reddit / dataset_info.json
iqtam's picture
Upload folder using huggingface_hub
c24b80b verified
{
"builder_name": "tldr-17",
"citation": "\n@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}\n",
"config_name": "default",
"dataset_name": "tldr-17",
"dataset_size": 18936201253,
"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n",
"download_checksums": {
"data/corpus-webis-tldr-17.zip": {
"num_bytes": 3141854161,
"checksum": null
}
},
"download_size": 3141854161,
"features": {
"author": {
"dtype": "string",
"_type": "Value"
},
"body": {
"dtype": "string",
"_type": "Value"
},
"normalizedBody": {
"dtype": "string",
"_type": "Value"
},
"subreddit": {
"dtype": "string",
"_type": "Value"
},
"subreddit_id": {
"dtype": "string",
"_type": "Value"
},
"id": {
"dtype": "string",
"_type": "Value"
},
"content": {
"dtype": "string",
"_type": "Value"
},
"summary": {
"dtype": "string",
"_type": "Value"
}
},
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
"license": "",
"size_in_bytes": 22078055414,
"splits": {
"train": {
"name": "train",
"num_bytes": 18936201253,
"num_examples": 3848330,
"shard_lengths": [
133000,
134000,
133000,
133000,
133000,
133000,
133000,
133000,
133000,
133000,
134000,
132000,
133000,
134000,
133000,
133000,
107000,
84000,
82000,
79000,
85000,
82000,
81000,
81000,
76000,
76000,
78000,
76000,
76000,
77000,
78000,
77000,
75000,
72000,
73000,
74000,
72000,
57330
],
"dataset_name": "tldr-17"
}
},
"version": {
"version_str": "1.0.0",
"major": 1,
"minor": 0,
"patch": 0
}
}