Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +3 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +3 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68d659db01abf84894301857c0f526b95cb5863fbe2307d2f291346c98f87b01
|
3 |
+
size 2984604
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 4351,
|
4 |
+
"num_embeddings": 745863,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7227f43d54f0ae8c9923cb9b4a6e35bce1a9168f6436c61067de170ad4cfb7e4
|
3 |
+
size 95471664
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2904
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b55f00ef58928510878932da07ac203a21ecef72e873dc80333523275afcab00
|
3 |
size 2904
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2098342
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd88af9893f78a753e0327609ef3c5651b06e7188e7dc8403e72c53b94ea8496
|
3 |
size 2098342
|
collection.json
CHANGED
@@ -4347,5 +4347,7 @@
|
|
4347 |
"While text-to-image diffusion models have been shown to achieve state-of-the-art results in image synthesis, they have yet to prove their effectiveness in downstream applications. Previous work has proposed to generate data for image classifier training given limited real data access. However, these methods struggle to generate in-distribution images or depict fine-grained features, thereby hindering the generalization of classification models trained on synthetic datasets. We propose DataDream, a framework for synthesizing classification datasets that more faithfully represents the real data distribution when guided by few-shot examples of the target classes. DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model. We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets. We demonstrate the efficacy of DataDream through extensive experiments, surpassing state-of-the-art classification accuracy with few-shot data across 7 out of 10 datasets, while being competitive on the other 3. Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance.",
|
4348 |
"Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance. The code is available at https://github.com/ExplainableML/DataDream.",
|
4349 |
"The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance.",
|
4350 |
-
"Most currently deployed large language models (LLMs) undergo continuous training or additional finetuning. By contrast, most research into LLMs' internal mechanisms focuses on models at one snapshot in time (the end of pre-training), raising the question of whether their results generalize to real-world settings. Existing studies of mechanisms over time focus on encoder-only or toy models, which differ significantly from most deployed models. In this study, we track how model mechanisms, operationalized as circuits, emerge and evolve across 300 billion tokens of training in decoder-only LLMs, in models ranging from 70 million to 2.8 billion parameters. We find that task abilities and the functional components that support them emerge consistently at similar token counts across scale. Moreover, although such components may be implemented by different attention heads over time, the overarching algorithm that they implement remains. Surprisingly, both these algorithms and the types of components involved therein can replicate across model scale. These results suggest that circuit analyses conducted on small models at the end of pre-training can provide insights that still apply after additional pre-training and over model scale."
|
|
|
|
|
4351 |
]
|
|
|
4347 |
"While text-to-image diffusion models have been shown to achieve state-of-the-art results in image synthesis, they have yet to prove their effectiveness in downstream applications. Previous work has proposed to generate data for image classifier training given limited real data access. However, these methods struggle to generate in-distribution images or depict fine-grained features, thereby hindering the generalization of classification models trained on synthetic datasets. We propose DataDream, a framework for synthesizing classification datasets that more faithfully represents the real data distribution when guided by few-shot examples of the target classes. DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model. We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets. We demonstrate the efficacy of DataDream through extensive experiments, surpassing state-of-the-art classification accuracy with few-shot data across 7 out of 10 datasets, while being competitive on the other 3. Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance.",
|
4348 |
"Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance. The code is available at https://github.com/ExplainableML/DataDream.",
|
4349 |
"The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance.",
|
4350 |
+
"Most currently deployed large language models (LLMs) undergo continuous training or additional finetuning. By contrast, most research into LLMs' internal mechanisms focuses on models at one snapshot in time (the end of pre-training), raising the question of whether their results generalize to real-world settings. Existing studies of mechanisms over time focus on encoder-only or toy models, which differ significantly from most deployed models. In this study, we track how model mechanisms, operationalized as circuits, emerge and evolve across 300 billion tokens of training in decoder-only LLMs, in models ranging from 70 million to 2.8 billion parameters. We find that task abilities and the functional components that support them emerge consistently at similar token counts across scale. Moreover, although such components may be implemented by different attention heads over time, the overarching algorithm that they implement remains. Surprisingly, both these algorithms and the types of components involved therein can replicate across model scale. These results suggest that circuit analyses conducted on small models at the end of pre-training can provide insights that still apply after additional pre-training and over model scale.",
|
4351 |
+
"Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success).",
|
4352 |
+
"Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io."
|
4353 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205]
|
|
|
1 |
+
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b5676293eb286056292cbca715366154d9dc1782dfcde9cde27dcd111ed9890
|
3 |
+
size 1970008
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2024-07/16/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":171.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 4351 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2024-07/16/19.54.27",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
+
"num_embeddings":745863,
|
63 |
+
"avg_doclen":171.4233509538,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -4347,5 +4347,7 @@
|
|
4347 |
"4345":"2407.10910",
|
4348 |
"4346":"2407.10910",
|
4349 |
"4347":"2407.10953",
|
4350 |
-
"4348":"2407.10827"
|
|
|
|
|
4351 |
}
|
|
|
4347 |
"4345":"2407.10910",
|
4348 |
"4346":"2407.10910",
|
4349 |
"4347":"2407.10953",
|
4350 |
+
"4348":"2407.10827",
|
4351 |
+
"4349":"2407.10956",
|
4352 |
+
"4350":"2407.10956"
|
4353 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2024-07\/16\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 171.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 4351 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2024-07\/16\/19.54.27",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
+
"num_embeddings_est": 745863.0180511475,
|
63 |
+
"avg_doclen_est": 171.42335510253906
|
64 |
}
|