Sean MacAvaney commited on
Commit
9d041d8
1 Parent(s): 818c6e7

commit files to HF hub

Browse files
Files changed (2) hide show
  1. README.md +50 -0
  2. lotte_writing_dev_search.py +43 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: '`lotte/writing/dev/search`'
3
+ viewer: false
4
+ source_datasets: ['irds/lotte_writing_dev']
5
+ task_categories:
6
+ - text-retrieval
7
+ ---
8
+
9
+ # Dataset Card for `lotte/writing/dev/search`
10
+
11
+ The `lotte/writing/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
12
+ For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev/search).
13
+
14
+ # Data
15
+
16
+ This dataset provides:
17
+ - `queries` (i.e., topics); count=497
18
+ - `qrels`: (relevance assessments); count=1,287
19
+
20
+ - For `docs`, use [`irds/lotte_writing_dev`](https://huggingface.co/datasets/irds/lotte_writing_dev)
21
+
22
+ ## Usage
23
+
24
+ ```python
25
+ from datasets import load_dataset
26
+
27
+ queries = load_dataset('irds/lotte_writing_dev_search', 'queries')
28
+ for record in queries:
29
+ record # {'query_id': ..., 'text': ...}
30
+
31
+ qrels = load_dataset('irds/lotte_writing_dev_search', 'qrels')
32
+ for record in qrels:
33
+ record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
34
+
35
+ ```
36
+
37
+ Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
38
+ data in 🤗 Dataset format.
39
+
40
+ ## Citation Information
41
+
42
+ ```
43
+ @article{Santhanam2021ColBERTv2,
44
+ title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction",
45
+ author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia",
46
+ journal= "arXiv preprint arXiv:2112.01488",
47
+ year = "2021",
48
+ url = "https://arxiv.org/abs/2112.01488"
49
+ }
50
+ ```
lotte_writing_dev_search.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """
3
+ """ # TODO
4
+ try:
5
+ import ir_datasets
6
+ except ImportError as e:
7
+ raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
8
+ import datasets
9
+
10
+ IRDS_ID = 'lotte/writing/dev/search'
11
+ IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'text': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}}
12
+
13
+ _CITATION = '@article{Santhanam2021ColBERTv2,\n title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction",\n author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", \n journal= "arXiv preprint arXiv:2112.01488",\n year = "2021",\n url = "https://arxiv.org/abs/2112.01488"\n}'
14
+
15
+ _DESCRIPTION = "" # TODO
16
+
17
+ class lotte_writing_dev_search(datasets.GeneratorBasedBuilder):
18
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
19
+
20
+ def _info(self):
21
+ return datasets.DatasetInfo(
22
+ description=_DESCRIPTION,
23
+ features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
24
+ homepage=f"https://ir-datasets.com/lotte#lotte/writing/dev/search",
25
+ citation=_CITATION,
26
+ )
27
+
28
+ def _split_generators(self, dl_manager):
29
+ return [datasets.SplitGenerator(name=self.config.name)]
30
+
31
+ def _generate_examples(self):
32
+ dataset = ir_datasets.load(IRDS_ID)
33
+ for i, item in enumerate(getattr(dataset, self.config.name)):
34
+ key = i
35
+ if self.config.name == 'docs':
36
+ key = item.doc_id
37
+ elif self.config.name == 'queries':
38
+ key = item.query_id
39
+ yield key, item._asdict()
40
+
41
+ def as_dataset(self, split=None, *args, **kwargs):
42
+ split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
43
+ return super().as_dataset(split, *args, **kwargs)