [Optional]#
Extra search args.
field vectorstore: langchain.vectorstores.base.VectorStore [Required]#
Vector Database to connect to.
langchain.chains.load_chain(path: Union[str, pathlib.Path], **kwargs: Any) → langchain.chains.base.Chain[source]#
Unified method for loading a chain from LangChainHub or local fs.
previous
SQL Chain example
next
Agents
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/modules/chains.html |
352d791f3f16-0 | .rst
.pdf
Retrievers
Retrievers#
pydantic model langchain.retrievers.ChatGPTPluginRetriever[source]#
field aiosession: Optional[aiohttp.client.ClientSession] = None#
field bearer_token: str [Required]#
field filter: Optional[dict] = None#
field top_k: int = 3#
field url: str [Required]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.ContextualCompressionRetriever[source]#
Retriever that wraps a base retriever and compresses the results.
field base_compressor: langchain.retrievers.document_compressors.base.BaseDocumentCompressor [Required]#
Compressor for compressing retrieved documents.
field base_retriever: langchain.schema.BaseRetriever [Required]#
Base Retriever to use for getting relevant documents.
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
Sequence of relevant documents | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-1 | Parameters
query – string to find relevant documents for
Returns
Sequence of relevant documents
class langchain.retrievers.DataberryRetriever(datastore_url: str, top_k: Optional[int] = None, api_key: Optional[str] = None)[source]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
api_key: Optional[str]#
datastore_url: str#
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
top_k: Optional[int]#
class langchain.retrievers.ElasticSearchBM25Retriever(client: Any, index_name: str)[source]#
Wrapper around Elasticsearch using BM25 as a retrieval method.
To connect to an Elasticsearch instance that requires login credentials,
including Elastic Cloud, use the Elasticsearch URL format
https://username:password@es_host:9243. For example, to connect to Elastic
Cloud, create the Elasticsearch URL with the required authentication details and
pass it to the ElasticVectorSearch constructor as the named parameter
elasticsearch_url.
You can obtain your Elastic Cloud URL and login credentials by logging in to the
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
navigating to the “Deployments” page.
To obtain your Elastic Cloud password for the default “elastic” user:
Log in to the Elastic Cloud console at https://cloud.elastic.co
Go to “Security” > “Users”
Locate the “elastic” user and click “Edit”
Click “Reset password”
Follow the prompts to reset the password | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-2 | Click “Reset password”
Follow the prompts to reset the password
The format for Elastic Cloud URLs is
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
add_texts(texts: Iterable[str], refresh_indices: bool = True) → List[str][source]#
Run more texts through the embeddings and add to the retriver.
Parameters
texts – Iterable of strings to add to the retriever.
refresh_indices – bool to refresh ElasticSearch indices
Returns
List of ids from adding the texts into the retriever.
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
classmethod create(elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75) → langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever[source]#
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
class langchain.retrievers.MetalRetriever(client: Any, params: Optional[dict] = None)[source]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-3 | Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.PineconeHybridSearchRetriever[source]#
field alpha: float = 0.5#
field embeddings: langchain.embeddings.base.Embeddings [Required]#
field index: Any = None#
field sparse_encoder: Any = None#
field top_k: int = 4#
add_texts(texts: List[str], ids: Optional[List[str]] = None) → None[source]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.RemoteLangChainRetriever[source]#
field headers: Optional[dict] = None#
field input_key: str = 'message'#
field metadata_key: str = 'metadata'#
field page_content_key: str = 'page_content'#
field response_key: str = 'response'#
field url: str [Required]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-4 | Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.SVMRetriever[source]#
field embeddings: langchain.embeddings.base.Embeddings [Required]#
field index: Any = None#
field k: int = 4#
field relevancy_threshold: Optional[float] = None#
field texts: List[str] [Required]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
classmethod from_texts(texts: List[str], embeddings: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.retrievers.svm.SVMRetriever[source]#
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.TFIDFRetriever[source]#
field docs: List[langchain.schema.Document] [Required]#
field k: int = 4#
field tfidf_array: Any = None#
field vectorizer: Any = None#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
classmethod from_texts(texts: List[str], tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any) → langchain.retrievers.tfidf.TFIDFRetriever[source]# | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-5 | get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
pydantic model langchain.retrievers.TimeWeightedVectorStoreRetriever[source]#
Retriever combining embededing similarity with recency.
field decay_rate: float = 0.01#
The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).
field default_salience: Optional[float] = None#
The salience to assign memories not retrieved from the vector store.
