Commit
·
42d54de
1
Parent(s):
be5c5ac
added scidcc
Browse files- climabench.py +87 -21
climabench.py
CHANGED
@@ -23,7 +23,7 @@ import json
|
|
23 |
|
24 |
|
25 |
_CITATION = """
|
26 |
-
@misc{
|
27 |
title={ClimaBench: A Benchmark Dataset For Climate Change Text Understanding in English},
|
28 |
author={Tanmay Laud and Daniel Spokoyny and Tom Corringham and Taylor Berg-Kirkpatrick},
|
29 |
year={2023},
|
@@ -37,7 +37,7 @@ _DESCRIPTION = """\
|
|
37 |
The topic of Climate Change (CC) has received limited attention in NLP despite its real world urgency.
|
38 |
Activists and policy-makers need NLP tools in order to effectively process the vast and rapidly growing textual data produced on CC.
|
39 |
Their utility, however, primarily depends on whether the current state-of-the-art models can generalize across various tasks in the CC domain.
|
40 |
-
In order to address this gap, we introduce Climate Change Benchmark (
|
41 |
Further, we enhance the benchmark by releasing two large-scale labelled text classification and question-answering datasets curated from publicly available environmental disclosures.
|
42 |
Lastly, we provide an analysis of several generic and CC-oriented models answering whether fine-tuning on domain text offers any improvements across these tasks. We hope this work provides a standard assessment tool for research on CC text data.
|
43 |
"""
|
@@ -47,15 +47,15 @@ _HOMEPAGE = "https://arxiv.org/abs/2301.04253"
|
|
47 |
_LICENSE = ""
|
48 |
|
49 |
_URL = "https://drive.google.com/u/0/uc?id=1RnZDC-KMOx8JkhbrFl86TsDpsskZB6fO&export=download&confirm=t&uuid=33b5ea55-a99a-431c-b805-0f298ed2912a&at=AKKF8vzyC_uPCdXvV4-gPlJ11X1J:1688024195786"
|
50 |
-
|
51 |
-
|
52 |
citation=_CITATION,
|
53 |
url=_HOMEPAGE,
|
54 |
)
|
55 |
|
56 |
|
57 |
-
class
|
58 |
-
"""BuilderConfig for
|
59 |
|
60 |
def __init__(
|
61 |
self,
|
@@ -68,7 +68,7 @@ class ClimaBenchConfig(datasets.BuilderConfig):
|
|
68 |
process_label=lambda x: x,
|
69 |
**kwargs,
|
70 |
):
|
71 |
-
"""BuilderConfig for
|
72 |
Args:
|
73 |
text_features: `dict[string, string]`, map from the name of the feature
|
74 |
dict for each text field to the name of the column in the tsv file
|
@@ -85,7 +85,7 @@ class ClimaBenchConfig(datasets.BuilderConfig):
|
|
85 |
of the label and processing it to the form required by the label feature
|
86 |
**kwargs: keyword arguments forwarded to super.
|
87 |
"""
|
88 |
-
super(
|
89 |
version=datasets.Version("1.0.0", ""), **kwargs
|
90 |
)
|
91 |
self.text_features = text_features
|
@@ -97,11 +97,11 @@ class ClimaBenchConfig(datasets.BuilderConfig):
|
|
97 |
self.process_label = process_label
|
98 |
|
99 |
|
100 |
-
class
|
101 |
"""FLORES-200 dataset."""
