introvoyz041's picture
Migrated from GitHub
5e4510c verified
"""
Evaluator for the function minimization example
"""
import importlib.util
import numpy as np
import time
import concurrent.futures
import traceback
import signal
from openevolve.evaluation_result import EvaluationResult
def run_with_timeout(func, args=(), kwargs={}, timeout_seconds=5):
"""
Run a function with a timeout using concurrent.futures
Args:
func: Function to run
args: Arguments to pass to the function
kwargs: Keyword arguments to pass to the function
timeout_seconds: Timeout in seconds
Returns:
Result of the function or raises TimeoutError
"""
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(func, *args, **kwargs)
try:
result = future.result(timeout=timeout_seconds)
return result
except concurrent.futures.TimeoutError:
raise TimeoutError(f"Function timed out after {timeout_seconds} seconds")
def safe_float(value):
"""Convert a value to float safely"""
try:
return float(value)
except (TypeError, ValueError):
print(f"Warning: Could not convert {value} of type {type(value)} to float")
return 0.0
def evaluate(program_path):
"""
Evaluate the program by running it multiple times and checking how close
it gets to the known global minimum.
Args:
program_path: Path to the program file
Returns:
Dictionary of metrics
"""
# Known global minimum (approximate)
GLOBAL_MIN_X = -1.704
GLOBAL_MIN_Y = 0.678
GLOBAL_MIN_VALUE = -1.519
try:
# Load the program
spec = importlib.util.spec_from_file_location("program", program_path)
program = importlib.util.module_from_spec(spec)
spec.loader.exec_module(program)
# Check if the required function exists
if not hasattr(program, "run_search"):
print(f"Error: program does not have 'run_search' function")
error_artifacts = {
"error_type": "MissingFunction",
"error_message": "Program is missing required 'run_search' function",
"suggestion": "Make sure your program includes a function named 'run_search' that returns (x, y, value) or (x, y)"
}
return EvaluationResult(
metrics={
"value_score": 0.0,
"distance_score": 0.0,
"reliability_score": 0.0,
"combined_score": 0.0,
"error": "Missing run_search function",
},
artifacts=error_artifacts
)
# Run multiple trials
num_trials = 10
x_values = []
y_values = []
values = []
distances = []
times = []
success_count = 0
for trial in range(num_trials):
try:
start_time = time.time()
# Run with timeout
result = run_with_timeout(program.run_search, timeout_seconds=5)
# Handle different result formats
if isinstance(result, tuple):
if len(result) == 3:
x, y, value = result
elif len(result) == 2:
# Assume it's (x, y) and calculate value
x, y = result
# Calculate the function value since it wasn't returned
value = np.sin(x) * np.cos(y) + np.sin(x * y) + (x**2 + y**2) / 20
print(f"Trial {trial}: Got 2 values, calculated function value: {value}")
else:
print(
f"Trial {trial}: Invalid result format, expected tuple of 2 or 3 values but got {len(result)}"
)
continue
else:
print(
f"Trial {trial}: Invalid result format, expected tuple but got {type(result)}"
)
continue
end_time = time.time()
# Ensure all values are float
x = safe_float(x)
y = safe_float(y)
value = safe_float(value)
# Check if the result is valid (not NaN or infinite)
if (
np.isnan(x)
or np.isnan(y)
or np.isnan(value)
or np.isinf(x)
or np.isinf(y)
or np.isinf(value)
):
print(f"Trial {trial}: Invalid result, got x={x}, y={y}, value={value}")
continue
# Calculate metrics
x_diff = x - GLOBAL_MIN_X
y_diff = y - GLOBAL_MIN_Y
distance_to_global = np.sqrt(x_diff**2 + y_diff**2)
x_values.append(x)
y_values.append(y)
values.append(value)
distances.append(distance_to_global)
times.append(end_time - start_time)
success_count += 1
except TimeoutError as e:
print(f"Trial {trial}: {str(e)}")
continue
except IndexError as e:
# Specifically handle IndexError which often happens with early termination checks
print(f"Trial {trial}: IndexError - {str(e)}")
print(
"This is likely due to a list index check before the list is fully populated."