None assigns no salience to documents not fetched from the vector store.
field k: int = 4#
The maximum number of documents to retrieve in a given call.
field memory_stream: List[langchain.schema.Document] [Optional]#
The memory_stream of documents to search through.
field other_score_keys: List[str] = []#
Other keys in the metadata to factor into the score, e.g. ‘importance’.
field search_kwargs: dict [Optional]#
Keyword arguments to pass to the vectorstore similarity search.
field vectorstore: langchain.vectorstores.base.VectorStore [Required]#
The vectorstore to store documents and determine salience.
async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]#
Add documents to vectorstore.
add_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]#
Add documents to vectorstore.
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Return documents that are relevant to the query.
get_relevant_documents(query: str) → List[langchain.schema.Document][source]# | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-6 | get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Return documents that are relevant to the query.
get_salient_docs(query: str) → Dict[int, Tuple[langchain.schema.Document, float]][source]#
Return documents that are salient to the query.
class langchain.retrievers.VespaRetriever(app: Vespa, body: dict, content_field: str)[source]#
async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
class langchain.retrievers.WeaviateHybridSearchRetriever(client: Any, index_name: str, text_key: str, alpha: float = 0.5, k: int = 4, attributes: Optional[List[str]] = None)[source]#
class Config[source]#
Configuration for this pydantic object.
arbitrary_types_allowed = True#
extra = 'forbid'#
add_documents(docs: List[langchain.schema.Document]) → List[str][source]#
Upload documents to Weaviate.
async aget_relevant_documents(query: str, where_filter: Optional[Dict[str, object]] = None) → List[langchain.schema.Document][source]#
Get documents relevant for a query.
Parameters
query – string to find relevant documents for
Returns
List of relevant documents
get_relevant_documents(query: str, where_filter: Optional[Dict[str, object]] = None) → List[langchain.schema.Document][source]# | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
352d791f3f16-7 | Look up similar documents in Weaviate.
previous
Vector Stores
next
Document Compressors
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/modules/retrievers.html |
54af721a320a-0 | .rst
.pdf
Agents
Agents#
Interface for agents.
pydantic model langchain.agents.Agent[source]#
Class responsible for calling the language model and deciding the action.
This is driven by an LLMChain. The prompt in the LLMChain MUST include
a variable called “agent_scratchpad” where the agent can put its
intermediary work.
field allowed_tools: Set[str] = {}#
field llm_chain: langchain.chains.llm.LLMChain [Required]#
field output_parser: langchain.agents.agent.AgentOutputParser [Required]#
async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
abstract classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) → langchain.prompts.base.BasePromptTemplate[source]#
Create a prompt for this class.
classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]#
Construct an agent from an LLM and tools.
get_allowed_tools() → Set[str][source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-1 | get_allowed_tools() → Set[str][source]#
get_full_inputs(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Dict[str, Any][source]#
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
tool_run_logging_kwargs() → Dict[source]#
abstract property llm_prefix: str#
Prefix to append the LLM call with.
abstract property observation_prefix: str#
Prefix to append the observation with.
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.AgentExecutor[source]#
Consists of an agent using tools.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_return_direct_tool » all fields
validate_tools » all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field early_stopping_method: str = 'force'#
field handle_parsing_errors: bool = False# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-2 | field handle_parsing_errors: bool = False#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
classmethod from_agent_and_tools(agent: Union[langchain.agents.agent.BaseSingleActionAgent, langchain.agents.agent.BaseMultiActionAgent], tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
Create from agent and tools.
lookup_tool(name: str) → langchain.tools.base.BaseTool[source]#
Lookup tool by name.
save(file_path: Union[pathlib.Path, str]) → None[source]#
Raise error - saving not supported for Agent Executors.
save_agent(file_path: Union[pathlib.Path, str]) → None[source]#
Save the underlying agent.
pydantic model langchain.agents.AgentOutputParser[source]#
abstract parse(text: str) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Parse text into agent action/finish.
class langchain.agents.AgentType(value)[source]#
An enumeration.
