|
"""Rakeffet dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Zandie2021RakeffetAC, |
|
title={Rakeffet AI}, |
|
author={Yisroel Lazerson}, |
|
booktitle={Cooolio}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "Rakeffet is cool." |
|
_URL = "google.com" |
|
_NAME = "rakeffet" |
|
|
|
_DL_URLS = { |
|
"dev": "https://huggingface.co/datasets/izzy-lazerson/rakeffet/resolve/main/data/dev.tar.gz", |
|
"test": "https://huggingface.co/datasets/izzy-lazerson/rakeffet/resolve/main/data/test.tar.gz", |
|
"train": "https://huggingface.co/datasets/izzy-lazerson/rakeffet/resolve/main/data/train.tar.gz" |
|
} |
|
|
|
|
|
class RakeffetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Rakeffet.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super( |
|
RakeffetConfig, |
|
self |
|
).__init__( |
|
version=datasets.Version("1.0.0", ""), |
|
**kwargs |
|
) |
|
|
|
|
|
class Rakeffet(datasets.GeneratorBasedBuilder): |
|
"""Rakeffet dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
RakeffetConfig( |
|
name=_NAME, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("id", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[ |
|
AutomaticSpeechRecognition( |
|
audio_column="audio", |
|
transcription_column="text" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(_DL_URLS) |
|
|
|
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} |
|
|
|
train_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("train"), |
|
"files": dl_manager.iter_archive(archive_path["train"]), |
|
}, |
|
) |
|
] |
|
dev_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("dev"), |
|
"files": dl_manager.iter_archive(archive_path["dev"]), |
|
}, |
|
) |
|
] |
|
test_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("test"), |
|
"files": dl_manager.iter_archive(archive_path["test"]), |
|
}, |
|
) |
|
] |
|
|
|
return train_splits + dev_splits + test_splits |
|
|
|
def _generate_examples(self, files, local_extracted_archive): |
|
"""Generate examples from a Rakeffet archive_path.""" |
|
audio_data = {} |
|
transcripts = {} |
|
paths = {} |
|
for path, f in files: |
|
if path.endswith(".mp3"): |
|
id_ = path.split("/")[-1][: -len(".mp3")] |
|
audio_data[id_] = f.read() |
|
paths[id_] = os.path.join(local_extracted_archive, path) |
|
elif path.endswith(".csv"): |
|
for line in f: |
|
line_fields = line.decode("utf-8").split(',') |
|
id_ = line_fields[0] |
|
transcripts[id_] = line_fields[1].strip() |
|
|
|
for key, id_ in enumerate(transcripts): |
|
yield key, {"audio": {"bytes": audio_data[id_], |
|
"path": paths[id_]}, |
|
"text": transcripts[id_], |
|
"id": id_} |
|
|