|
import os |
|
import sys |
|
import string |
|
import random |
|
import numpy as np |
|
import math |
|
import json |
|
from torch.utils.data import DataLoader |
|
import torch |
|
|
|
import utils |
|
from modules import audio |
|
|
|
sys.path.append('../..') |
|
from utils import load_wav |
|
|
|
|
|
class BaseDataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, hparams, fileid_list_path): |
|
self.hparams = hparams |
|
self.fileid_list = self.get_fileid_list(fileid_list_path) |
|
random.seed(hparams.train.seed) |
|
random.shuffle(self.fileid_list) |
|
if (hparams.data.n_speakers > 0): |
|
self.spk2id = hparams.spk |
|
|
|
def get_fileid_list(self, fileid_list_path): |
|
fileid_list = [] |
|
with open(fileid_list_path, 'r') as f: |
|
for line in f.readlines(): |
|
fileid_list.append(line.strip()) |
|
|
|
return fileid_list |
|
|
|
def __len__(self): |
|
return len(self.fileid_list) |
|
|
|
|
|
class SingDataset(BaseDataset): |
|
def __init__(self, hparams, data_dir, fileid_list_path): |
|
BaseDataset.__init__(self, hparams, fileid_list_path) |
|
self.hps = hparams |
|
self.data_dir = data_dir |
|
|
|
|
|
def __filter__(self): |
|
new_fileid_list= [] |
|
for wav_path in self.fileid_list: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_fileid_list.append(wav_path) |
|
print("original length:", len(self.fileid_list)) |
|
print("filtered length:", len(new_fileid_list)) |
|
self.fileid_list = new_fileid_list |
|
|
|
def interpolate_f0(self, data): |
|
''' |
|
对F0进行插值处理 |
|
''' |
|
data = np.reshape(data, (data.size, 1)) |
|
|
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32) |
|
vuv_vector[data > 0.0] = 1.0 |
|
vuv_vector[data <= 0.0] = 0.0 |
|
|
|
ip_data = data |
|
|
|
frame_number = data.size |
|
last_value = 0.0 |
|
for i in range(frame_number): |
|
if data[i] <= 0.0: |
|
j = i + 1 |
|
for j in range(i + 1, frame_number): |
|
if data[j] > 0.0: |
|
break |
|
if j < frame_number - 1: |
|
if last_value > 0.0: |
|
step = (data[j] - data[i - 1]) / float(j - i) |
|
for k in range(i, j): |
|
ip_data[k] = data[i - 1] + step * (k - i + 1) |
|
else: |
|
for k in range(i, j): |
|
ip_data[k] = data[j] |
|
else: |
|
for k in range(i, frame_number): |
|
ip_data[k] = last_value |
|
else: |
|
ip_data[i] = data[i] |
|
last_value = data[i] |
|
|
|
return ip_data, vuv_vector |
|
|
|
def parse_label(self, pho, pitchid, dur, slur, gtdur): |
|
phos = [] |
|
pitchs = [] |
|
durs = [] |
|
slurs = [] |
|
gtdurs = [] |
|
|
|
for index in range(len(pho.split())): |
|
phos.append(npu.symbol_converter.ttsing_phone_to_int[pho.strip().split()[index]]) |
|
pitchs.append(0) |
|
durs.append(0) |
|
slurs.append(0) |
|
gtdurs.append(float(gtdur.strip().split()[index])) |
|
|
|
phos = np.asarray(phos, dtype=np.int32) |
|
pitchs = np.asarray(pitchs, dtype=np.int32) |
|
durs = np.asarray(durs, dtype=np.float32) |
|
slurs = np.asarray(slurs, dtype=np.int32) |
|
gtdurs = np.asarray(gtdurs, dtype=np.float32) |
|
|
|
acc_duration = np.cumsum(gtdurs) |
|
acc_duration = np.pad(acc_duration, (1, 0), 'constant', constant_values=(0,)) |
|
acc_duration_frames = np.ceil(acc_duration / (self.hps.data.hop_length / self.hps.data.sampling_rate)) |