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = 'chat-conversational-react-description'#
CHAT_ZERO_SHOT_REACT_DESCRIPTION = 'chat-zero-shot-react-description'#
CONVERSATIONAL_REACT_DESCRIPTION = 'conversational-react-description'#
REACT_DOCSTORE = 'react-docstore'#
SELF_ASK_WITH_SEARCH = 'self-ask-with-search'#
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = 'structured-chat-zero-shot-react-description'#
ZERO_SHOT_REACT_DESCRIPTION = 'zero-shot-react-description'# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-3 | ZERO_SHOT_REACT_DESCRIPTION = 'zero-shot-react-description'#
pydantic model langchain.agents.BaseMultiActionAgent[source]#
Base Agent class.
abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Actions specifying what tool to use.
dict(**kwargs: Any) → Dict[source]#
Return dictionary representation of agent.
get_allowed_tools() → Set[str][source]#
abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Actions specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
save(file_path: Union[pathlib.Path, str]) → None[source]#
Save the agent.
Parameters | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-4 | Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict[source]#
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.BaseSingleActionAgent[source]#
Base Agent class.
abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
dict(**kwargs: Any) → Dict[source]#
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → langchain.agents.agent.BaseSingleActionAgent[source]#
get_allowed_tools() → Set[str][source]#
abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-5 | Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
save(file_path: Union[pathlib.Path, str]) → None[source]#
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict[source]#
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.ConversationalAgent[source]#
An agent designed to hold a conversation in addition to using tools.
field ai_prefix: str = 'AI'#
field output_parser: AgentOutputParser [Optional]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-6 | classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-7 | powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables: | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-8 | 'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None) → langchain.prompts.prompt.PromptTemplate[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-9 | Create prompt in the style of the zero shot agent.
Parameters
tools – List of tools the agent will have access to, used to format the
prompt.
prefix – String to put before the list of tools.
suffix – String to put after the list of tools.
ai_prefix – String to use before AI output.
human_prefix – String to use before human output.
input_variables – List of input variables the final prompt will expect.
Returns
A PromptTemplate with the template assembled from the pieces here. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-10 | classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-11 | receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-12 | the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-13 | Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
pydantic model langchain.agents.ConversationalChatAgent[source]#
An agent designed to hold a conversation in addition to using tools.
field output_parser: AgentOutputParser [Optional]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-14 | field output_parser: AgentOutputParser [Optional]#
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, output_parser: Optional[langchain.schema.BaseOutputParser] = None) → langchain.prompts.base.BasePromptTemplate[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-15 | Create a prompt for this class. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-16 | classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-17 | it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-18 | Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
pydantic model langchain.agents.LLMSingleActionAgent[source]#
field llm_chain: langchain.chains.llm.LLMChain [Required]#
field output_parser: langchain.agents.agent.AgentOutputParser [Required]#
field stop: List[str] [Required]#
async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
tool_run_logging_kwargs() → Dict[source]#
pydantic model langchain.agents.MRKLChain[source]#
Chain that implements the MRKL system.
Example | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-19 | Chain that implements the MRKL system.
Example
from langchain import OpenAI, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = PromptTemplate(...)
chains = [...]
mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt)
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_return_direct_tool » all fields
validate_tools » all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: Optional[BaseCallbackManager] = None#
field callbacks: Callbacks = None#
field early_stopping_method: str = 'force'#
field handle_parsing_errors: bool = False#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
classmethod from_chains(llm: langchain.base_language.BaseLanguageModel, chains: List[langchain.agents.mrkl.base.ChainConfig], **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Parameters
llm – The LLM to use as the agent LLM.
chains – The chains the MRKL system has access to.
**kwargs – parameters to be passed to initialization.
Returns
An initialized MRKL chain.
Example
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-20 | from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains)
pydantic model langchain.agents.ReActChain[source]#
Chain that implements the ReAct paper.
