|
import os |
|
import sys |
|
import json |
|
import argparse |
|
import itertools |
|
import math |
|
import time |
|
import logging |
|
|
|
import torch |
|
from torch import nn, optim |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.multiprocessing as mp |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.cuda.amp import autocast, GradScaler |
|
|
|
sys.path.append('../..') |
|
import modules.commons as commons |
|
import utils |
|
|
|
from data_utils import DatasetConstructor |
|
|
|
from models import ( |
|
SynthesizerTrn, |
|
Discriminator |
|
) |
|
|
|
from modules.losses import ( |
|
generator_loss, |
|
discriminator_loss, |
|
feature_loss, |
|
kl_loss, |
|
) |
|
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch, spectrogram_torch |
|
|
|
torch.backends.cudnn.benchmark = True |
|
global_step = 0 |
|
use_cuda = torch.cuda.is_available() |
|
print("use_cuda, ", use_cuda) |
|
|
|
numba_logger = logging.getLogger('numba') |
|
numba_logger.setLevel(logging.WARNING) |
|
|
|
|
|
def main(): |
|
"""Assume Single Node Multi GPUs Training Only""" |
|
|
|
hps = utils.get_hparams() |
|
os.environ['MASTER_ADDR'] = 'localhost' |
|
os.environ['MASTER_PORT'] = str(hps.train.port) |
|
|
|
if (torch.cuda.is_available()): |
|
n_gpus = torch.cuda.device_count() |
|
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) |
|
else: |
|
cpurun(0, 1, hps) |
|
|
|
|
|
def run(rank, n_gpus, hps): |
|
global global_step |
|
if rank == 0: |
|
logger = utils.get_logger(hps.model_dir) |
|
logger.info(hps.train) |
|
logger.info(hps.data) |
|
logger.info(hps.model) |
|
utils.check_git_hash(hps.model_dir) |
|
writer = SummaryWriter(log_dir=hps.model_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) |
|
|
|
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank) |
|
torch.manual_seed(hps.train.seed) |
|
torch.cuda.set_device(rank) |
|
dataset_constructor = DatasetConstructor(hps, num_replicas=n_gpus, rank=rank) |
|
|
|
train_loader = dataset_constructor.get_train_loader() |
|
if rank == 0: |
|
valid_loader = dataset_constructor.get_valid_loader() |
|
|
|
net_g = SynthesizerTrn(hps).cuda(rank) |
|
net_d = Discriminator(hps, hps.model.use_spectral_norm).cuda(rank) |
|
|
|
optim_g = torch.optim.AdamW( |
|
net_g.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
optim_d = torch.optim.AdamW( |
|
net_d.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) |
|
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True) |
|
skip_optimizer = True |
|
try: |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, |
|
optim_g, skip_optimizer) |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, |
|
optim_d, skip_optimizer) |
|
global_step = (epoch_str - 1) * len(train_loader) |
|
except: |
|
print("load old checkpoint failed...") |
|
epoch_str = 1 |
|
global_step = 0 |
|
if skip_optimizer: |
|
epoch_str = 1 |
|
global_step = 0 |
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1): |
|
if rank == 0: |
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], |
|
[train_loader, valid_loader], logger, [writer, writer_eval]) |
|
else: |
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], |
|
[train_loader, None], None, None) |
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
|
|
def cpurun(rank, n_gpus, hps): |
|
global global_step |
|
if rank == 0: |
|
logger = utils.get_logger(hps.model_dir) |
|
logger.info(hps.train) |
|
logger.info(hps.data) |
|
logger.info(hps.model) |
|
utils.check_git_hash(hps.model_dir) |
|
writer = SummaryWriter(log_dir=hps.model_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) |
|
torch.manual_seed(hps.train.seed) |
|
dataset_constructor = DatasetConstructor(hps, num_replicas=n_gpus, rank=rank) |
|
|
|
train_loader = dataset_constructor.get_train_loader() |
|
if rank == 0: |
|
valid_loader = dataset_constructor.get_valid_loader() |
|
|
|
net_g = SynthesizerTrn(hps) |
|
net_d = Discriminator(hps, hps.model.use_spectral_norm) |
|
