mike dupont commited on
Commit
65d367f
1 Parent(s): 3dafdf9
#Unimath.txt# DELETED
@@ -1,289 +0,0 @@
1
- HLF 2016, Sep. 22, 2016, Heidelberg.
2
-
3
- UniMath
4
- by Vladimir Voevodsky
5
- from the Institute for Advanced Study in Princeton, NJ.
6
-
7
- Part 1. Univalent foundations
8
-
9
- 2
10
-
11
- Univalent Foundations
12
-
13
- UniMath library
14
-
15
- Today we face a problem that involves two difficult to satisfy conditions.
16
- On the one hand we have to find a way for computer assisted verification of
17
- mathematical proofs.
18
- This is necessary, first of all, because we have to stop the dissolution of the
19
- concept of proof in mathematics.
20
- On the other hand we have to preserve the intimate connection between
21
- mathematics and the world of human intuition.
22
- This connection is what moves mathematics forward and what we often
23
- experience as the beauty of mathematics.
24
-
25
- 3
26
-
27
- Univalent Foundations
28
-
29
- UniMath library
30
-
31
- The Univalent Foundations (UF) is, a yet imperfect, solution to this problem.
32
- In their original form, the UF combined three components:
33
- • the view of mathematics as the study of structures on sets and their higher
34
- analogs,
35
- • the idea that the higher analogs of sets are reflected in the set-based
36
- mathematics as homotopy types,
37
- • the idea that one can formalize our intuition about structures on these higher
38
- analogs using the Martin-Lof Type Theory (MLTT) extended with the Law of
39
- Excluded Middle for propositions (LEM) , the Axiom of Choice for sets (AC),
40
- the Univalence Axiom (UA) and the Resizing Rules (RR).
41
-
42
- 4
43
-
44
- Univalent Foundations
45
-
46
- UniMath library
47
-
48
- The main new concepts that were since added to these are the following:
49
- • the understanding that a lot of mathematics can be formalized in the MLTT
50
- without the LEM and the AC and that excluding these two axioms one
51
- obtains foundations for a new form of constructive mathematics,
52
- • the understanding that classical mathematics appears as a subset of this new
53
- constructive mathematics,
54
- • the understanding that the MLTT extended with the UA is an imperfect
55
- formalization system for this constructive mathematics and that it should be
56
- possible to integrate the UA into the MLTT obtaining a new type theory
57
- with better computational properties.
58
-
59
- 5
60
-
61
- Univalent Foundations
62
-
63
- UniMath library
64
-
65
- What does it mean for a formalization system to be constructive?
66
- Some expressions in type theory are said to be in normal form. Any
67
- expression can be automatically and deterministically “normalized”, that is, an
68
- equivalent expression in normal form can be computed.
69
- In type theory there are type expressions and element expressions. If “T” is a
70
- type (expression) and “o” is an element (expression) one writes “o:T” if the
71
- type of “o” is “T”.
72
-
73
- 6
74
-
75
- Univalent Foundations
76
-
77
- UniMath library
78
-
79
- In most type systems there is the type of natural numbers. In the UniMath it is
80
- written as “nat”.
81
- There is the zero element “O:nat” and the successor function “S” from “nat” to
82
- “nat” that intuitively corresponds to the function that takes “n” to “1+n”.
83
- A constructive system satisfies the canonicity property for “nat”, which asserts
84
- that the normal form of any expression “o:nat” has the form “S(S(….(SO)..))”.
85
- By counting how many “S” there is in the normal form one obtains an actual
86
- natural number from any element expression of type “nat”.
87
-
88
- 7
89
-
90
- Univalent Foundations
91
-
92
- UniMath library
93
-
94
- This is a tremendously strong property.
95
- Consider the example: a set “X:hSet” is defined to be finite if there exists an
96
- isomorphism between it and the standard finite set “stn n”. Here “n” is an
97
- expression of type “nat”. It is well defined and one obtains a function “fincard”
98
- from finite sets to “nat” called the cardinality - the number of elements of the
99
- set.