Example
from langchain import ReActChain, OpenAI
react = ReAct(llm=OpenAI())
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_return_direct_tool » all fields
validate_tools » all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: Optional[BaseCallbackManager] = None#
field callbacks: Callbacks = None#
field early_stopping_method: str = 'force'#
field handle_parsing_errors: bool = False#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
pydantic model langchain.agents.ReActTextWorldAgent[source]#
Agent for the ReAct TextWorld chain. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-21 | Agent for the ReAct TextWorld chain.
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) → langchain.prompts.base.BasePromptTemplate[source]#
Return default prompt.
pydantic model langchain.agents.SelfAskWithSearchChain[source]#
Chain that does self ask with search.
Example
from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper
search_chain = GoogleSerperAPIWrapper()
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_return_direct_tool » all fields
validate_tools » all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: Optional[BaseCallbackManager] = None#
field callbacks: Callbacks = None#
field early_stopping_method: str = 'force'#
field handle_parsing_errors: bool = False#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
pydantic model langchain.agents.StructuredChatAgent[source]#
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-22 | field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None) → langchain.prompts.base.BasePromptTemplate[source]#
Create a prompt for this class. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-23 | Create a prompt for this class.
classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]#
Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-24 | property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
pydantic model langchain.agents.Tool[source]#
Tool that takes in function or coroutine directly.
Validators
raise_deprecation » all fields
validate_func_not_partial » func
field coroutine: Optional[Callable[[...], Awaitable[str]]] = None#
The asynchronous version of the function.
field description: str = ''#
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
field func: Callable[[...], str] [Required]#
The function to run when the tool is called.
classmethod from_function(func: Callable, name: str, description: str, return_direct: bool = False, args_schema: Optional[Type[pydantic.main.BaseModel]] = None, **kwargs: Any) → langchain.tools.base.Tool[source]#
Initialize tool from a function.
property args: dict#
The tool’s input arguments.
pydantic model langchain.agents.ZeroShotAgent[source]#
Agent for the MRKL chain.
field output_parser: AgentOutputParser [Optional]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-25 | Agent for the MRKL chain.
field output_parser: AgentOutputParser [Optional]#
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None) → langchain.prompts.prompt.PromptTemplate[source]#
Create prompt in the style of the zero shot agent.
Parameters
tools – List of tools the agent will have access to, used to format the
prompt.
prefix – String to put before the list of tools.
suffix – String to put after the list of tools.
input_variables – List of input variables the final prompt will expect.
Returns
A PromptTemplate with the template assembled from the pieces here. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-26 | Returns
A PromptTemplate with the template assembled from the pieces here.
classmethod from_llm_and_tools(llm: langchain.base_language.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]#
Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
langchain.agents.create_csv_agent(llm: langchain.llms.base.BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
Create csv agent by loading to a dataframe and using pandas agent. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-27 | langchain.agents.create_json_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.json.toolkit.JsonToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with JSON.\nYour goal is to return a final answer by interacting with the JSON.\nYou have access to the following tools which help you learn more about the JSON you are interacting with.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nDo not make up any information that is not contained in the JSON.\nYour input to the tools should be in the form of `data["key"][0]` where `data` is the JSON blob you are interacting with, and the syntax used is Python. \nYou should only use keys that you know for a fact exist. You must validate that a key exists by seeing it previously when calling `json_spec_list_keys`. \nIf you have not seen a key in one of those responses, you cannot use it.\nYou should only add one key at | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-28 | cannot use it.\nYou should only add one key at a time to the path. You cannot add multiple keys at once.\nIf you encounter a "KeyError", go back to the previous key, look at the available keys, and try again.\n\nIf the question does not seem to be related to the JSON, just return "I don\'t know" as the answer.\nAlways begin your interaction with the `json_spec_list_keys` tool with input "data" to see what keys exist in the JSON.\n\nNote that sometimes the value at a given path is large. In this case, you will get an error "Value is a large dictionary, should explore its keys directly".\nIn this case, you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys exist at that path.\nDo not simply refer the user to the JSON or a section of the JSON, as this is not a valid answer. Keep digging until you find the answer and explicitly return it.\n', suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-29 | = 'Begin!"\n\nQuestion: {input}\nThought: I should look at the keys that exist in data to see what I have access to\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-30 | Construct a json agent from an LLM and tools. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-31 | langchain.agents.create_openapi_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = "You are an agent designed to answer questions by making web requests to an API given the openapi spec.\n\nIf the question does not seem related to the API, return I don't know. Do not make up an answer.\nOnly use information provided by the tools to construct your response.\n\nFirst, find the base URL needed to make the request.\n\nSecond, find the relevant paths needed to answer the question. Take note that, sometimes, you might need to make more than one request to more than one path to answer the question.\n\nThird, find the required parameters needed to make the request. For GET requests, these are usually URL parameters and for POST requests, these are request body parameters.\n\nFourth, make the requests needed to answer the question. Ensure that you are sending the correct parameters to the request by checking which parameters are required. For parameters with a fixed set | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-32 | which parameters are required. For parameters with a fixed set of values, please use the spec to look at which values are allowed.\n\nUse the exact parameter names as listed in the spec, do not make up any names or abbreviate the names of parameters.\nIf you get a not found error, ensure that you are using a path that actually exists in the spec.\n", suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should explore the spec to find the base url for the API.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-33 | None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-34 | Construct a json agent from an LLM and tools.