|
|
optim_g = torch.optim.AdamW( |
|
net_g.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
optim_d = torch.optim.AdamW( |
|
net_d.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
skip_optimizer = True |
|
try: |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, |
|
optim_g, skip_optimizer) |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, |
|
optim_d, skip_optimizer) |
|
global_step = (epoch_str - 1) * len(train_loader) |
|
except: |
|
print("load old checkpoint failed...") |
|
epoch_str = 1 |
|
global_step = 0 |
|
if skip_optimizer: |
|
epoch_str = 1 |
|
global_step = 0 |
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1): |
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], |
|
[train_loader, valid_loader], logger, [writer, writer_eval]) |
|
|
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, loaders, logger, writers): |
|
net_g, net_d = nets |
|
optim_g, optim_d = optims |
|
scheduler_g, scheduler_d = schedulers |
|
train_loader, eval_loader = loaders |
|
if writers is not None: |
|
writer, writer_eval = writers |
|
|
|
train_loader.sampler.set_epoch(epoch) |
|
global global_step |
|
|
|
net_g.train() |
|
net_d.train() |
|
for batch_idx, data_dict in enumerate(train_loader): |
|
|
|
c = data_dict["c"] |
|
mel = data_dict["mel"] |
|
f0 = data_dict["f0"] |
|
uv = data_dict["uv"] |
|
wav = data_dict["wav"] |
|
spkid = data_dict["spkid"] |
|
|
|
c_lengths = data_dict["c_lengths"] |
|
mel_lengths = data_dict["mel_lengths"] |
|
wav_lengths = data_dict["wav_lengths"] |
|
f0_lengths = data_dict["f0_lengths"] |
|
|
|
|
|
if (use_cuda): |
|
c, c_lengths = c.cuda(rank, non_blocking=True), c_lengths.cuda(rank, non_blocking=True) |
|
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True) |
|
wav, wav_lengths = wav.cuda(rank, non_blocking=True), wav_lengths.cuda(rank, non_blocking=True) |
|
f0, f0_lengths = f0.cuda(rank, non_blocking=True), f0_lengths.cuda(rank, non_blocking=True) |
|
spkid = spkid.cuda(rank, non_blocking=True) |
|
uv = uv.cuda(rank, non_blocking=True) |
|
|
|
|
|
y_hat, ids_slice, LF0, y_ddsp, kl_div, predict_mel, mask, \ |
|
pred_lf0, loss_f0, norm_f0 = net_g(c, c_lengths, f0,uv, mel, mel_lengths, spk_id=spkid) |
|
y_ddsp = y_ddsp.unsqueeze(1) |
|
|
|
|
|
y = commons.slice_segments(wav, ids_slice * hps.data.hop_length, hps.train.segment_size) |
|
y_ddsp_mel = mel_spectrogram_torch( |
|
y_ddsp.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.acoustic_dim, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size, |
|
hps.data.fmin, |
|
hps.data.fmax |
|
) |
|
|
|
y_logspec = torch.log(spectrogram_torch( |
|
y.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size |
|
) + 1e-7) |
|
|
|
y_ddsp_logspec = torch.log(spectrogram_torch( |
|
y_ddsp.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size |
|
) + 1e-7) |
|
|
|
y_mel = mel_spectrogram_torch( |
|
y.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.acoustic_dim, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size, |
|
hps.data.fmin, |
|
hps.data.fmax |
|
) |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.acoustic_dim, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size, |
|
hps.data.fmin, |
|
hps.data.fmax |
|
) |
|
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) |
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) |
|
loss_disc_all = loss_disc |
|
|
|
optim_d.zero_grad() |
|
loss_disc_all.backward() |
|
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) |
|
optim_d.step() |
|
|
|
|
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) |
|
|
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * 45 |
|
loss_mel_dsp = F.l1_loss(y_mel, y_ddsp_mel) * 45 |
|
loss_spec_dsp = F.l1_loss(y_logspec, y_ddsp_logspec) * 45 |
|
|
|
loss_mel_am = F.mse_loss(mel * mask, predict_mel * mask) |
|
|
|
loss_fm = feature_loss(fmap_r, fmap_g) |
|
loss_gen, losses_gen = generator_loss(y_d_hat_g) |
|
|
|
loss_fm = loss_fm / 2 |
|