|
gtdurs = acc_duration_frames[1:] - acc_duration_frames[:-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
phos = torch.LongTensor(phos) |
|
pitchs = torch.LongTensor(pitchs) |
|
durs = torch.FloatTensor(durs) |
|
slurs = torch.LongTensor(slurs) |
|
gtdurs = torch.LongTensor(gtdurs) |
|
return phos, pitchs, durs, slurs, gtdurs |
|
|
|
def __getitem__(self, index): |
|
wav_path = self.fileid_list[index] |
|
|
|
spk = wav_path.split('/')[-2] |
|
spkid = self.spk2id[spk] |
|
|
|
wav = load_wav(wav_path, |
|
raw_sr=self.hparams.data.sampling_rate, |
|
target_sr=self.hparams.data.sampling_rate, |
|
win_size=self.hparams.data.win_size, |
|
hop_size=self.hparams.data.hop_length) |
|
|
|
mel_path = wav_path + ".mel.npy" |
|
if not os.path.exists(mel_path): |
|
mel = audio.melspectrogram(wav, self.hparams.data).astype(np.float32).T |
|
np.save(mel_path, mel) |
|
else: |
|
mel = np.load(mel_path) |
|
|
|
if mel.shape[0] < 30: |
|
print("skip short audio:", self.fileid_list[index]) |
|
return None |
|
assert mel.shape[1] == 80 |
|
mel = torch.FloatTensor(mel).transpose(0, 1) |
|
|
|
f0_path = wav_path + ".f0.npy" |
|
f0 = np.load(f0_path) |
|
assert abs(f0.shape[0]-mel.shape[1]) < 2, (f0.shape ,mel.shape) |
|
sum_dur = min(f0.shape[0], mel.shape[1]) |
|
f0 = f0[:sum_dur] |
|
mel = mel[:, :sum_dur] |
|
|
|
f0, uv = self.interpolate_f0(f0) |
|
f0 = f0.reshape([-1]) |
|
f0 = torch.FloatTensor(f0).reshape([1, -1]) |
|
|
|
uv = uv.reshape([-1]) |
|
uv = torch.FloatTensor(uv).reshape([1, -1]) |
|
|
|
wav = wav.reshape(-1) |
|
if (wav.shape[0] != sum_dur * self.hparams.data.hop_length): |
|
if (abs(wav.shape[0] - sum_dur * self.hparams.data.hop_length) > 3 * self.hparams.data.hop_length): |
|
print("dataset error wav : ", wav.shape, sum_dur) |
|
return None |
|
if (wav.shape[0] > sum_dur * self.hparams.data.hop_length): |
|
wav = wav[:sum_dur * self.hparams.data.hop_length] |
|
else: |
|
wav = np.concatenate([wav, np.zeros([sum_dur * self.hparams.data.hop_length - wav.shape[0]])], axis=0) |
|
wav = torch.FloatTensor(wav).reshape([1, -1]) |
|
|
|
c_path = wav_path + ".soft.pt" |
|
c = torch.load(c_path) |
|
c = utils.repeat_expand_2d(c.squeeze(0), sum_dur) |
|
|
|
assert f0.shape[1] == mel.shape[1] |
|
|
|
if mel.shape[1] > 800: |
|
start = random.randint(0, mel.shape[1]-800) |
|
end = start + 790 |
|
mel = mel[:, start:end] |
|
f0 = f0[:, start:end] |
|
uv = uv[:, start:end] |
|
c = c[:, start:end] |
|
wav = wav[:, start*self.hparams.data.hop_length:end*self.hparams.data.hop_length] |
|
return c, mel, f0, wav, spkid, uv |
|
|
|
|
|
class SingCollate(): |
|
|
|
def __init__(self, hparams): |
|
self.hparams = hparams |
|
self.mel_dim = self.hparams.data.acoustic_dim |
|
|
|
def __call__(self, batch): |
|
batch = [b for b in batch if b is not None] |
|
|
|
input_lengths, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([len(x[0]) for x in batch]), |
|
dim=0, descending=True) |
|
|
|
max_c_len = max([x[0].size(1) for x in batch]) |
|
max_mel_len = max([x[1].size(1) for x in batch]) |
|
max_f0_len = max([x[2].size(1) for x in batch]) |
|
max_wav_len = max([x[3].size(1) for x in batch]) |
|
|
|
