so-vits-svc / models.py
ioritree's picture
Upload 42 files
1c4becd
import sys
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
sys.path.append('../..')
import modules.commons as commons
import modules.modules as modules
import modules.attentions as attentions
from modules.commons import init_weights, get_padding
from modules.ddsp import mlp, gru, scale_function, remove_above_nyquist, upsample
from modules.ddsp import harmonic_synth, amp_to_impulse_response, fft_convolve
from modules.ddsp import resample
import utils
from modules.stft import TorchSTFT
import torch.distributions as D
from modules.losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
LRELU_SLOPE = 0.1
class PostF0Decoder(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, spk_channels=0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = spk_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if spk_channels != 0:
self.cond = nn.Conv1d(spk_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(self,
c_dim,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.pre_net = torch.nn.Linear(c_dim, hidden_channels)
self.encoder = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, x, x_lengths):
x = x.transpose(1,-1)
x = self.pre_net(x)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.encoder(x * x_mask, x_mask)
x = self.proj(x) * x_mask
return x, x_mask
def pad_v2(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len - batch.size(0)), "constant", 0.0
)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
class LengthRegulator(nn.Module):
""" Length Regulator """
def __init__(self):
super(LengthRegulator, self).__init__()
def LR(self, x, duration, max_len):
x = torch.transpose(x, 1, 2)
output = list()
mel_len = list()
for batch, expand_target in zip(x, duration):
expanded = self.expand(batch, expand_target)
output.append(expanded)
mel_len.append(expanded.shape[0])
if max_len is not None:
output = pad_v2(output, max_len)
else:
output = pad_v2(output)
output = torch.transpose(output, 1, 2)
return output, torch.LongTensor(mel_len)
def expand(self, batch, predicted):
predicted = torch.squeeze(predicted)
out = list()
for i, vec in enumerate(batch):
expand_size = predicted[i].item()
state_info_index = torch.unsqueeze(torch.arange(0, expand_size), 1).float()
state_info_length = torch.unsqueeze(torch.Tensor([expand_size] * expand_size), 1).float()
state_info = torch.cat([state_info_index, state_info_length], 1).to(vec.device)
new_vec = vec.expand(max(int(expand_size), 0), -1)
new_vec = torch.cat([new_vec, state_info], 1)
out.append(new_vec)
out = torch.cat(out, 0)
return out
def forward(self, x, duration, max_len):
output, mel_len = self.LR(x, duration, max_len)
return output, mel_len
class PriorDecoder(nn.Module):
def __init__(self,
out_bn_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_speakers=0,
spk_channels=0):
super().__init__()
self.out_bn_channels = out_bn_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.spk_channels = spk_channels
self.prenet = nn.Conv1d(hidden_channels , hidden_channels, 3, padding=1)
self.decoder = attentions.FFT(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_bn_channels, 1)
if n_speakers != 0:
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
def forward(self, x, x_lengths, spk_emb=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.prenet(x) * x_mask
if (spk_emb is not None):
x = x + self.cond(spk_emb)
x = self.decoder(x * x_mask, x_mask)
bn = self.proj(x) * x_mask
return bn, x_mask
class Decoder(nn.Module):
def __init__(self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_speakers=0,
spk_channels=0,
in_channels=None):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.spk_channels = spk_channels
self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1)
self.decoder = attentions.FFT(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
if n_speakers != 0:
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
def forward(self, x, x_lengths, spk_emb=None):
x = torch.detach(x)