|
102 |
|
103 |
BUILDER_CONFIGS = [
|
104 |
-
|
105 |
name="climate_stance",
|
106 |
description=textwrap.dedent(
|
107 |
"""\
|
@@ -132,7 +132,7 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
132 |
),
|
133 |
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
|
134 |
),
|
135 |
-
|
136 |
name="climate_eng",
|
137 |
description=textwrap.dedent(
|
138 |
"""\
|
@@ -163,7 +163,7 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
163 |
),
|
164 |
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
|
165 |
),
|
166 |
-
|
167 |
name="climate_fever",
|
168 |
description=textwrap.dedent(
|
169 |
"""\
|
@@ -184,7 +184,7 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
184 |
),
|
185 |
url="http://climatefever.ai",
|
186 |
),
|
187 |
-
|
188 |
name="climatext",
|
189 |
description=textwrap.dedent(
|
190 |
"""\
|
@@ -208,7 +208,7 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
208 |
),
|
209 |
url="https://www.sustainablefinance.uzh.ch/en/research/climate-fever/climatext.html",
|
210 |
),
|
211 |
-
|
212 |
name="clima_insurance",
|
213 |
description=textwrap.dedent(
|
214 |
"""\
|
@@ -222,9 +222,9 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
222 |
data_dir="all_data/ClimateInsurance",
|
223 |
text_features={"text": "text"},
|
224 |
label_column="label",
|
225 |
-
**
|
226 |
),
|
227 |
-
|
228 |
name="clima_insurance_plus",
|
229 |
description=textwrap.dedent(
|
230 |
"""\
|
@@ -238,9 +238,9 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
238 |
data_dir="all_data/ClimateInsuranceMulti",
|
239 |
text_features={"text": "text"},
|
240 |
label_column="label",
|
241 |
-
**
|
242 |
),
|
243 |
-
|
244 |
name="clima_cdp",
|
245 |
description=textwrap.dedent(
|
246 |
"""\
|
@@ -271,9 +271,9 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
271 |
data_dir="all_data/CDP/Cities/Cities Responses",
|
272 |
text_features={"text": "Text"},
|
273 |
label_column="Label",
|
274 |
-
**
|
275 |
),
|
276 |
-
|
277 |
name="clima_qa",
|
278 |
description=textwrap.dedent(
|
279 |
"""\
|
@@ -291,7 +291,62 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
291 |
text_features={"question": "question", "answer": "answer"},
|
292 |
label_classes=["0", "1"],
|
293 |
label_column="label",
|
294 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
),
|
296 |
]
|
297 |
|
@@ -348,6 +403,17 @@ class ClimaBench(datasets.GeneratorBasedBuilder):
|
|
348 |
dl_dir = dl_manager.download_and_extract(_URL)
|
349 |
data_dir = os.path.join(dl_dir, self.config.data_dir)
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
if self.config.name == "climate_fever":
|
352 |
return [
|
353 |
datasets.SplitGenerator(
|
|
|
23 |
|
24 |
|
25 |
_CITATION = """
|
26 |
+
@misc{laud2023Climabench,
|
27 |
title={ClimaBench: A Benchmark Dataset For Climate Change Text Understanding in English},
|
28 |
author={Tanmay Laud and Daniel Spokoyny and Tom Corringham and Taylor Berg-Kirkpatrick},
|
29 |
year={2023},
|
|
|
37 |
The topic of Climate Change (CC) has received limited attention in NLP despite its real world urgency.
|
38 |
Activists and policy-makers need NLP tools in order to effectively process the vast and rapidly growing textual data produced on CC.
|
39 |
Their utility, however, primarily depends on whether the current state-of-the-art models can generalize across various tasks in the CC domain.
|
40 |
+
In order to address this gap, we introduce Climate Change Benchmark (Climabench), a benchmark collection of existing disparate datasets for evaluating model performance across a diverse set of CC NLU tasks systematically.
|
41 |
Further, we enhance the benchmark by releasing two large-scale labelled text classification and question-answering datasets curated from publicly available environmental disclosures.
|
42 |
Lastly, we provide an analysis of several generic and CC-oriented models answering whether fine-tuning on domain text offers any improvements across these tasks. We hope this work provides a standard assessment tool for research on CC text data.