)
continue
except Exception as e:
print(f"Trial {trial}: Error - {str(e)}")
print(traceback.format_exc())
continue
# If all trials failed, return zero scores
if success_count == 0:
error_artifacts = {
"error_type": "AllTrialsFailed",
"error_message": f"All {num_trials} trials failed - common issues: timeouts, crashes, or invalid return values",
"suggestion": "Check for infinite loops, ensure function returns (x, y) or (x, y, value), and verify algorithm terminates within time limit"
}
return EvaluationResult(
metrics={
"value_score": 0.0,
"distance_score": 0.0,
"reliability_score": 0.0,
"combined_score": 0.0,
"error": "All trials failed",
},
artifacts=error_artifacts
)
# Calculate metrics
avg_value = float(np.mean(values))
avg_distance = float(np.mean(distances))
avg_time = float(np.mean(times)) if times else 1.0
# Convert to scores (higher is better)
value_score = float(1.0 / (1.0 + abs(avg_value - GLOBAL_MIN_VALUE)))
distance_score = float(1.0 / (1.0 + avg_distance))
# Add reliability score based on success rate
reliability_score = float(success_count / num_trials)
# Calculate solution quality based on distance to global minimum
if avg_distance < 0.5: # Very close to the correct solution
solution_quality_multiplier = 1.5 # 50% bonus
elif avg_distance < 1.5: # In the right region
solution_quality_multiplier = 1.2 # 20% bonus
elif avg_distance < 3.0: # Getting closer
solution_quality_multiplier = 1.0 # No adjustment
else: # Not finding the right region
solution_quality_multiplier = 0.7 # 30% penalty
# Calculate combined score that prioritizes finding the global minimum
# Base score from value and distance, then apply solution quality multiplier
base_score = 0.5 * value_score + 0.3 * distance_score + 0.2 * reliability_score
combined_score = float(base_score * solution_quality_multiplier)
# Add artifacts for successful runs
artifacts = {
"convergence_info": f"Converged in {num_trials} trials with {success_count} successes",
"best_position": f"Final position: x={x_values[-1]:.4f}, y={y_values[-1]:.4f}" if x_values else "No successful trials",
"average_distance_to_global": f"{avg_distance:.4f}",
"search_efficiency": f"Success rate: {reliability_score:.2%}"
}
return EvaluationResult(
metrics={
"value_score": value_score,
"distance_score": distance_score,
"reliability_score": reliability_score,
"combined_score": combined_score,
},
artifacts=artifacts
)
except Exception as e:
print(f"Evaluation failed completely: {str(e)}")
print(traceback.format_exc())
# Create error artifacts
error_artifacts = {
"error_type": type(e).__name__,
"error_message": str(e),
"full_traceback": traceback.format_exc(),
"suggestion": "Check for syntax errors or missing imports in the generated code"
}
return EvaluationResult(
metrics={
"value_score": 0.0,
"distance_score": 0.0,
"reliability_score": 0.0,
"combined_score": 0.0,
"error": str(e),
},
artifacts=error_artifacts
)
# Stage-based evaluation for cascade evaluation
def evaluate_stage1(program_path):
"""First stage evaluation with fewer trials"""
# Known global minimum (approximate)
GLOBAL_MIN_X = float(-1.704)
GLOBAL_MIN_Y = float(0.678)
GLOBAL_MIN_VALUE = float(-1.519)
# Quick check to see if the program runs without errors
try:
# Load the program
spec = importlib.util.spec_from_file_location("program", program_path)
program = importlib.util.module_from_spec(spec)
spec.loader.exec_module(program)
# Check if the required function exists
if not hasattr(program, "run_search"):
print(f"Stage 1 validation: Program does not have 'run_search' function")
error_artifacts = {
"error_type": "MissingFunction",
"error_message": "Stage 1: Program is missing required 'run_search' function",
"suggestion": "Make sure your program includes a function named 'run_search' that returns (x, y, value) or (x, y)"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": "Missing run_search function"
},
artifacts=error_artifacts
)
try:
# Run a single trial with timeout
result = run_with_timeout(program.run_search, timeout_seconds=5)
# Handle different result formats
if isinstance(result, tuple):
if len(result) == 3:
x, y, value = result
elif len(result) == 2:
# Assume it's (x, y) and calculate value
x, y = result
# Calculate the function value since it wasn't returned
value = np.sin(x) * np.cos(y) + np.sin(x * y) + (x**2 + y**2) / 20
print(f"Stage 1: Got 2 values, calculated function value: {value}")
else:
print(
f"Stage 1: Invalid result format, expected tuple of 2 or 3 values but got {len(result)}"
)
error_artifacts = {
"error_type": "InvalidReturnFormat",
"error_message": f"Stage 1: Function returned tuple with {len(result)} values, expected 2 or 3",
"suggestion": "run_search() must return (x, y) or (x, y, value) - check your return statement"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": "Invalid result format"