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.prenet(x) * x_mask
if (spk_emb is not None):
x = x + self.cond(spk_emb)
x = self.decoder(x * x_mask, x_mask)
x = self.proj(x) * x_mask
return x, x_mask
class F0Decoder(nn.Module):
def __init__(self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_speakers=0,
spk_channels=0,
in_channels=None):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.spk_channels = spk_channels
self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1)
self.decoder = attentions.FFT(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
if n_speakers != 0:
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
def forward(self, x, norm_f0, x_lengths, spk_emb=None):
x = torch.detach(x)
x += self.f0_prenet(norm_f0)
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.prenet(x) * x_mask
if (spk_emb is not None):
x = x + self.cond(spk_emb)
x = self.decoder(x * x_mask, x_mask)
x = self.proj(x) * x_mask
return x, x_mask
class ConvReluNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x):
x = self.conv_layers[0](x)
x = self.norm_layers[0](x)
x = self.relu_drop(x)
for i in range(1, self.n_layers):
x_ = self.conv_layers[i](x)
x_ = self.norm_layers[i](x_)
x_ = self.relu_drop(x_)
x = (x + x_) / 2
x = self.proj(x)
return x
class PosteriorEncoder(nn.Module):
def __init__(self,
hps,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels)
# self.enc = ConvReluNorm(hidden_channels,
# hidden_channels,
# hidden_channels,
# kernel_size,
# n_layers,
# 0.1)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
return stats, x_mask
class ResBlock3(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock3, self).__init__()
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0])))
])
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator_Harm(torch.nn.Module):
def __init__(self, hps):
super(Generator_Harm, self).__init__()
self.hps = hps
self.prenet = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1)
self.net = ConvReluNorm(hps.model.hidden_channels,
hps.model.hidden_channels,
hps.model.hidden_channels,
hps.model.kernel_size,
8,
hps.model.p_dropout)
# self.rnn = nn.LSTM(input_size=hps.model.hidden_channels,
# hidden_size=hps.model.hidden_channels,
# num_layers=1,
# bias=True,
# batch_first=True,
# dropout=0.5,
# bidirectional=True)
self.postnet = Conv1d(hps.model.hidden_channels, hps.model.n_harmonic + 1, 3, padding=1)
def forward(self, f0, harm, mask):
pitch = f0.transpose(1, 2)
harm = self.prenet(harm)
harm = self.net(harm) * mask
# harm = harm.transpose(1, 2)
# harm, (hs, hc) = self.rnn(harm)
# harm = harm.transpose(1, 2)
harm = self.postnet(harm)
harm = harm.transpose(1, 2)
param = harm
param = scale_function(param)
total_amp = param[..., :1]
amplitudes = param[..., 1:]
amplitudes = remove_above_nyquist(
amplitudes,
pitch,
self.hps.data.sampling_rate,
)
amplitudes /= amplitudes.sum(-1, keepdim=True)
amplitudes *= total_amp
amplitudes = upsample(amplitudes, self.hps.data.hop_length)
pitch = upsample(pitch, self.hps.data.hop_length)
n_harmonic = amplitudes.shape[-1]
omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
signal_harmonics = (torch.sin(omegas) * amplitudes)
signal_harmonics = signal_harmonics.transpose(1, 2)
return signal_harmonics
class Generator(torch.nn.Module):
def __init__(self, hps, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, spk_channels=0):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
self.upsample_rates = upsample_rates
self.n_speakers = n_speakers
resblock = modules.ResBlock1 if resblock == '1' else modules.R
self.downs = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
i = len(upsample_rates) - 1 - i
u = upsample_rates[i]
k = upsample_kernel_sizes[i]
# print("down: ",upsample_initial_channel//(2**(i+1))," -> ", upsample_initial_channel//(2**i))
self.downs.append(weight_norm(
Conv1d(hps.model.n_harmonic + 2, hps.model.n_harmonic + 2,
k, u, padding=k // 2)))
self.resblocks_downs = nn.ModuleList()
for i in range(len(self.downs)):