|
43 |
"""
|
|
|
47 |
_LICENSE = ""
|
48 |
|
49 |
_URL = "https://drive.google.com/u/0/uc?id=1RnZDC-KMOx8JkhbrFl86TsDpsskZB6fO&export=download&confirm=t&uuid=33b5ea55-a99a-431c-b805-0f298ed2912a&at=AKKF8vzyC_uPCdXvV4-gPlJ11X1J:1688024195786"
|
50 |
+
# _URL = "https://drive.google.com/drive/folders/1zaOPdS88m2oMRqmDGs4KqtWEIRJcPsMO"
|
51 |
+
_Climabench_BASE_KWARGS = dict(
|
52 |
citation=_CITATION,
|
53 |
url=_HOMEPAGE,
|
54 |
)
|
55 |
|
56 |
|
57 |
+
class ClimabenchConfig(datasets.BuilderConfig):
|
58 |
+
"""BuilderConfig for Climabench."""
|
59 |
|
60 |
def __init__(
|
61 |
self,
|
|
|
68 |
process_label=lambda x: x,
|
69 |
**kwargs,
|
70 |
):
|
71 |
+
"""BuilderConfig for Climabench.
|
72 |
Args:
|
73 |
text_features: `dict[string, string]`, map from the name of the feature
|
74 |
dict for each text field to the name of the column in the tsv file
|
|
|
85 |
of the label and processing it to the form required by the label feature
|
86 |
**kwargs: keyword arguments forwarded to super.
|
87 |
"""
|
88 |
+
super(ClimabenchConfig, self).__init__(
|
89 |
version=datasets.Version("1.0.0", ""), **kwargs
|
90 |
)
|
91 |
self.text_features = text_features
|
|
|
97 |
self.process_label = process_label
|
98 |
|
99 |
|
100 |
+
class Climabench(datasets.GeneratorBasedBuilder):
|
101 |
"""FLORES-200 dataset."""
|
102 |
|
103 |
BUILDER_CONFIGS = [
|
104 |
+
ClimabenchConfig(
|
105 |
name="climate_stance",
|
106 |
description=textwrap.dedent(
|
107 |
"""\
|
|
|
132 |
),
|
133 |
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
|
134 |
),
|
135 |
+
ClimabenchConfig(
|
136 |
name="climate_eng",
|
137 |
description=textwrap.dedent(
|
138 |
"""\
|
|
|
163 |
),
|
164 |
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
|
165 |
),
|
166 |
+
ClimabenchConfig(
|
167 |
name="climate_fever",
|
168 |
description=textwrap.dedent(
|
169 |
"""\
|
|
|
184 |
),
|
185 |
url="http://climatefever.ai",
|
186 |
),
|
187 |
+
ClimabenchConfig(
|
188 |
name="climatext",
|
189 |
description=textwrap.dedent(
|
190 |
"""\
|
|
|
208 |
),
|
209 |
url="https://www.sustainablefinance.uzh.ch/en/research/climate-fever/climatext.html",
|
210 |
),
|
211 |
+
ClimabenchConfig(
|
212 |
name="clima_insurance",
|
213 |
description=textwrap.dedent(
|
214 |
"""\
|
|
|
222 |
data_dir="all_data/ClimateInsurance",
|
223 |
text_features={"text": "text"},
|
224 |
label_column="label",
|
225 |
+
**_Climabench_BASE_KWARGS,
|
226 |
),
|
227 |
+
ClimabenchConfig(
|
228 |
name="clima_insurance_plus",
|
229 |
description=textwrap.dedent(
|
230 |
"""\
|
|
|
238 |
data_dir="all_data/ClimateInsuranceMulti",
|
239 |
text_features={"text": "text"},
|
240 |
label_column="label",
|
241 |
+
**_Climabench_BASE_KWARGS,
|
242 |
),
|
243 |
+
ClimabenchConfig(
|
244 |
name="clima_cdp",
|
245 |
description=textwrap.dedent(
|
246 |
"""\
|
|
|
271 |
data_dir="all_data/CDP/Cities/Cities Responses",
|
272 |
text_features={"text": "Text"},
|
273 |
label_column="Label",
|
274 |
+
**_Climabench_BASE_KWARGS,
|
275 |
),
|
276 |