langchain.agents.create_pandas_dataframe_agent(llm: langchain.llms.base.BaseLLM, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = '\nYou are working with a pandas dataframe in Python. The name of the dataframe is `df`.\nYou should use the tools below to answer the question posed of you:', suffix: str = '\nThis is the result of `print(df.head())`:\n{df}\n\nBegin!\nQuestion: {input}\n{agent_scratchpad}', input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
Construct a pandas agent from an LLM and dataframe. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-35 | langchain.agents.create_pbi_agent(llm: langchain.llms.base.BaseLLM, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a Power BI Dataset.\nGiven an input question, create a syntactically correct DAX query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nYou have access to tools for interacting with the Power BI Dataset. Only use the below tools. Only use the information returned by the below tools to construct your final answer. Usually I should first ask which tables I have, then how each | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-36 | should first ask which tables I have, then how each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a nice sentence that answers the question. If you receive an error back that mentions that the query was wrong try to phrase the question differently and get a new query from the question to query tool.\n\nIf the question does not seem related to the dataset, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should first ask which tables I have, then how each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a nice sentence that answers the question.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-37 | what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-38 | Construct a pbi agent from an LLM and tools. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-39 | langchain.agents.create_pbi_chat_agent(llm: langchain.chat_models.base.BaseChatModel, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Assistant is a large language model trained by OpenAI built to help users interact with a PowerBI Dataset.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-40 | to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. \n\nGiven an input question, create a syntactically correct DAX query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nUsually I should first ask which tables I have, then how each table is defined and then ask the question to | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-41 | each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a complete sentence that answers the question. If you receive an error back that mentions that the query was wrong try to phrase the question differently and get a new query from the question to query tool.\n', suffix: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}\n", examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[langchain.memory.chat_memory.BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-42 | Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-43 | Construct a pbi agent from an Chat LLM and tools.
If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-44 | langchain.agents.create_sql_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for the relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-45 | rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-46 | str = 'force', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-47 | Construct a sql agent from an LLM and tools.
langchain.agents.create_vectorstore_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions about sets of documents.\nYou have access to tools for interacting with the documents, and the inputs to the tools are questions.\nSometimes, you will be asked to provide sources for your questions, in which case you should use the appropriate tool to do so.\nIf the question does not seem relevant to any of the tools provided, just return "I don\'t know" as the answer.\n', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
Construct a vectorstore agent from an LLM and tools.
langchain.agents.create_vectorstore_router_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions.\nYou have access to tools for interacting with different sources, and the inputs to the tools are questions.\nYour main task is to decide which of the tools is relevant for answering question at hand.\nFor complex questions, you can break the question down into sub questions and use tools to answers the sub questions.\n', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-48 | Construct a vectorstore router agent from an LLM and tools.
langchain.agents.get_all_tool_names() → List[str][source]#
Get a list of all possible tool names.
langchain.agents.initialize_agent(tools: Sequence[langchain.tools.base.BaseTool], llm: langchain.base_language.BaseLanguageModel, agent: Optional[langchain.agents.agent_types.AgentType] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
Load an agent executor given tools and LLM.