100
- Now suppose that I have proved, constructively, that “X” is finite. Then
101
- “(fincard X):nat”
102
- is defined. By normalizing “fincard X” I obtain an actual natural number.
103
- If I had a constructive proof of Faltings’s Theorem, stating that the number of
104
- rational points on a curve of genus >1 is finite, I could find the actual number
105
- of points on any curve of genus >1.
106
- 8
107
-
108
- Univalent Foundations
109
-
110
- UniMath library
111
-
112
- We don’t know whether such a proof exists. It is a very interesting and hard
113
- problem.
114
- The reason that the MLTT+UA is an imperfect system for constructive
115
- formalization is that while MLTT itself has the canonicity property MLTT+UA
116
- does not.
117
- Therefore, formalizing the proof of Faltings’s Theorem in the UniMath, which is
118
- based on MLTT+UA, would not immediately give us an algorithm to compute
119
- the number of rational points on a curve of genus >1.
120
- This is where a new type theory that integrates the UA into the MLTT in such
121
- a way as to preserve the canonicity would help.
122
-
123
- 9
124
-
125
- Univalent Foundations
126
-
127
- UniMath library
128
-
129
- The search for such a type theory became one of the main driving forces in
130
- the development of the UF.
131
- Today several groups are working on the construction and implementation in
132
- a proof assistant of candidate type theories.
133
- The cubical type theory and the prototype proof assistant cubicaltt created by
134
- the group of Thierry Coquand with the help of many researchers from
135
- different parts of the world is at the most advanced stage of development
136
- today.
137
- A proof in the UniMath easily translates into a proof in the cubilatt.
138
-
139
- 10
140
-
141
- Univalent Foundations
142
-
143
- UniMath library
144
-
145
- The new form of the UF that emerges can be seen as combining the following
146
- components:
147
- • the view of mathematics as the study of structures on sets and their higher
148
- analogs,
149
- • the view of mathematics as constructive with the classical mathematics being
150
- a subset consisting of the results that require LEM and/or AC among their
151
- assumptions,
152
- • the idea that the higher analogs of sets are reflected in the set-based
153
- mathematics as constructive homotopy types - objects of the new
154
- constructive homotopy theory that can so far be formulated only in terms of
155
- cubical sets,
156
- • the idea that one can formalize our intuition about structures on these higher
157
- analogs using Cubical Type Theory (CTT).
158
- 11
159
-
160
- Univalent Foundations
161
-
162
- UniMath library
163
-
164
- In addition to the understanding that to obtain a formal system for the new
165
- constructive mathematics the UA needs to be integrated into the MLTT
166
- constructively, several more things are felt as lacking in the MLTT+UA:
167
- • higher inductive types,
168
- • resizing rules,
169
- • a possible strict extensional equality combined with the “fibrancy discipline”,
170
- • as yet unknown mechanism to construct the types of structures that involve
171
- infinite hierarchies of coherence conditions.
172
- Surprisingly, it might be easier to add these features to the CTT than to the
173
- MLTT. The work in these directions is ongoing.
174
-
175
- 12
176
-
177
- Part 2. The UniMath library
178
-
179
- 13
180
-
181
- Univalent Foundations
182
-
183
- UniMath library
184
-
185
- In the development of the UniMath library we attempt to do something that
186
- might be compared with the effort by the Bourbaki group to write a
187
- systematic exposition of mathematics based on the set theory and the view of
188
- mathematics as studying structures on sets.
189
- The effort by Bourbaki stalled at some point around the middle of the 20th
190
- century, in part, because it was very complicated to describe the emerging
191
- category-theoretic constructions in set-theoretic terms.
192
-
193
- 14
194
-
195
- Univalent Foundations
196
-
197
- UniMath library
198
-
199
- One may however ask, is there any mathematical innovation in what we are
200
- doing? Is there a discovery of the unknown in the work on the UniMath?
