// Copyright 2003-2009 Bill Manaris, Dana Hughes, J.R. Armstrong, Thomas Zalonis, Luca Pellicoro, | |
// Chris Wagner, Chuck McCormick | |
// | |
// This program is free software: you can redistribute it and/or modify | |
// it under the terms of the GNU General Public License as published by | |
// the Free Software Foundation, either version 3 of the License, or | |
// (at your option) any later version. | |
// | |
// This program is distributed in the hope that it will be useful, | |
// but WITHOUT ANY WARRANTY; without even the implied warranty of | |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
// GNU General Public License for more details. | |
// | |
// You should have received a copy of the GNU General Public License | |
// along with this program. If not, see <http://www.gnu.org/licenses/>. | |
// | |
package nevmuse.utilities; | |
import java.util.Arrays; | |
import java.util.Hashtable; | |
import java.util.Enumeration; | |
/** | |
* This class contains static methods that calculate the slope and R^2 of a trendline | |
* of a Zipf distribution (byRank or bySize). | |
* <br> | |
* <br>The byRank distribution plots the values (y-axis) against the ranks of the values from largest to smallest | |
* (x-axis) in log-log scale. The ranks are generated automatically. | |
* <br> | |
* <br>The bySize distribution plots the values (y-axis) against the supplied keys (x-axis) in log-log scale. | |
* <br> | |
* <br> | |
* <b>NOTE: </b> The provided methods are static, so call them as Zipf.byRank(values) or Zipf.bySize(keys, values). | |
* <br> | |
* <br> | |
* @author Luca Pellicoro, Chris Wagner, Bill Manaris (based on VB code by Chuck McCormick and Bill Manaris ) | |
* | |
* @version 1.6 (October 19, 2009) Dana Hughes | |
* - Replaced IllegalArgumentException when no values are passed with slope = 0 and r2 = 0. | |
* This allows for batch processes to continue without exiting due to this exception. | |
* Also, numeric values may be more meaningful. | |
* @version 1.5 (November 3, 2009) Thomas Zalonis | |
* - Translated the latest zipf.py update (see zipf.py update message below) to Zipf.java | |
* zipf.py version 1.5 (December 24, 2008) J.R. Armstrong and Bill Manaris | |
* - Now we are differentiating between monotonous and random phenomena (vertical vs. horizontal trendlines). | |
* In the first case, we return slope = 0 and r2 = 0. | |
* In the second case, we return slope = 0 and r2 = 1. | |
* Also, some variable names have been updated. | |
* | |
* @version 1.2 (Jan 2007) Luca Pellicoro | |
* - Static Methods only (no more class instantiation) | |
* - Raising exceptions intead of Assert statements | |
* - Zero values and zero keys are considered erroneous input (raise IllegalArgumentException) | |
* @version 1.1 (July 30, 2005) | |
* @version 1.0 (May 10, 2003) | |
*/ | |
public class Zipf | |
{ | |
/* | |
public static void main(String[] args) | |
{ | |
// numbers can be entered from the command line as "java Zipf 1 2 2 3 3 3 3" or | |
// any other sequence of numbers by uncommenting the code below. | |
//double[] phen = new double[args.length]; | |
//for(int i = 0;i < args.length;i++) | |
//{ | |
// phen[i] = (int)Double.parseDouble(args[i]); | |
//} | |
//double[] phen = {1, 1, 1}; // check monotonous | |
//double[] phen = {2, 2, 2, 3, 3, 3}; // check uniformly distributed (white noise) | |
//double[] phen = {1, 1, 2}; // check truly zipfian (pink noise) | |
//double[] phen = {1, 1, 1, 1, 2}; // check brown noise | |
double[] phen = {1, 2, 2, 3, 3, 3, 3}; // check general case | |
System.out.print("Given the sequence: "); | |
for(int i = 0;i < phen.length;i++) | |
{ | |
System.out.print(phen[i] + ", "); | |
} | |
System.out.println(); | |
// calculate frequency of occurrence of each symbol | |
Hashtable histogram = new Hashtable(); | |
for(int i = 0;i < phen.length;i++) | |
{ | |
if(histogram.containsKey(phen[i])) | |
{ | |
int currentValue = ((Integer)histogram.get(phen[i])).intValue(); | |
histogram.put(phen[i], new Integer(currentValue + 1)); | |
} | |
else | |
{ | |
histogram.put(phen[i], new Integer(1)); | |