loss_gen = loss_gen / 2 |
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_mel_dsp + kl_div + loss_mel_am + loss_spec_dsp +\ |
|
loss_f0 |
|
|
|
loss_gen_all = loss_gen_all / hps.train.accumulation_steps |
|
|
|
loss_gen_all.backward() |
|
if ((global_step + 1) % hps.train.accumulation_steps == 0): |
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) |
|
optim_g.step() |
|
optim_g.zero_grad() |
|
|
|
if rank == 0: |
|
if (global_step + 1) % (hps.train.accumulation_steps * 10) == 0: |
|
print(["step&time&loss", global_step, time.asctime(time.localtime(time.time())), loss_gen_all]) |
|
|
|
if global_step % hps.train.log_interval == 0: |
|
lr = optim_g.param_groups[0]['lr'] |
|
losses = [loss_gen_all, loss_mel] |
|
logger.info('Train Epoch: {} [{:.0f}%]'.format( |
|
epoch, |
|
100. * batch_idx / len(train_loader))) |
|
logger.info([x.item() for x in losses] + [global_step, lr]) |
|
|
|
scalar_dict = {"loss/total": loss_gen_all, |
|
"loss/mel": loss_mel, |
|
"loss/adv": loss_gen, |
|
"loss/fm": loss_fm, |
|
"loss/mel_ddsp": loss_mel_dsp, |
|
"loss/spec_ddsp": loss_spec_dsp, |
|
"loss/mel_am": loss_mel_am, |
|
"loss/kl_div": kl_div, |
|
"loss/lf0": loss_f0, |
|
"learning_rate": lr} |
|
image_dict = { |
|
"train/lf0": utils.plot_data_to_numpy(LF0[0,0, :].cpu().numpy(), pred_lf0[0,0, :].detach().cpu().numpy()), |
|
"train/norm_lf0": utils.plot_data_to_numpy(LF0[0,0, :].cpu().numpy(), norm_f0[0,0, :].detach().cpu().numpy()), |
|
} |
|
utils.summarize( |
|
writer=writer, |
|
global_step=global_step, |
|
scalars=scalar_dict, |
|
images=image_dict) |
|
|
|
if global_step % hps.train.eval_interval == 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluate(hps, net_g, eval_loader, writer_eval) |
|
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, |
|
os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) |
|
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, |
|
os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) |
|
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0) |
|
if keep_ckpts > 0: |
|
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) |
|
|
|
net_g.train() |
|
global_step += 1 |
|
|
|
if rank == 0: |
|
logger.info('====> Epoch: {}'.format(epoch)) |
|
|
|
|
|
def evaluate(hps, generator, eval_loader, writer_eval): |
|
generator.eval() |
|
image_dict = {} |
|
audio_dict = {} |
|
with torch.no_grad(): |
|
for batch_idx, data_dict in enumerate(eval_loader): |
|
if batch_idx == 8: |
|
break |
|
c = data_dict["c"] |
|
mel = data_dict["mel"] |
|
f0 = data_dict["f0"] |
|
uv = data_dict["uv"] |
|
wav = data_dict["wav"] |
|
spkid = data_dict["spkid"] |
|
|
|
wav_lengths = data_dict["wav_lengths"] |
|
|
|
|
|
if (use_cuda): |
|
c = c.cuda(0) |
|
wav = wav.cuda(0) |
|
mel = mel.cuda(0) |
|
f0 = f0.cuda(0) |
|
uv = uv.cuda(0) |
|
spkid = spkid.cuda(0) |
|
|
|
c = c[:1] |
|
wav = wav[:1] |
|
mel = mel[:1] |
|
f0 = f0[:1] |
|
spkid = spkid[:1] |
|
if use_cuda: |
|
y_hat, y_harm, y_noise, _ = generator.module.infer(c, f0=f0,uv=uv, g=spkid) |
|
else: |
|
y_hat, y_harm, y_noise, _ = generator.infer(c, f0=f0,uv=uv, g=spkid) |
|
|
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1), |
|
hps.data.n_fft, |
|
hps.data.acoustic_dim, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_size, |
|
hps.data.fmin, |
|
hps.data.fmax |
|
) |
|
image_dict.update({ |
|
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()), |
|
}) |
|
audio_dict.update( { |
|
f"gen/audio_{batch_idx}": y_hat[0, :, :], |
|
f"gen/harm": y_harm[0, :, :], |
|
"gen/noise": y_noise[0, :, :] |
|
}) |
|
|
|
image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}) |
|
audio_dict.update({f"gt/audio_{batch_idx}": wav[0, :, :wav_lengths[0]]}) |
|
|
|
utils.summarize( |
|
writer=writer_eval, |
|
global_step=global_step, |
|
images=image_dict, |
|
audios=audio_dict, |
|
audio_sampling_rate=hps.data.sampling_rate |
|
) |
|
generator.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|