+
ClimabenchConfig(
|
277 |
name="clima_qa",
|
278 |
description=textwrap.dedent(
|
279 |
"""\
|
|
|
291 |
text_features={"question": "question", "answer": "answer"},
|
292 |
label_classes=["0", "1"],
|
293 |
label_column="label",
|
294 |
+
**_Climabench_BASE_KWARGS,
|
295 |
+
),
|
296 |
+
ClimabenchConfig(
|
297 |
+
name="scidcc",
|
298 |
+
description=textwrap.dedent(
|
299 |
+
"""\
|
300 |
+
The Science Daily Climate Change (SCIDCC) dataset is
|
301 |
+
curated by web scraping news articles from the
|
302 |
+
Science Daily (SD) website. It contains around
|
303 |
+
11k news articles from 20 categories relevant to
|
304 |
+
climate change, where each article comprises of
|
305 |
+
a title, summary, and a body. Some of the major
|
306 |
+
categories are Earthquakes, Pollution, Hurricanes
|
307 |
+
and Cyclones. We propose to use this dataset for
|
308 |
+
the first time as a category classification task for
|
309 |
+
two reasons. Firstly, the SD news articles are relatively
|
310 |
+
more scientific as compared to other online
|
311 |
+
news. Secondly, the average document length is
|
312 |
+
around 500-600 words with a maximum of roughly
|
313 |
+
2.5k words, which is significantly longer than other
|
314 |
+
existing public CC datasets."""
|
315 |
+
),
|
316 |
+
label_classes=[
|
317 |
+
"Ozone Holes",
|
318 |
+
"Pollution",
|
319 |
+
"Hurricanes Cyclones",
|
320 |
+
"Earthquakes",
|
321 |
+
"Climate",
|
322 |
+
"Environment",
|
323 |
+
"Geography",
|
324 |
+
"Geology",
|
325 |
+
"Global Warming",
|
326 |
+
"Weather",
|
327 |
+
"Agriculture & Food",
|
328 |
+
"Animals",
|
329 |
+
"Biology",
|
330 |
+
"Endangered Animals",
|
331 |
+
"Extinction",
|
332 |
+
"New Species",
|
333 |
+
"Zoology",
|
334 |
+
"Biotechnology",
|
335 |
+
"Genetically Modified",
|
336 |
+
"Microbes",
|
337 |
+
],
|
338 |
+
data_dir="all_data",
|
339 |
+
text_features={"title": "Title", "summary": "Summary", "body": "Body"},
|
340 |
+
label_column="Category",
|
341 |
+
citation=textwrap.dedent(
|
342 |
+
"""@inproceedings{mishra2021neuralnere,
|
343 |
+
title={NeuralNERE: Neural Named Entity Relationship Extraction for End-to-End Climate Change Knowledge Graph Construction},
|
344 |
+
author={Mishra, Prakamya and Mittal, Rohan},
|
345 |
+
booktitle={ICML 2021 Workshop on Tackling Climate Change with Machine Learning},
|
346 |
+
url={https://www.climatechange.ai/papers/icml2021/76},
|
347 |
+
year={2021}
|
348 |
+
}"""
|
349 |
+
),
|
350 |
),
|
351 |
]
|
352 |
|
|
|
403 |
dl_dir = dl_manager.download_and_extract(_URL)
|
404 |
data_dir = os.path.join(dl_dir, self.config.data_dir)
|
405 |
|
406 |
+
if self.config.name == "scidcc":
|
407 |
+
return [
|
408 |
+
datasets.SplitGenerator(
|
409 |
+
name=datasets.Split.TEST,
|
410 |
+
gen_kwargs={
|
411 |
+
"data_file": os.path.join(data_dir or "", "SciDCC.csv"),
|
412 |
+
"split": "test",
|
413 |
+
},
|
414 |
+
),
|
415 |
+
]
|
416 |
+
|
417 |
if self.config.name == "climate_fever":
|
418 |
return [
|
419 |
datasets.SplitGenerator(
|