j = len(upsample_rates) - 1 - i
self.resblocks_downs.append(ResBlock3(hps.model.n_harmonic + 2, 3, (1, 3)))
self.concat_pre = Conv1d(upsample_initial_channel + hps.model.n_harmonic + 2, upsample_initial_channel, 3, 1,
padding=1)
self.concat_conv = nn.ModuleList()
for i in range(len(upsample_rates)):
ch = upsample_initial_channel // (2 ** (i + 1))
self.concat_conv.append(Conv1d(ch + hps.model.n_harmonic + 2, ch, 3, 1, padding=1, bias=False))
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if self.n_speakers != 0:
self.cond = nn.Conv1d(spk_channels, upsample_initial_channel, 1)
def forward(self, x, ddsp, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
se = ddsp
res_features = [se]
for i in range(self.num_upsamples):
in_size = se.size(2)
se = self.downs[i](se)
se = self.resblocks_downs[i](se)
up_rate = self.upsample_rates[self.num_upsamples - 1 - i]
se = se[:, :, : in_size // up_rate]
res_features.append(se)
x = torch.cat([x, se], 1)
x = self.concat_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
in_size = x.size(2)
x = self.ups[i](x)
# 保证维度正确,丢掉多余通道
x = x[:, :, : in_size * self.upsample_rates[i]]
x = torch.cat([x, res_features[self.num_upsamples - 1 - i]], 1)
x = self.concat_conv[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class Generator_Noise(torch.nn.Module):
def __init__(self, hps):
super(Generator_Noise, self).__init__()
self.hps = hps
self.win_size = hps.data.win_size
self.hop_size = hps.data.hop_length
self.fft_size = hps.data.n_fft
self.istft_pre = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1)
self.net = ConvReluNorm(hps.model.hidden_channels,
hps.model.hidden_channels,
hps.model.hidden_channels,
hps.model.kernel_size,
8,
hps.model.p_dropout)
self.istft_amplitude = torch.nn.Conv1d(hps.model.hidden_channels, self.fft_size // 2 + 1, 1, 1)
self.window = torch.hann_window(self.win_size)
def forward(self, x, mask):
istft_x = x
istft_x = self.istft_pre(istft_x)
istft_x = self.net(istft_x) * mask
amp = self.istft_amplitude(istft_x).unsqueeze(-1)
phase = (torch.rand(amp.shape) * 2 * 3.14 - 3.14).to(amp)
real = amp * torch.cos(phase)
imag = amp * torch.sin(phase)
spec = torch.cat([real, imag], 3)
istft_x = torch.istft(spec, self.fft_size, self.hop_size, self.win_size, self.window.to(amp), True,
length=x.shape[2] * self.hop_size, return_complex=False)
return istft_x.unsqueeze(1)
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiFrequencyDiscriminator(nn.Module):
def __init__(self,
hop_lengths=[128, 256, 512],
hidden_channels=[256, 512, 512],
domain='double', mel_scale=True):
super(MultiFrequencyDiscriminator, self).__init__()
self.stfts = nn.ModuleList([
TorchSTFT(fft_size=x * 4, hop_size=x, win_size=x * 4,
normalized=True, domain=domain, mel_scale=mel_scale)
for x in hop_lengths])
self.domain = domain
if domain == 'double':
self.discriminators = nn.ModuleList([
BaseFrequenceDiscriminator(2, c)
for x, c in zip(hop_lengths, hidden_channels)])
else:
self.discriminators = nn.ModuleList([
BaseFrequenceDiscriminator(1, c)
for x, c in zip(hop_lengths, hidden_channels)])
def forward(self, x):
scores, feats = list(), list()
for stft, layer in zip(self.stfts, self.discriminators):
# print(stft)
mag, phase = stft.transform(x.squeeze())
if self.domain == 'double':
mag = torch.stack(torch.chunk(mag, 2, dim=1), dim=1)
else:
mag = mag.unsqueeze(1)
score, feat = layer(mag)
scores.append(score)
feats.append(feat)
return scores, feats
class BaseFrequenceDiscriminator(nn.Module):
def __init__(self, in_channels, hidden_channels=512):
super(BaseFrequenceDiscriminator, self).__init__()
self.discriminator = nn.ModuleList()
self.discriminator += [
nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
in_channels, hidden_channels // 32,
kernel_size=(3, 3), stride=(1, 1)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels // 32, hidden_channels // 16,
kernel_size=(3, 3), stride=(2, 2)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels // 16, hidden_channels // 8,