} | |
} | |
// next, extract the counts and calculate their rank-frequency (Zipfian) distribution | |
double[] counts = new double[histogram.size()]; | |
int i = 0; | |
for (Enumeration e = histogram.keys(); e.hasMoreElements();) | |
{ | |
counts[i] = (double)((Integer)histogram.get(e.nextElement())).intValue(); | |
i++; | |
} | |
double[] result = byRank(counts); | |
double slope = result[0]; | |
double r2 = result[1]; | |
System.out.println("The byRank slope is " + slope + " and the R2 is " + r2); | |
// now, extract the sizes calculate their side-frequency (Zipfian) distribution | |
double[] sizes = new double[histogram.size()]; | |
i = 0; | |
for (Enumeration e = histogram.keys(); e.hasMoreElements();) | |
{ | |
sizes[i] = ((Double)e.nextElement()).doubleValue(); | |
i++; | |
} | |
result = bySize(sizes, counts); | |
slope = result[0]; | |
r2 = result[1]; | |
System.out.println("The bySize slope is " + slope + " and the R2 is " + r2); | |
} | |
*/ | |
/** | |
* | |
* Calculate the slope and R^2 of the rank-frequency distribution of the provided frequencies. | |
* Ranks will be automatically generated. | |
* <br> | |
* <br> | |
* '''NOTE:''' Caller does not need to sort the frequencies. | |
* <br> | |
* <br> | |
* @param frequencies The values whose rank-frequency distribution to calculate (y-axis). | |
* | |
* @return A double array containing slope (at index 0) and R^2 (at index 1). | |
*/ | |
public static double[] byRank(double[] frequencies) | |
{ | |
int numberOfValues = frequencies.length; | |
// Step 1 and 2: Sort the vals and create keys | |
// Copy vals so sort doesn't alter it. | |
double[] newValues = new double[numberOfValues]; | |
double[] keys = new double[numberOfValues]; | |
for(int i = 0; i < numberOfValues; i++) | |
{ | |
keys[i] = numberOfValues - i; | |
newValues[i] = frequencies[i]; | |
} | |
Arrays.sort(newValues); | |
checkKeysAndValues(keys, newValues); | |
// Step 3: Get Zipf Slope and R2 of keys/values. | |
return calculateSlopeR2(keys, newValues); | |
} | |
/** | |
* Calculate the slope and R^2 of the size-frequency distribution of the provided sizes and frequencies. | |
* <br> | |
* <br> | |
* '''NOTE:''' Caller does not need to sort the sizes or frequencies provided. | |
* <br> | |
* <br> | |
* @param sizes The sizes (x-axis). | |
* @param frequencies The frequencies (y-axis). | |
* | |
* @return An double array containing slope (at index 0) and R^2 (at index 1). | |
*/ | |
public static double[] bySize(double[] sizes, double[] frequencies) | |
{ | |
checkKeysAndValues(sizes, frequencies); | |
// NOTE: There is no need to sort the parallel arrays of keys and vals, since | |
// getSlopeR2() does not care if the keys are sorted in any particular order; | |
// it cares only that the association between keys[i] and vals[i] is correct. | |
return calculateSlopeR2(sizes, frequencies); | |
} | |
/******************************* | |
* SUPPORTING METHODS | |
*******************************/ | |
/** | |
* Checks if provided data is relatively error free. In particular, it will raise exceptions if | |
* - a data array is empty | |
* - keys and values do not contain the same number of elements | |
* - a data array contains negative or zero elements | |
*/ | |
private static void checkKeysAndValues(double[] keys, double[] values) | |
{ | |
// NOTE: The first exception (keys or values contain no elements) has been replaced with | |
// setting the slope and r2 values to 0. This allows for batch operations to be | |
// performed without generating an Exception, or requiring the use of NaN's. | |
// if (keys.length == 0 || values.length == 0) | |
// throw new IllegalArgumentException ("Data (values and keys) must contain at least one element."); | |
if (keys.length != values.length) | |
throw new IllegalArgumentException("Keys and values must have the same length (keys length was " + keys.length + " and values length was " + values.length + ")."); | |
for (int i = 0; i < values.length; i++) | |
if (keys[i] <= 0.0 || values[i] <= 0.0) | |