Parameters
tools – List of tools this agent has access to.
llm – Language model to use as the agent.
agent – Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager – CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path – Path to serialized agent to use.
agent_kwargs – Additional key word arguments to pass to the underlying agent
**kwargs – Additional key word arguments passed to the agent executor
Returns
An agent executor
langchain.agents.load_agent(path: Union[str, pathlib.Path], **kwargs: Any) → langchain.agents.agent.BaseSingleActionAgent[source]#
Unified method for loading a agent from LangChainHub or local fs.
langchain.agents.load_tools(tool_names: List[str], llm: Optional[langchain.llms.base.BaseLLM] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → List[langchain.tools.base.BaseTool][source]#
Load tools based on their name.
Parameters | https://python.langchain.com/en/latest/reference/modules/agents.html |
54af721a320a-49 | Load tools based on their name.
Parameters
tool_names – name of tools to load.
llm – Optional language model, may be needed to initialize certain tools.
callback_manager – Optional callback manager. If not provided, default global callback manager will be used.
Returns
List of tools.
langchain.agents.tool(*args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[pydantic.main.BaseModel]] = None, infer_schema: bool = True) → Callable[source]#
Make tools out of functions, can be used with or without arguments.
Parameters
*args – The arguments to the tool.
return_direct – Whether to return directly from the tool rather
than continuing the agent loop.
args_schema – optional argument schema for user to specify
infer_schema – Whether to infer the schema of the arguments from
the function’s signature. This also makes the resultant tool
accept a dictionary input to its run() function.
Requires:
Function must be of type (str) -> str
Function must have a docstring
Examples
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
previous
Agents
next
Tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 02, 2023. | https://python.langchain.com/en/latest/reference/modules/agents.html |
70fdaeb2ac0b-0 | .rst
.pdf
Utilities
Utilities#
General utilities.
pydantic model langchain.utilities.ApifyWrapper[source]#
Wrapper around Apify.
To use, you should have the apify-client python package installed,
and the environment variable APIFY_API_TOKEN set with your API key, or pass
apify_api_token as a named parameter to the constructor.
field apify_client: Any = None#
field apify_client_async: Any = None#
async acall_actor(actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], langchain.schema.Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None) → langchain.document_loaders.apify_dataset.ApifyDatasetLoader[source]#
Run an Actor on the Apify platform and wait for results to be ready.
Parameters
actor_id (str) – The ID or name of the Actor on the Apify platform.
run_input (Dict) – The input object of the Actor that you’re trying to run.
dataset_mapping_function (Callable) – A function that takes a single
dictionary (an Apify dataset item) and converts it to
an instance of the Document class.
build (str, optional) – Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional) – Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional) – Optional timeout for the run, in seconds.
Returns
A loader that will fetch the records from theActor run’s default dataset.
Return type
ApifyDatasetLoader | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-1 | Return type
ApifyDatasetLoader
call_actor(actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], langchain.schema.Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None) → langchain.document_loaders.apify_dataset.ApifyDatasetLoader[source]#
Run an Actor on the Apify platform and wait for results to be ready.
Parameters
actor_id (str) – The ID or name of the Actor on the Apify platform.
run_input (Dict) – The input object of the Actor that you’re trying to run.
dataset_mapping_function (Callable) – A function that takes a single
dictionary (an Apify dataset item) and converts it to an
instance of the Document class.
build (str, optional) – Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional) – Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional) – Optional timeout for the run, in seconds.
Returns
A loader that will fetch the records from theActor run’s default dataset.
Return type
ApifyDatasetLoader
pydantic model langchain.utilities.ArxivAPIWrapper[source]#
Wrapper around ArxivAPI.
To use, you should have the arxiv python package installed.
https://lukasschwab.me/arxiv.py/index.html
This wrapper will use the Arxiv API to conduct searches and
fetch document summaries. By default, it will return the document summaries
of the top-k results of an input search.
Parameters
top_k_results – number of the top-scored document used for the arxiv tool
ARXIV_MAX_QUERY_LENGTH – the cut limit on the query used for the arxiv tool. | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-2 | ARXIV_MAX_QUERY_LENGTH – the cut limit on the query used for the arxiv tool.
load_max_docs – a limit to the number of loaded documents
load_all_available_meta –
if True: the metadata of the loaded Documents gets all available meta info(see https://lukasschwab.me/arxiv.py/index.html#Result),
if False: the metadata gets only the most informative fields.
field arxiv_exceptions: Any = None#
field load_all_available_meta: bool = False#
field load_max_docs: int = 100#
field top_k_results: int = 3#
load(query: str) → List[langchain.schema.Document][source]#
Run Arxiv search and get the PDF documents plus the meta information.