},
artifacts=error_artifacts
)
else:
print(f"Stage 1: Invalid result format, expected tuple but got {type(result)}")
error_artifacts = {
"error_type": "InvalidReturnType",
"error_message": f"Stage 1: Function returned {type(result)}, expected tuple",
"suggestion": "run_search() must return a tuple like (x, y) or (x, y, value), not a single value or other type"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": "Invalid result format"
},
artifacts=error_artifacts
)
# Ensure all values are float
x = safe_float(x)
y = safe_float(y)
value = safe_float(value)
# Check if the result is valid
if (
np.isnan(x)
or np.isnan(y)
or np.isnan(value)
or np.isinf(x)
or np.isinf(y)
or np.isinf(value)
):
print(f"Stage 1 validation: Invalid result, got x={x}, y={y}, value={value}")
error_artifacts = {
"error_type": "InvalidResultValues",
"error_message": f"Stage 1: Got invalid values - x={x}, y={y}, value={value}",
"suggestion": "Function returned NaN or infinite values. Check for division by zero, invalid math operations, or uninitialized variables"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.5,
"combined_score": 0.0,
"error": "Invalid result values"
},
artifacts=error_artifacts
)
# Calculate distance safely
x_diff = float(x) - GLOBAL_MIN_X
y_diff = float(y) - GLOBAL_MIN_Y
distance = float(np.sqrt(x_diff**2 + y_diff**2))
# Calculate value-based score
value_score = float(1.0 / (1.0 + abs(value - GLOBAL_MIN_VALUE)))
distance_score = float(1.0 / (1.0 + distance))
# Calculate solution quality based on distance to global minimum
if distance < 0.5: # Very close to the correct solution
solution_quality_multiplier = 1.4 # 40% bonus
elif distance < 1.5: # In the right region
solution_quality_multiplier = 1.15 # 15% bonus
elif distance < 3.0: # Getting closer
solution_quality_multiplier = 1.0 # No adjustment
else: # Not finding the right region
solution_quality_multiplier = 0.8 # 20% penalty
# Calculate combined score for stage 1
base_score = 0.6 * value_score + 0.4 * distance_score
combined_score = float(base_score * solution_quality_multiplier)
# Add artifacts for successful stage 1
stage1_artifacts = {
"stage1_result": f"Found solution at x={x:.4f}, y={y:.4f} with value={value:.4f}",
"distance_to_global": f"{distance:.4f}",
"solution_quality": f"Distance < 0.5: Very close" if distance < 0.5 else f"Distance < 1.5: Good region" if distance < 1.5 else "Could be improved"
}
return EvaluationResult(
metrics={
"runs_successfully": 1.0,
"value_score": value_score,
"distance_score": distance_score,
"combined_score": combined_score,
},
artifacts=stage1_artifacts
)
except TimeoutError as e:
print(f"Stage 1 evaluation timed out: {e}")
error_artifacts = {
"error_type": "TimeoutError",
"error_message": "Stage 1: Function execution exceeded 5 second timeout",
"suggestion": "Function is likely stuck in infinite loop or doing too much computation. Try reducing iterations or adding early termination conditions"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": "Timeout"
},
artifacts=error_artifacts
)
except IndexError as e:
# Specifically handle IndexError which often happens with early termination checks
print(f"Stage 1 evaluation failed with IndexError: {e}")
print("This is likely due to a list index check before the list is fully populated.")
error_artifacts = {
"error_type": "IndexError",
"error_message": f"Stage 1: {str(e)}",
"suggestion": "List index out of range - likely accessing empty list or wrong index. Check list initialization and bounds"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": f"IndexError: {str(e)}"
},
artifacts=error_artifacts
)
except Exception as e:
print(f"Stage 1 evaluation failed: {e}")
print(traceback.format_exc())
error_artifacts = {
"error_type": type(e).__name__,
"error_message": f"Stage 1: {str(e)}",
"full_traceback": traceback.format_exc(),
"suggestion": "Unexpected error occurred. Check the traceback for specific issue"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": str(e)
},
artifacts=error_artifacts
)
except Exception as e:
print(f"Stage 1 evaluation failed: {e}")
print(traceback.format_exc())
error_artifacts = {
"error_type": type(e).__name__,
"error_message": f"Stage 1 outer exception: {str(e)}",
"full_traceback": traceback.format_exc(),
"suggestion": "Critical error during stage 1 evaluation. Check program syntax and imports"
}
return EvaluationResult(
metrics={
"runs_successfully": 0.0,
"combined_score": 0.0,
"error": str(e)
},
artifacts=error_artifacts
)
def evaluate_stage2(program_path):
"""Second stage evaluation with more thorough testing"""
# Full evaluation as in the main evaluate function
return evaluate(program_path)