|
|
|
|
|
|
|
""" |
|
|
|
import time |
|
import os |
|
import cv2 |
|
import numpy as np |
|
import pandas as pd |
|
from sklearn.manifold import TSNE |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
""" |
|
|
|
def upload_data(path_name, number_of_class, number_of_images): |
|
X_Data = [] |
|
Y_Data = [] |
|
for i in range(number_of_class): |
|
images = os.listdir(path_name + str(i)) |
|
for j in range(number_of_images): |
|
img = cv2.imread(path_name + str(i)+ '/' + images[j], 0) |
|
X_Data.append(img) |
|
Y_Data.append(i) |
|
print("> the " + str(i) + "-th file is successfully uploaded.", end='\r') |
|
return np.array(X_Data), np.array(Y_Data) |
|
|
|
n_class = 33 |
|
n_train = 2000 |
|
|
|
x_data, y_data = upload_data('/media/etabook/etadisk1/EducFils/PFE/DATA2/train_data/', n_class, n_train) |
|
|
|
x_data = x_data.astype('float32') |
|
x_data = np.reshape(x_data, (x_data.shape[0], 28*28)) |
|
x_data /= 255 |
|
print('x_data shape:', x_data.shape) |
|
print(x_data.shape[0], 'data samples') |
|
|
|
"""## Convert images and label vector to a Pandas DataFrame""" |
|
|
|
feat_cols = [ 'pixel'+str(i) for i in range(x_data.shape[1]) ] |
|
df = pd.DataFrame(x_data,columns=feat_cols) |
|
df['y'] = y_data |
|
df['label'] = df['y'].apply(lambda i: str(i)) |
|
x_data, y_data = None, None |
|
print('Size of the dataframe: {}'.format(df.shape)) |
|
df.head() |
|
|
|
"""## Displaying images from the Dataframe""" |
|
|
|
np.random.seed(42) |
|
rndperm = np.random.permutation(df.shape[0]) |
|
|
|
plt.gray() |
|
fig = plt.figure( figsize=(18,12) ) |
|
for i in range(0,15): |
|
ax = fig.add_subplot(3,5,i+1, title="Letter: {}".format(str(df.loc[rndperm[i],'label'])) ) |
|
ax.matshow(df.loc[rndperm[i],feat_cols].values.reshape((28,28)).astype(float)) |
|
plt.show() |
|
|
|
"""## Launch of the T-SNE algorithm |
|
|
|
|
|
""" |
|
|
|
N = 50000 |
|
df_subset = df.loc[rndperm[:N],:].copy() |
|
data_subset = df_subset[feat_cols].values |
|
|
|
time_start = time.time() |
|
tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) |
|
tsne_results = tsne.fit_transform(data_subset) |
|
print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start)) |
|
|
|
"""## Visualisation""" |
|
|
|
df_subset['tsne-2d-one'] = tsne_results[:,0] |
|
df_subset['tsne-2d-two'] = tsne_results[:,1] |
|
plt.figure(figsize=(16,10)) |
|
sns.scatterplot( |
|
x="tsne-2d-one", y="tsne-2d-two", |
|
hue="y", |
|
palette=sns.color_palette("hls", 33), |
|
data=df_subset, |
|
legend="full", |
|
alpha=0.3 |
|
) |