|
|
from __future__ import annotations |
|
|
|
|
|
__all__ = [ |
|
|
"OpenGLImageMobject", |
|
|
] |
|
|
|
|
|
from pathlib import Path |
|
|
|
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from PIL.Image import Resampling |
|
|
|
|
|
from manim.mobject.opengl.opengl_surface import OpenGLSurface, OpenGLTexturedSurface |
|
|
from manim.utils.images import get_full_raster_image_path |
|
|
|
|
|
__all__ = ["OpenGLImageMobject"] |
|
|
|
|
|
|
|
|
class OpenGLImageMobject(OpenGLTexturedSurface): |
|
|
def __init__( |
|
|
self, |
|
|
filename_or_array: str | Path | np.ndarray, |
|
|
width: float = None, |
|
|
height: float = None, |
|
|
image_mode: str = "RGBA", |
|
|
resampling_algorithm: int = Resampling.BICUBIC, |
|
|
opacity: float = 1, |
|
|
gloss: float = 0, |
|
|
shadow: float = 0, |
|
|
**kwargs, |
|
|
): |
|
|
self.image = filename_or_array |
|
|
self.resampling_algorithm = resampling_algorithm |
|
|
if isinstance(filename_or_array, np.ndarray): |
|
|
self.size = self.image.shape[1::-1] |
|
|
elif isinstance(filename_or_array, (str, Path)): |
|
|
path = get_full_raster_image_path(filename_or_array) |
|
|
self.size = Image.open(path).size |
|
|
|
|
|
if width is None and height is None: |
|
|
width = 4 * self.size[0] / self.size[1] |
|
|
height = 4 |
|
|
if height is None: |
|
|
height = width * self.size[1] / self.size[0] |
|
|
if width is None: |
|
|
width = height * self.size[0] / self.size[1] |
|
|
|
|
|
surface = OpenGLSurface( |
|
|
lambda u, v: np.array([u, v, 0]), |
|
|
[-width / 2, width / 2], |
|
|
[-height / 2, height / 2], |
|
|
opacity=opacity, |
|
|
gloss=gloss, |
|
|
shadow=shadow, |
|
|
) |
|
|
|
|
|
super().__init__( |
|
|
surface, |
|
|
self.image, |
|
|
image_mode=image_mode, |
|
|
opacity=opacity, |
|
|
gloss=gloss, |
|
|
shadow=shadow, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def get_image_from_file( |
|
|
self, |
|
|
image_file: str | Path | np.ndarray, |
|
|
image_mode: str, |
|
|
): |
|
|
if isinstance(image_file, (str, Path)): |
|
|
return super().get_image_from_file(image_file, image_mode) |
|
|
else: |
|
|
return ( |
|
|
Image.fromarray(image_file.astype("uint8")) |
|
|
.convert(image_mode) |
|
|
.resize( |
|
|
np.array(image_file.shape[:2]) |
|
|
* 200, |
|
|
resample=self.resampling_algorithm, |
|
|
) |
|
|
) |
|
|
|