See https://lukasschwab.me/arxiv.py/index.html#Search
Returns: a list of documents with the document.page_content in PDF format
run(query: str) → str[source]#
Run Arxiv search and get the document meta information.
See https://lukasschwab.me/arxiv.py/index.html#Search
See https://lukasschwab.me/arxiv.py/index.html#Result
It uses only the most informative fields of document meta information.
class langchain.utilities.BashProcess(strip_newlines: bool = False, return_err_output: bool = False, persistent: bool = False)[source]#
Executes bash commands and returns the output.
process_output(output: str, command: str) → str[source]#
run(commands: Union[str, List[str]]) → str[source]#
Run commands and return final output.
pydantic model langchain.utilities.BingSearchAPIWrapper[source]#
Wrapper for Bing Search API.
In order to set this up, follow instructions at: | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-3 | Wrapper for Bing Search API.
In order to set this up, follow instructions at:
https://levelup.gitconnected.com/api-tutorial-how-to-use-bing-web-search-api-in-python-4165d5592a7e
field bing_search_url: str [Required]#
field bing_subscription_key: str [Required]#
field k: int = 10#
results(query: str, num_results: int) → List[Dict][source]#
Run query through BingSearch and return metadata.
Parameters
query – The query to search for.
num_results – The number of results to return.
Returns
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
Return type
A list of dictionaries with the following keys
run(query: str) → str[source]#
Run query through BingSearch and parse result.
pydantic model langchain.utilities.DuckDuckGoSearchAPIWrapper[source]#
Wrapper for DuckDuckGo Search API.
Free and does not require any setup
field k: int = 10#
field max_results: int = 5#
field region: Optional[str] = 'wt-wt'#
field safesearch: str = 'moderate'#
field time: Optional[str] = 'y'#
results(query: str, num_results: int) → List[Dict[str, str]][source]#
Run query through DuckDuckGo and return metadata.
Parameters
query – The query to search for.
num_results – The number of results to return.
Returns
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
Return type
A list of dictionaries with the following keys
run(query: str) → str[source]# | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-4 | A list of dictionaries with the following keys
run(query: str) → str[source]#
pydantic model langchain.utilities.GooglePlacesAPIWrapper[source]#
Wrapper around Google Places API.
To use, you should have the googlemaps python package installed,an API key for the google maps platform,
and the enviroment variable ‘’GPLACES_API_KEY’’
set with your API key , or pass ‘gplaces_api_key’
as a named parameter to the constructor.
By default, this will return the all the results on the input query.You can use the top_k_results argument to limit the number of results.
Example
from langchain import GooglePlacesAPIWrapper
gplaceapi = GooglePlacesAPIWrapper()
field gplaces_api_key: Optional[str] = None#
field top_k_results: Optional[int] = None#
fetch_place_details(place_id: str) → Optional[str][source]#
format_place_details(place_details: Dict[str, Any]) → Optional[str][source]#
run(query: str) → str[source]#
Run Places search and get k number of places that exists that match.
pydantic model langchain.utilities.GoogleSearchAPIWrapper[source]#
Wrapper for Google Search API.
Adapted from: Instructions adapted from https://stackoverflow.com/questions/
37083058/
programmatically-searching-google-in-python-using-custom-search
TODO: DOCS for using it
1. Install google-api-python-client
- If you don’t already have a Google account, sign up.
- If you have never created a Google APIs Console project,
read the Managing Projects page and create a project in the Google API Console.
- Install the library using pip install google-api-python-client
The current version of the library is 2.70.0 at this time
2. To create an API key: | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-5 | 2. To create an API key:
- Navigate to the APIs & Services→Credentials panel in Cloud Console.
- Select Create credentials, then select API key from the drop-down menu.
- The API key created dialog box displays your newly created key.