201
- We have already seen how well-known problems in fields such as arithmetic
202
- algebraic geometry can be related to the search for a new foundation of
203
- constructive mathematics and for building proofs in the UniMath.
204
- Here is a different example.
205
-
206
- 15
207
-
208
- Univalent Foundations
209
-
210
- UniMath library
211
-
212
- Some years ago, at the IAS, I had a conversation at lunch with Armand Borel. I
213
- mentioned how I like Bourbaki “Algebra” and how it helped me to become a
214
- mathematician.
215
- I then mentioned that some places there were really dense. For example, said I,
216
- the description of the tensor product was hard to follow.
217
- Of course, said Borel, we have invented tensor product to get a systematic
218
- exposition of multi-linear maps.
219
- It was new research, this is why it was not very smoothly written.
220
-
221
- 16
222
-
223
- Univalent Foundations
224
-
225
- UniMath library
226
-
227
- I was amazed.
228
- It is hard to imagine today’s mathematics without the concept of the tensor
229
- product. It would never occurred to me that it was invented by Bourbaki with
230
- the only purpose to obtain a more systematic exposition of multi-linear maps
231
- of vector spaces!
232
- This example shows how a major innovation can emerge from the work on
233
- systematization of knowledge.
234
-
235
- 17
236
-
237
- Univalent Foundations
238
-
239
- UniMath library
240
-
241
- Finally, a few words to those mathematicians who will decide to understand
242
- UniMath and maybe to contribute to it.
243
- The UniMath library is being created using the proof assistant Coq. It is freely
244
- available on GitHub.
245
- The language of Coq is a very substantial extension of the MLTT and UniMath
246
- uses a very small subset of the full Coq language that approximately
247
- corresponds to the original MLTT.
248
-
249
- 18
250
-
251
- Univalent Foundations
252
-
253
- UniMath library
254
-
255
- The first file in the UniMath after the Basics/preamble.v is Basics/PartA.v.
256
- The first line in Basics/PartA.v after the preamble section is as follows:
257
-
258
- It should be understood as a declaration of intent to define a constant called
259
- fromempty whose type is described by the expression that is written to the
260
- right of the colon.
261
- Following this line there is a paragraph that starts with Proof. and ends with
262
- Defined. where the constant is actually defined using the little sub-programs of
263
- Coq called tactics which help to build complex expressions of the underlying
264
- type theory language in simple steps.
265
-
266
- 19
267
-
268
- Univalent Foundations
269
-
270
- UniMath library
271
-
272
- A mathematician who wants to understand UniMath should expect a very
273
- non-linear learning curve:
274
- • In the lectures that I gave in Oxford and in the similar lectures in the Hebrew
275
- University it took me the whole first lecture to explain what that first line
276
- and the following it paragraph really mean.
277
- • In the next lecture I was able to explain the next few hundred lines of PartA.
278
- • By the fourth lecture in Oxford, the video of which can be found on my
279
- website, I was explaining the invariant formalization of fibration sequences.
280
-
281
- 20
282
-
283
- I hope that was able to show how important Univalent Foundations are and
284
- how important is the work on libraries such as UniMath.
285
- Thank you!
