beir_msmarco_dev / beir_msmarco_dev.py
Sean MacAvaney
commit files to HF hub
a2542a6
raw
history blame
2.35 kB
"""
""" # TODO
try:
import ir_datasets
except ImportError as e:
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets
IRDS_ID = 'beir/msmarco/dev'
IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'text': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}}
_CITATION = '@inproceedings{Bajaj2016Msmarco,\n title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},\n author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},\n booktitle={InCoCo@NIPS},\n year={2016}\n}\n@article{Thakur2021Beir,\n title = "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models",\n author = "Thakur, Nandan and Reimers, Nils and Rücklé, Andreas and Srivastava, Abhishek and Gurevych, Iryna", \n journal= "arXiv preprint arXiv:2104.08663",\n month = "4",\n year = "2021",\n url = "https://arxiv.org/abs/2104.08663",\n}'
_DESCRIPTION = "" # TODO
class beir_msmarco_dev(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
homepage=f"https://ir-datasets.com/beir#beir/msmarco/dev",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [datasets.SplitGenerator(name=self.config.name)]
def _generate_examples(self):
dataset = ir_datasets.load(IRDS_ID)
for i, item in enumerate(getattr(dataset, self.config.name)):
key = i
if self.config.name == 'docs':
key = item.doc_id
elif self.config.name == 'queries':
key = item.query_id
yield key, item._asdict()
def as_dataset(self, split=None, *args, **kwargs):
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
return super().as_dataset(split, *args, **kwargs)