Datasets:

ArXiv:
License:
language_identification / examples /make_subset_details.py
HoneyTian's picture
update
585fe1b
raw
history blame
1.8 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import Counter
from datasets import load_dataset, DownloadMode
import matplotlib.pyplot as plt
from tqdm import tqdm
from project_settings import project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", default="amazon_reviews_multi", type=str)
parser.add_argument(
"--dataset_cache_dir",
default=(project_path / "hub_datasets").as_posix(),
type=str
)
args = parser.parse_args()
return args
def main():
args = get_args()
dataset = load_dataset(
"../language_identification.py",
name="amazon_reviews_multi",
split="train",
cache_dir=args.dataset_cache_dir,
# download_mode=DownloadMode.FORCE_REDOWNLOAD
)
counter1 = Counter()
counter2 = Counter()
for sample in tqdm(dataset):
text = sample["text"]
language = sample["language"]
text_length = len(text)
text_length_round = int(text_length / 10) * 10
text_length_round = 200 if text_length_round > 200 else text_length_round
counter1.update([language])
counter2.update([text_length_round])
print("语种数量:")
for k, v in counter1.most_common():
print("{}: {}".format(k, v))
print("文本长度:")
counter2 = list(sorted(counter2.items(), key=lambda x: x[0]))
x = [item[0] for item in counter2]
y = [item[1] for item in counter2]
for k, v in counter2:
text_length_range = "{}-{}".format(k, k+10)
print("{}: {}".format(text_length_range, v))
plt.plot(x, y)
plt.savefig("{}_text_length.jpg".format(args.dataset_name))
plt.show()
return
if __name__ == "__main__":
main()