286
-
287
- 21
288
-
289
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- mode: gitignore; -*-
2
+ *~
3
+ \#*\#
4
+ /.emacs.desktop
5
+ /.emacs.desktop.lock
6
+ *.elc
7
+ auto-save-list
8
+ tramp
9
+ .\#*
10
+
11
+ # Org-mode
12
+ .org-id-locations
13
+ *_archive
14
+
15
+ # flymake-mode
16
+ *_flymake.*
17
+
18
+ # eshell files
19
+ /eshell/history
20
+ /eshell/lastdir
21
+
22
+ # elpa packages
23
+ /elpa/
24
+
25
+ # reftex files
26
+ *.rel
27
+
28
+ # AUCTeX auto folder
29
+ /auto/
30
+
31
+ # cask packages
32
+ .cask/
33
+ dist/
34
+
35
+ # Flycheck
36
+ flycheck_*.el
37
+
38
+ # server auth directory
39
+ /server/
40
+
41
+ # projectiles files
42
+ .projectile
43
+
44
+ # directory configuration
45
+ .dir-locals.el
46
+
47
+ # network security
48
+ /network-security.data
49
+
README.md CHANGED
@@ -1,3 +1,5 @@
1
  ---
2
  license: creativeml-openrail-m
3
  ---
 
 
 
1
  ---
2
  license: creativeml-openrail-m
3
  ---
4
+
5
+ This contains papers and different forms
Unimath-10_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-10_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-11_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-11_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-12_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-12_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-14_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-14_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-15_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-15_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-16_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-16_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-17_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-17_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-18_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-18_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-19_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-19_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-20_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-20_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-3_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-3_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-4_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-4_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-5_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-5_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-6_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-6_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-7_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-7_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-8_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-8_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-9_1.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath-9_2.png DELETED

Git LFS Details

  • SHA256: fe355da65d078b08e62dc949e26fb1ced54d90dffb68c759a95a59c1f56d3c0c
  • Pointer size: 128 Bytes
  • Size of remote file: 143 Bytes
Unimath.org~ DELETED
@@ -1,311 +0,0 @@
1
- <<1>>HLF 2016, Sep. 22, 2016, Heidelberg.\\
2
- UniMath\\
3
- by Vladimir Voevodsky  \\
4
- from the Institute for Advanced Study in Princeton, NJ. \\
5
-
6
- --------------
7
-
8
- <<2>>Part 1. Univalent foundations\\
9
- 2\\
10
-
11
- --------------
12
-
13
- <<3>>[[file:Unimath-3_1.png]]\\
14
- [[file:Unimath-3_2.png]]\\
15
- Univalent Foundations\\
16
- UniMath library\\
17
- Today we face a problem that involves two difficult to satisfy conditions. \\
18
- On the one hand we have to find a way for computer assisted verification of \\
19
- mathematical proofs.\\
20
- This is necessary, first of all, because we have to stop the dissolution of the \\
21
- concept of proof in mathematics.\\
22
- On the other hand  we have to preserve the intimate connection between \\
23
- mathematics and the world of human intuition.\\
24
- This connection is what moves mathematics forward and what we often \\
25
- experience as the beauty of mathematics. \\
26
- 3\\
27
-
28
- --------------
29
-
30
- <<4>>[[file:Unimath-4_1.png]]\\
31
- [[file:Unimath-4_2.png]]\\
32
- Univalent Foundations\\
33
- UniMath library\\
34