- You now have an API_KEY
3. Setup Custom Search Engine so you can search the entire web
- Create a custom search engine in this link.
- In Sites to search, add any valid URL (i.e. www.stackoverflow.com).
- That’s all you have to fill up, the rest doesn’t matter.
In the left-side menu, click Edit search engine → {your search engine name}
→ Setup Set Search the entire web to ON. Remove the URL you added from
the list of Sites to search.
Under Search engine ID you’ll find the search-engine-ID.
4. Enable the Custom Search API
- Navigate to the APIs & Services→Dashboard panel in Cloud Console.
- Click Enable APIs and Services.
- Search for Custom Search API and click on it.
- Click Enable.
URL for it: https://console.cloud.google.com/apis/library/customsearch.googleapis
.com
field google_api_key: Optional[str] = None#
field google_cse_id: Optional[str] = None#
field k: int = 10#
field siterestrict: bool = False#
results(query: str, num_results: int) → List[Dict][source]#
Run query through GoogleSearch and return metadata.
Parameters
query – The query to search for.
num_results – The number of results to return.
Returns
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
Return type
A list of dictionaries with the following keys
run(query: str) → str[source]# | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-6 | A list of dictionaries with the following keys
run(query: str) → str[source]#
Run query through GoogleSearch and parse result.
pydantic model langchain.utilities.GoogleSerperAPIWrapper[source]#
Wrapper around the Serper.dev Google Search API.
You can create a free API key at https://serper.dev.
To use, you should have the environment variable SERPER_API_KEY
set with your API key, or pass serper_api_key as a named parameter
to the constructor.
Example
from langchain import GoogleSerperAPIWrapper
google_serper = GoogleSerperAPIWrapper()
field gl: str = 'us'#
field hl: str = 'en'#
field k: int = 10#
field serper_api_key: Optional[str] = None#
run(query: str) → str[source]#
Run query through GoogleSearch and parse result.
pydantic model langchain.utilities.LambdaWrapper[source]#
Wrapper for AWS Lambda SDK.
Docs for using:
pip install boto3
Create a lambda function using the AWS Console or CLI
Run aws configure and enter your AWS credentials
field awslambda_tool_description: Optional[str] = None#
field awslambda_tool_name: Optional[str] = None#
field function_name: Optional[str] = None#
run(query: str) → str[source]#
Invoke Lambda function and parse result.
pydantic model langchain.utilities.OpenWeatherMapAPIWrapper[source]#
Wrapper for OpenWeatherMap API using PyOWM.
Docs for using:
Go to OpenWeatherMap and sign up for an API key
Save your API KEY into OPENWEATHERMAP_API_KEY env variable
pip install pyowm
field openweathermap_api_key: Optional[str] = None#
field owm: Any = None#
run(location: str) → str[source]# | https://python.langchain.com/en/latest/reference/modules/utilities.html |
70fdaeb2ac0b-7 | field owm: Any = None#
run(location: str) → str[source]#
Get the current weather information for a specified location.
pydantic model langchain.utilities.PowerBIDataset[source]#
Create PowerBI engine from dataset ID and credential or token.
Use either the credential or a supplied token to authenticate.
If both are supplied the credential is used to generate a token.
The impersonated_user_name is the UPN of a user to be impersonated.
If the model is not RLS enabled, this will be ignored.
field aiosession: Optional[aiohttp.ClientSession] = None#
field credential: Optional[TokenCredential] = None#
field dataset_id: str [Required]#
field group_id: Optional[str] = None#
field impersonated_user_name: Optional[str] = None#
field sample_rows_in_table_info: int = 1#
Constraints
exclusiveMinimum = 0
maximum = 10
field schemas: Dict[str, str] [Optional]#
field table_names: List[str] [Required]#
field token: Optional[str] = None#
async aget_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]#
Get information about specified tables.
async arun(command: str) → Any[source]#
Execute a DAX command and return the result asynchronously.
get_schemas() → str[source]#
Get the available schema’s.
get_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]#
Get information about specified tables.
get_table_names() → Iterable[str][source]#
Get names of tables available.
run(command: str) → Any[source]#
Execute a DAX command and return a json representing the results.
property headers: Dict[str, str]# | https://python.langchain.com/en/latest/reference/modules/utilities.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.