throw new IllegalArgumentException ("Data must be positive: keys[" + i + "] was " + keys[i] + " and values[" + i + "] was " + values[i] ); | |
} | |
/** | |
* Calculates the linear regression (slope and R^2 (fit)) of a set of keys and values. | |
* If slope and/or R^2 cannot be calculated, zero is returned. | |
* | |
* @param keys The keys for the set | |
* @param vals The values for the set | |
* | |
* @return An array of doubles (slope is stored in index 0 and R^2 (fit) in index 1). | |
*/ | |
private static double[] calculateSlopeR2(double[] keys, double[] vals) | |
{ | |
// Log10(keys) is mapped to the X axis. | |
// Log10(vals) is mapped to the Y axis. | |
double sumX = 0; // holds the sum of X values. | |
double sumY = 0; // holds the sum of Y values. | |
double sumXY = 0; // holds the sum of X*Y values. | |
double sumX2 = 0; // holds the sum of X*X values. | |
double sumY2 = 0; // holds the sum of Y*Y values. | |
double[] sr2 = new double[2]; // holds the slope and r2 to be returned (slope is stored in index 0 and R^2 in index 1) | |
// one exterme case: | |
// if the phenomenon is monotonous (only one type of event, e.g., ['a', 'a', 'a']), | |
// then the slope is negative infinity (cannot draw a line with only one data point), | |
// so indicate this with slope = 0 AND r2 = 0 | |
if (keys.length == 1) | |
{ | |
sr2[0] = 0.0; | |
sr2[1] = 0.0; | |
} | |
// another extreme case (added 10/20/10): | |
// if the phenomenon contains no information (i.e., no statistical data exists), | |
// then the slope is undefined. Rather than causing an Exception, indicate this | |
// with a slope = 0 AND r2 = 0. Classes utilizing Zipf can always override this | |
// prior to calling and set these values to NaN, if desired. | |
else if (keys.length == 0) | |
{ | |
sr2[0] = 0.0; | |
sr2[1] = 0.0; | |
} | |
else | |
{ | |
// the other extreme case: | |
// if the phenomenon is uniformly distributed (several types of events, | |
// but all having the same number of instances, e.g., ['a', 'b', 'a', 'b', 'a', 'b']), | |
// then the slope = 0 and r2 = 1 (a horizontal line). | |
// check if all counts are equal | |
int i = 0; | |
boolean allCountsEqual = true; // assume they are all equal | |
while(allCountsEqual && i < (keys.length - 1)) | |
{ | |
allCountsEqual = (vals[i] == vals[i + 1]); // update hypothesis | |
i = i + 1; | |
} | |
if (allCountsEqual) // is phenomenon uniformly distributed? | |
{ | |
sr2[0] = 0.0; | |
sr2[1] = 1.0; | |
} | |
else // general case, so caluclate actual slope and r2 values | |
{ | |
// Sum up the values for the calculations. | |
for (i = 0; i < keys.length; i++) | |
{ | |
//System.out.print(" " + i + " "); | |
sumX += log10(keys[i]); | |
sumY += log10(vals[i]); | |
sumXY += log10(keys[i]) * log10(vals[i]); | |
sumX2 += log10(keys[i]) * log10(keys[i]); | |
sumY2 += log10(vals[i]) * log10(vals[i]); | |
} | |
// calculate the slope | |
if ((keys.length * sumX2 - sumX * sumX) == 0) // check for division by zero (below) | |
sr2[0] = 0; | |
else | |
sr2[0] = ((keys.length * sumXY - sumX * sumY) / (keys.length * sumX2 - sumX * sumX)); | |
// If you want to create the line: y = mx + b | |
// m = slope | |
// This calculates b. | |
// double b = (sumY - sr2[0] * sumX) / keys.length; | |
// calculate the R^2 | |
if (Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY)) == 0) // check for division by zero (below) | |
sr2[1] = 0; | |
else | |
sr2[1] = (keys.length * sumXY - sumX * sumY) / Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY)); | |
sr2[1] = sr2[1] * sr2[1]; // get the square | |
} | |
} | |
// return the result (slope is stored in index 0 and R^2 in index 1) | |
return sr2; | |
} | |
/** | |
* The natural log of 10 | |
*/ | |
private static final double LN_10 = 2.3025850929940456840179914546844; | |
/** | |
* Calculate the Log base 10 of a number. | |
* This is required because Math.log is not Log(10) but Ln (natural Log). | |
* | |
* Note: Log(b) n = Ln n / Ln b. | |
* | |
* @param n The original number. | |
* | |
* @return Log(10) n | |
*/ | |
private static double log10(double n) { | |
return Math.log(n)/LN_10; | |
} | |
} | |