- The Univalent Foundations (UF) is, a yet imperfect, solution to this problem.\\
35
- In their original form,  the UF combined three components:\\
36
- • the view of mathematics as the study of structures on sets and their higher \\
37
- analogs, \\
38
- • the idea that the higher analogs of sets are reflected in the set-based \\
39
- mathematics as homotopy types, \\
40
- • the idea that one can formalize our intuition about structures on these higher \\
41
- analogs using the Martin-Lof  Type Theory (MLTT) extended with the Law of \\
42
- Excluded Middle for propositions (LEM) , the Axiom of Choice for sets (AC), \\
43
- the Univalence Axiom (UA) and the Resizing Rules (RR).\\
44
- 4\\
45
-
46
- --------------
47
-
48
- <<5>>[[file:Unimath-5_1.png]]\\
49
- [[file:Unimath-5_2.png]]\\
50
- Univalent Foundations\\
51
- UniMath library\\
52
- The main new concepts that were since added to these are the following: \\
53
- • the understanding that a lot of mathematics can be formalized in the MLTT \\
54
- without the LEM and the AC and that excluding these two axioms one \\
55
- obtains foundations for a /new form of constructive mathematics/,\\
56
- • the understanding that classical mathematics appears as a subset of this new \\
57
- constructive mathematics,\\
58
- • the understanding that the MLTT extended with the UA is an imperfect \\
59
- formalization system for this constructive mathematics and that it should be \\
60
- possible  to integrate the UA into the MLTT obtaining a new type theory \\
61
- with better computational properties.\\
62
- 5\\
63
-
64
- --------------
65
-
66
- <<6>>[[file:Unimath-6_1.png]]\\
67
- [[file:Unimath-6_2.png]]\\
68
- Univalent Foundations\\
69
- UniMath library\\
70
- What does it mean for a formalization system to be constructive?\\
71
- Some expressions in type theory are said to be in normal form. Any \\
72
- expression can be automatically and deterministically “normalized”, that is, an \\
73
- equivalent expression in normal form can be computed. \\
74
- In type theory there are type expressions and element expressions. If “T” is a \\
75
- type (expression) and “o” is an element (expression) one writes “o:T” if the \\
76
- type of “o” is “T”. \\
77
- 6\\
78
-
79
- --------------
80
-
81
- <<7>>[[file:Unimath-7_1.png]]\\
82
- [[file:Unimath-7_2.png]]\\
83
- Univalent Foundations\\
84
- UniMath library\\
85
- In most type systems there is the type of natural numbers. In the UniMath it is \\
86
- written as “nat”.\\
87
- There is the zero element “O:nat” and the successor function “S” from “nat” to \\
88
- “nat” that intuitively corresponds to the function that takes “n” to “1+n”. \\
89
- A constructive system satisfies the /canonicity property/ for “nat”, which asserts \\
90
- that the normal form of any expression “o:nat” has the form “S(S(....(SO)..))”.\\
91
- By counting how many “S” there is in the normal form one obtains an actual \\
92
- natural number from any element expression of type “nat”. \\
93
- 7\\
94
-
95
- --------------
96
-
97
- <<8>>[[file:Unimath-8_1.png]]\\
98
- [[file:Unimath-8_2.png]]\\
99
- Univalent Foundations\\
100
- UniMath library\\
101
- This is a tremendously strong property. \\
102
- Consider the example: a set “X:hSet” is defined to be finite if there exists an \\
103
- isomorphism between it and the standard finite set “stn n”. Here “n” is an \\
104
- expression of type “nat”. It is well defined and one obtains a function “fincard”  \\
105
- from finite sets to “nat” called the cardinality - the number of elements of the \\
106
- set.\\
107
- Now suppose that I have proved, constructively, that “X” is finite. Then \\
108
- “(fincard X):nat” \\
109
- is defined. By normalizing “fincard X��� I obtain an actual natural number.\\
110
- If I had a constructive proof of /Faltings's Theorem, /stating that the number of \\
111
- rational points on a curve of genus >1 is finite, I could find the actual number \\
112
- of points on any curve of genus >1.  \\
113
- 8\\
114
-
115
- --------------
116
-
117
- <<9>>[[file:Unimath-9_1.png]]\\
118
- [[file:Unimath-9_2.png]]\\
119
- Univalent Foundations\\
120
- UniMath library\\
121
- We don't know whether such a proof exists. It is a very interesting and hard \\