kernel_size=(3, 3), stride=(1, 1)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels // 8, hidden_channels // 4,
kernel_size=(3, 3), stride=(2, 2)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels // 4, hidden_channels // 2,
kernel_size=(3, 3), stride=(1, 1)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels // 2, hidden_channels,
kernel_size=(3, 3), stride=(2, 2)))
),
nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.utils.weight_norm(nn.Conv2d(
hidden_channels, 1,
kernel_size=(3, 3), stride=(1, 1)))
)
]
def forward(self, x):
hiddens = []
for layer in self.discriminator:
x = layer(x)
hiddens.append(x)
return x, hiddens[-1]
class Discriminator(torch.nn.Module):
def __init__(self, hps, use_spectral_norm=False):
super(Discriminator, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
# self.disc_multfrequency = MultiFrequencyDiscriminator(hop_lengths=[int(hps.data.sampling_rate * 2.5 / 1000),
# int(hps.data.sampling_rate * 5 / 1000),
# int(hps.data.sampling_rate * 7.5 / 1000),
# int(hps.data.sampling_rate * 10 / 1000),
# int(hps.data.sampling_rate * 12.5 / 1000),
# int(hps.data.sampling_rate * 15 / 1000)],
# hidden_channels=[256, 256, 256, 256, 256])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
# scores_r, fmaps_r = self.disc_multfrequency(y)
# scores_g, fmaps_g = self.disc_multfrequency(y_hat)
# for i in range(len(scores_r)):
# y_d_rs.append(scores_r[i])
# y_d_gs.append(scores_g[i])
# fmap_rs.append(fmaps_r[i])
# fmap_gs.append(fmaps_g[i])
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SynthesizerTrn(nn.Module):
"""
Model
"""
def __init__(self, hps):
super().__init__()
self.hps = hps
self.text_encoder = TextEncoder(
hps.data.c_dim,
hps.model.prior_hidden_channels,
hps.model.prior_hidden_channels,
hps.model.prior_filter_channels,
hps.model.prior_n_heads,
hps.model.prior_n_layers,
hps.model.prior_kernel_size,
hps.model.prior_p_dropout)
self.decoder = PriorDecoder(
hps.model.hidden_channels * 2,
hps.model.prior_hidden_channels,
hps.model.prior_filter_channels,
hps.model.prior_n_heads,
hps.model.prior_n_layers,
hps.model.prior_kernel_size,
hps.model.prior_p_dropout,
n_speakers=hps.data.n_speakers,
spk_channels=hps.model.spk_channels
)
self.f0_decoder = F0Decoder(
1,
hps.model.prior_hidden_channels,
hps.model.prior_filter_channels,
hps.model.prior_n_heads,
hps.model.prior_n_layers,
hps.model.prior_kernel_size,
hps.model.prior_p_dropout,
n_speakers=hps.data.n_speakers,
spk_channels=hps.model.spk_channels
)
self.mel_decoder = Decoder(
hps.data.acoustic_dim,
hps.model.prior_hidden_channels,
hps.model.prior_filter_channels,
hps.model.prior_n_heads,
hps.model.prior_n_layers,
hps.model.prior_kernel_size,
hps.model.prior_p_dropout,
n_speakers=hps.data.n_speakers,
spk_channels=hps.model.spk_channels
)
self.posterior_encoder = PosteriorEncoder(
hps,
hps.data.acoustic_dim,
hps.model.hidden_channels,
hps.model.hidden_channels, 3, 1, 8)
self.dropout = nn.Dropout(0.2)
self.LR = LengthRegulator()
self.dec = Generator(hps,
hps.model.hidden_channels,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
n_speakers=hps.data.n_speakers,
spk_channels=hps.model.spk_channels)
self.dec_harm = Generator_Harm(hps)
self.dec_noise = Generator_Noise(hps)
self.f0_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1)
self.energy_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1)
self.mel_prenet = nn.Conv1d(hps.data.acoustic_dim, hps.model.prior_hidden_channels , 3, padding=1)
if hps.data.n_speakers > 1:
self.emb_spk = nn.Embedding(hps.data.n_speakers, hps.model.spk_channels)
self.flow = modules.ResidualCouplingBlock(hps.model.prior_hidden_channels, hps.model.hidden_channels, 5, 1, 4,n_speakers=hps.data.n_speakers, gin_channels=hps.model.spk_channels)
def forward(self, c, c_lengths, F0, uv, mel, bn_lengths, spk_id=None):
if self.hps.data.n_speakers > 0:
g = self.emb_spk(spk_id).unsqueeze(-1) # [b, h, 1]
else:
g = None
# Encoder
decoder_input, x_mask = self.text_encoder(c, c_lengths)
LF0 = 2595. * torch.log10(1. + F0 / 700.)