c_lengths = torch.LongTensor(len(batch)) |
|
mel_lengths = torch.LongTensor(len(batch)) |
|
f0_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
|
|
c_padded = torch.FloatTensor(len(batch), self.hparams.data.c_dim, max_mel_len) |
|
mel_padded = torch.FloatTensor(len(batch), self.hparams.data.acoustic_dim, max_mel_len) |
|
f0_padded = torch.FloatTensor(len(batch), 1, max_f0_len) |
|
uv_padded = torch.FloatTensor(len(batch), 1, max_f0_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
spkids = torch.LongTensor(len(batch)) |
|
|
|
c_padded.zero_() |
|
mel_padded.zero_() |
|
f0_padded.zero_() |
|
uv_padded.zero_() |
|
wav_padded.zero_() |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
c = row[0] |
|
c_padded[i, :, :c.size(1)] = c |
|
c_lengths[i] = c.size(1) |
|
|
|
mel = row[1] |
|
mel_padded[i, :, :mel.size(1)] = mel |
|
mel_lengths[i] = mel.size(1) |
|
|
|
f0 = row[2] |
|
f0_padded[i, :, :f0.size(1)] = f0 |
|
f0_lengths[i] = f0.size(1) |
|
|
|
wav = row[3] |
|
wav_padded[i, :, :wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
spkids[i] = row[4] |
|
|
|
uv = row[5] |
|
uv_padded[i, :, :uv.size(1)] = uv |
|
|
|
|
|
data_dict = {} |
|
|
|
data_dict["c"] = c_padded |
|
data_dict["mel"] = mel_padded |
|
data_dict["f0"] = f0_padded |
|
data_dict["uv"] = uv_padded |
|
data_dict["wav"] = wav_padded |
|
|
|
data_dict["c_lengths"] = c_lengths |
|
data_dict["mel_lengths"] = mel_lengths |
|
data_dict["f0_lengths"] = f0_lengths |
|
data_dict["wav_lengths"] = wav_lengths |
|
data_dict["spkid"] = spkids |
|
|
|
return data_dict |
|
|
|
|
|
class DatasetConstructor(): |
|
|
|
def __init__(self, hparams, num_replicas=1, rank=1): |
|
self.hparams = hparams |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.dataset_function = {"SingDataset": SingDataset} |
|
self.collate_function = {"SingCollate": SingCollate} |
|
self._get_components() |
|
|
|
def _get_components(self): |
|
self._init_datasets() |
|
self._init_collate() |
|
self._init_data_loaders() |
|
|
|
def _init_datasets(self): |
|
self._train_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams, |
|
self.hparams.data.data_dir, |
|
self.hparams.data.training_filelist) |
|
self._valid_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams, |
|
self.hparams.data.data_dir, |
|
self.hparams.data.validation_filelist) |
|
|
|
def _init_collate(self): |
|
self._collate_fn = self.collate_function[self.hparams.data.collate_type](self.hparams) |
|
|
|
def _init_data_loaders(self): |
|
train_sampler = torch.utils.data.distributed.DistributedSampler(self._train_dataset, |
|
num_replicas=self.num_replicas, rank=self.rank, |
|
shuffle=True) |
|
|
|
self.train_loader = DataLoader(self._train_dataset, num_workers=4, shuffle=False, |
|
batch_size=self.hparams.train.batch_size, pin_memory=True, |
|
drop_last=True, collate_fn=self._collate_fn, sampler=train_sampler) |
|
|
|
self.valid_loader = DataLoader(self._valid_dataset, num_workers=1, shuffle=False, |
|
batch_size=1, pin_memory=True, |
|
drop_last=True, collate_fn=self._collate_fn) |
|
|
|
def get_train_loader(self): |
|
return self.train_loader |
|
|
|
def get_valid_loader(self): |
|
return self.valid_loader |
|
|
|
|