122
- problem. \\
123
- The reason that the MLTT+UA is an imperfect system for constructive  \\
124
- formalization is that while MLTT itself has the canonicity property MLTT+UA \\
125
- does not.\\
126
- Therefore, formalizing the proof of Faltings's Theorem in the UniMath, which is \\
127
- based on MLTT+UA, would not immediately give us an algorithm to compute \\
128
- the number of rational points on a curve of genus >1.\\
129
- This is where a new type theory that integrates the UA into the MLTT in such \\
130
- a way as to preserve the canonicity would help. \\
131
- 9\\
132
-
133
- --------------
134
-
135
- <<10>>[[file:Unimath-10_1.png]]\\
136
- [[file:Unimath-10_2.png]]\\
137
- Univalent Foundations\\
138
- UniMath library\\
139
- The search for such a type theory became one of the main driving forces in \\
140
- the development of the UF.\\
141
- Today several groups are working on the construction and  implementation in \\
142
- a proof assistant of candidate type theories.  \\
143
- The /cubical type theory/ and the prototype proof assistant /cubicaltt/ created by \\
144
- the group of Thierry Coquand with the help of many researchers from \\
145
- different parts of the world is at the most advanced stage of development \\
146
- today. \\
147
- A proof in the UniMath easily translates into a proof in the cubilatt.\\
148
- 10\\
149
-
150
- --------------
151
-
152
- <<11>>[[file:Unimath-11_1.png]]\\
153
- [[file:Unimath-11_2.png]]\\
154
- Univalent Foundations\\
155
- UniMath library\\
156
- The new form of the UF that emerges can be seen as combining the following \\
157
- components:\\
158
- • the view of mathematics as the study of structures on sets and their higher \\
159
- analogs, \\
160
- • the view of mathematics as constructive with the classical mathematics being \\
161
- a subset consisting of the results that require LEM and/or AC among their \\
162
- assumptions,\\
163
- • the idea that the higher analogs of sets are reflected in the set-based \\
164
- mathematics as constructive homotopy types - objects of the new \\
165
- constructive homotopy theory that can so far be formulated only in terms of \\
166
- cubical sets,\\
167
- • the idea that one can formalize our intuition about structures on these higher \\
168
- analogs using Cubical Type Theory (CTT).\\
169
- 11\\
170
-
171
- --------------
172
-
173
- <<12>>[[file:Unimath-12_1.png]]\\
174
- [[file:Unimath-12_2.png]]\\
175
- Univalent Foundations\\
176
- UniMath library\\
177
- In addition to the understanding that to obtain a formal system for the new \\
178
- constructive mathematics the UA needs to be integrated into the MLTT \\
179
- constructively, several more things are felt as lacking in the MLTT+UA:\\
180
- • higher inductive types, \\
181
- • resizing rules,\\
182
- • a possible strict extensional equality combined with the “fibrancy discipline”,\\
183
- • as yet unknown mechanism to construct the types of structures that involve \\
184
- infinite hierarchies of coherence conditions.  \\
185
- Surprisingly,  it might be easier to add these features to the CTT than to the \\
186
- MLTT. The work in these directions is ongoing. \\
187
- 12\\
188
-
189
- --------------
190
-
191
- <<13>>Part 2. The UniMath library\\
192
- 13\\
193
-
194
- --------------
195
-
196
- <<14>>[[file:Unimath-14_1.png]]\\
197
- [[file:Unimath-14_2.png]]\\
198
- Univalent Foundations\\
199
- UniMath library\\
200
- In the development of the UniMath library we attempt to do something that \\
201
- might be compared with the effort by the Bourbaki group to write a \\
202
- systematic exposition of mathematics based on the set theory and the view of \\
203
- mathematics as studying structures on sets.\\
204
- The effort by Bourbaki stalled at some point around the middle of the 20th \\
205
- century, in part, because it was very complicated to describe the emerging \\
206
- category-theoretic constructions in set-theoretic terms.\\
207
- 14\\
208
-
209
- --------------
210
-
211
- <<15>>[[file:Unimath-15_1.png]]\\
212
- [[file:Unimath-15_2.png]]\\
213
- Univalent Foundations\\
214
- UniMath library\\
215
- One may however ask, is there any mathematical innovation in what we are \\
216