LF0 = LF0 / 500
norm_f0 = utils.normalize_f0(LF0,x_mask, uv.squeeze(1),random_scale=True)
pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, bn_lengths, spk_emb=g)
# print(pred_lf0)
loss_f0 = F.mse_loss(pred_lf0, LF0)
# aam
predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), bn_lengths, spk_emb=g)
predict_energy = predict_mel.detach().sum(1).unsqueeze(1) / self.hps.data.acoustic_dim
decoder_input = decoder_input + \
self.f0_prenet(LF0) + \
self.energy_prenet(predict_energy) + \
self.mel_prenet(predict_mel.detach())
decoder_output, predict_bn_mask = self.decoder(decoder_input, bn_lengths, spk_emb=g)
prior_info = decoder_output
m_p = prior_info[:, :self.hps.model.hidden_channels, :]
logs_p = prior_info[:, self.hps.model.hidden_channels:, :]
# posterior
posterior, y_mask = self.posterior_encoder(mel, bn_lengths,g=g)
m_q = posterior[:, :self.hps.model.hidden_channels, :]
logs_q = posterior[:, self.hps.model.hidden_channels:, :]
z = (m_q + torch.randn_like(m_q) * torch.exp(logs_q)) * y_mask
z_p = self.flow(z, y_mask, g=g)
# kl loss
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, y_mask)
p_z = z
p_z = self.dropout(p_z)
pitch = upsample(F0.transpose(1, 2), self.hps.data.hop_length)
omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
sin = torch.sin(omega).transpose(1, 2)
# dsp synthesize
noise_x = self.dec_noise(p_z, y_mask)
harm_x = self.dec_harm(F0, p_z, y_mask)
# dsp waveform
dsp_o = torch.cat([harm_x, noise_x], axis=1)
decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1)
# dsp based HiFiGAN vocoder
x_slice, ids_slice = commons.rand_slice_segments(p_z, bn_lengths,
self.hps.train.segment_size // self.hps.data.hop_length)
F0_slice = commons.slice_segments(F0, ids_slice, self.hps.train.segment_size // self.hps.data.hop_length)
dsp_slice = commons.slice_segments(dsp_o, ids_slice * self.hps.data.hop_length, self.hps.train.segment_size)
condition_slice = commons.slice_segments(decoder_condition, ids_slice * self.hps.data.hop_length,
self.hps.train.segment_size)
o = self.dec(x_slice, condition_slice.detach(), g=g)
return o, ids_slice, LF0 * predict_bn_mask, dsp_slice.sum(1), loss_kl, \
predict_mel, predict_bn_mask, pred_lf0, loss_f0, norm_f0
def infer(self, c, g=None, f0=None,uv=None, predict_f0=False, noice_scale=0.3):
if len(g.shape) == 2:
g = g.squeeze(0)
if len(f0.shape) == 2:
f0 = f0.unsqueeze(0)
g = self.emb_spk(g).unsqueeze(-1) # [b, h, 1]
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
# Encoder
decoder_input, x_mask = self.text_encoder(c, c_lengths)
y_lengths = c_lengths
LF0 = 2595. * torch.log10(1. + f0 / 700.)
LF0 = LF0 / 500
if predict_f0:
norm_f0 = utils.normalize_f0(LF0, x_mask, uv.squeeze(1))
pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, y_lengths, spk_emb=g)
pred_f0 = 700 * ( torch.pow(10, pred_lf0 * 500 / 2595) - 1)
f0 = pred_f0
LF0 = pred_lf0
# aam
predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), y_lengths, spk_emb=g)
predict_energy = predict_mel.sum(1).unsqueeze(1) / self.hps.data.acoustic_dim
decoder_input = decoder_input + \
self.f0_prenet(LF0) + \
self.energy_prenet(predict_energy) + \
self.mel_prenet(predict_mel)
decoder_output, y_mask = self.decoder(decoder_input, y_lengths, spk_emb=g)
prior_info = decoder_output
m_p = prior_info[:, :self.hps.model.hidden_channels, :]
logs_p = prior_info[:, self.hps.model.hidden_channels:, :]
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noice_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
prior_z = z
noise_x = self.dec_noise(prior_z, y_mask)
harm_x = self.dec_harm(f0, prior_z, y_mask)
pitch = upsample(f0.transpose(1, 2), self.hps.data.hop_length)
omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
sin = torch.sin(omega).transpose(1, 2)
decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1)
# dsp based HiFiGAN vocoder
o = self.dec(prior_z, decoder_condition, g=g)
return o, harm_x.sum(1).unsqueeze(1), noise_x, f0