- doing? Is there a discovery of the unknown in the work on the UniMath?\\
217
- We have already seen how well-known problems in fields such as arithmetic \\
218
- algebraic geometry can be related to the search for a new foundation of \\
219
- constructive mathematics and for building proofs in the UniMath.\\
220
- Here is a different example.\\
221
- 15\\
222
-
223
- --------------
224
-
225
- <<16>>[[file:Unimath-16_1.png]]\\
226
- [[file:Unimath-16_2.png]]\\
227
- Univalent Foundations\\
228
- UniMath library\\
229
- Some years ago, at the IAS, I had a conversation at lunch with Armand Borel. I \\
230
- mentioned how I like Bourbaki “Algebra” and how it helped me to become a \\
231
- mathematician. \\
232
- I then mentioned that some places there were really dense. For example, said I, \\
233
- the description of the tensor product was hard to follow. \\
234
- Of course, said Borel, /we have invented tensor product to get a systematic \\
235
- exposition of multi-linear maps/. \\
236
- It was new research, this is why it was not very smoothly written. \\
237
- 16\\
238
-
239
- --------------
240
-
241
- <<17>>[[file:Unimath-17_1.png]]\\
242
- [[file:Unimath-17_2.png]]\\
243
- Univalent Foundations\\
244
- UniMath library\\
245
- I was amazed.\\
246
- It is hard to imagine today's mathematics without the concept of the tensor \\
247
- product. It would never occurred to me that it was invented by Bourbaki with \\
248
- the only purpose to obtain a more systematic exposition of multi-linear maps \\
249
- of vector spaces!\\
250
- This example shows how a major innovation can emerge from the work on \\
251
- systematization of knowledge. \\
252
- 17\\
253
-
254
- --------------
255
-
256
- <<18>>[[file:Unimath-18_1.png]]\\
257
- [[file:Unimath-18_2.png]]\\
258
- Univalent Foundations\\
259
- UniMath library\\
260
- Finally, a few words to those mathematicians who will decide to understand \\
261
- UniMath and maybe to contribute to it. \\
262
- The UniMath library is being created using the proof assistant Coq. It is freely \\
263
- available on GitHub.\\
264
- The language of Coq is a very substantial extension of the MLTT and UniMath \\
265
- uses a very small subset of the full Coq language that approximately \\
266
- corresponds to the original MLTT.\\
267
- 18\\
268
-
269
- --------------
270
-
271
- <<19>>[[file:Unimath-19_1.png]]\\
272
- [[file:Unimath-19_2.png]]\\
273
- [[file:Unimath-19_3.png]]\\
274
- Univalent Foundations\\
275
- UniMath library\\
276
- The first file in the UniMath after the /Basics/preamble.v/ is /Basics/PartA/.v.\\
277
- The first line in /Basics/PartA.v/ after the preamble section is as follows:\\
278
-     \\
279
- It should be understood as a declaration of intent to define a constant called \\
280
- /fromempty /whose type is described by the expression that is written to the \\
281
- right of the colon. \\
282
- Following this line there is a paragraph that starts with /Proof./ and ends with \\
283
- /Defined. /where the constant is actually defined using the little sub-programs of \\
284
- Coq called tactics which help to build complex expressions of the underlying \\
285
- type theory language in simple steps.  \\
286
- 19\\
287
-
288
- --------------
289
-
290
- <<20>>[[file:Unimath-20_1.png]]\\
291
- [[file:Unimath-20_2.png]]\\
292
- Univalent Foundations\\
293
- UniMath library\\
294
- A mathematician who wants to understand UniMath should expect a very \\
295
- non-linear learning curve:\\
296
- • In the lectures that I gave in Oxford and in the similar lectures in the Hebrew \\
297
- University it took me the whole first lecture to explain what that first line \\
298
- and the following it paragraph really mean.\\
299
- • In the next lecture I was able to explain the next few hundred lines of PartA.\\
300
- • By the fourth lecture in Oxford, the video of which can be found on my \\
301
- website, I was explaining the invariant formalization of fibration sequences.\\
302
- 20\\
303
-
304
- --------------
305
-
306
- <<21>>I hope that was able to show how important Univalent Foundations are and \\
307
- how important is the work on libraries such as UniMath.\\
308
- Thank you!\\
309
- 21\\
310
-
311
- --------------