Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- avg_residual.pt +1 -1
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +5 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +5 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbde94b9262ea44b07cef3185c450577628f8a8005429d99aea7100b22fd0a6c
|
3 |
+
size 2439644
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 3542,
|
4 |
+
"num_embeddings": 609618,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcc21ec155672895e7bcc6b6d6a1263516a87f5a9a7afaecdd76d854457a82e8
|
3 |
+
size 78032304
|
avg_residual.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21aad4d96d8c1d0840376dc7b557751e66507d8519f4eb134102b9fcd1cc3e85
|
3 |
size 1205
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2904
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70b0a1640a96cfec36ae419eec7ba6c9eb708591fa1b2016425c8d7d911ce68a
|
3 |
size 2904
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2098342
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e53ea4cdf09fe2e4983fef1b7fdcb389441ae2425dd1d8de381d1453487206bd
|
3 |
size 2098342
|
collection.json
CHANGED
@@ -3536,5 +3536,9 @@
|
|
3536 |
"In addition to finding smaller, higher-performing network architectures, our method does so more effectively and efficiently than certain pruning or sparsification techniques. Finally, we demonstrate how quantization is complementary to our method and that the size and complexity of the networks we find can be further decreased using quantization. We believe that our work provides a way to automatically create LLMs which can be used on less expensive and more readily available hardware platforms.",
|
3537 |
"As Deep Neural Networks (DNNs) grow in size and complexity, they often exceed the memory capacity of a single accelerator, necessitating the sharding of model parameters across multiple accelerators. Pipeline parallelism is a commonly used sharding strategy for training large DNNs. However, current implementations of pipeline parallelism are being unintentionally bottlenecked by the automatic differentiation tools provided by ML frameworks. This paper introduces 2-stage backpropagation (2BP). By splitting the backward propagation step into two separate stages, we can reduce idle compute time. We tested 2BP on various model architectures and pipelining schedules, achieving increases in throughput in all cases. Using 2BP, we were able to achieve a 1.70x increase in throughput compared to traditional methods when training a LLaMa-like transformer with 7 billion parameters across 4 GPUs.",
|
3538 |
"Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.",
|
3539 |
-
"Yuan 2.0-M32, with a similar base architecture as Yuan-2.0 2B, uses a mixture-of-experts architecture with 32 experts of which 2 experts are active. A new router network, Attention Router, is proposed and adopted for a more efficient selection of experts, which boosts the accuracy of 3.8% compared to the model with classical router network. Yuan 2.0-M32 is trained with 2000B tokens from scratch, and the training computation consumption is only 9.25% of a dense model at the same parameter scale. Yuan 2.0-M32 demonstrates competitive capability on coding, math, and various domains of expertise, with only 3.7B active parameters of 40B in total, and 7.4 GFlops forward computation per token, both of which are only 1/19 of Llama3-70B. Yuan 2.0-M32 surpass Llama3-70B on MATH and ARC-Challenge benchmark, with accuracy of 55.89 and 95.8 respectively. The models and source codes of Yuan 2.0-M32 are released at Github."
|
|
|
|
|
|
|
|
|
3540 |
]
|
|
|
3536 |
"In addition to finding smaller, higher-performing network architectures, our method does so more effectively and efficiently than certain pruning or sparsification techniques. Finally, we demonstrate how quantization is complementary to our method and that the size and complexity of the networks we find can be further decreased using quantization. We believe that our work provides a way to automatically create LLMs which can be used on less expensive and more readily available hardware platforms.",
|
3537 |
"As Deep Neural Networks (DNNs) grow in size and complexity, they often exceed the memory capacity of a single accelerator, necessitating the sharding of model parameters across multiple accelerators. Pipeline parallelism is a commonly used sharding strategy for training large DNNs. However, current implementations of pipeline parallelism are being unintentionally bottlenecked by the automatic differentiation tools provided by ML frameworks. This paper introduces 2-stage backpropagation (2BP). By splitting the backward propagation step into two separate stages, we can reduce idle compute time. We tested 2BP on various model architectures and pipelining schedules, achieving increases in throughput in all cases. Using 2BP, we were able to achieve a 1.70x increase in throughput compared to traditional methods when training a LLaMa-like transformer with 7 billion parameters across 4 GPUs.",
|
3538 |
"Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.",
|
3539 |
+
"Yuan 2.0-M32, with a similar base architecture as Yuan-2.0 2B, uses a mixture-of-experts architecture with 32 experts of which 2 experts are active. A new router network, Attention Router, is proposed and adopted for a more efficient selection of experts, which boosts the accuracy of 3.8% compared to the model with classical router network. Yuan 2.0-M32 is trained with 2000B tokens from scratch, and the training computation consumption is only 9.25% of a dense model at the same parameter scale. Yuan 2.0-M32 demonstrates competitive capability on coding, math, and various domains of expertise, with only 3.7B active parameters of 40B in total, and 7.4 GFlops forward computation per token, both of which are only 1/19 of Llama3-70B. Yuan 2.0-M32 surpass Llama3-70B on MATH and ARC-Challenge benchmark, with accuracy of 55.89 and 95.8 respectively. The models and source codes of Yuan 2.0-M32 are released at Github.",
|
3540 |
+
"Reconstructing 4D scenes from video inputs is a crucial yet challenging task. Conventional methods usually rely on the assumptions of multi-view video inputs, known camera parameters, or static scenes, all of which are typically absent under in-the-wild scenarios. In this paper, we relax all these constraints and tackle a highly ambitious but practical task, which we termed as AnyV4D: we assume only one monocular video is available without any camera parameters as input, and we aim to recover the dynamic 4D world alongside the camera poses. To this end, we introduce GFlow, a new framework that utilizes only 2D priors (depth and optical flow) to lift a video (3D) to a 4D explicit representation, entailing a flow of Gaussian splatting through space and time. GFlow first clusters the scene into still and moving parts, then applies a sequential optimization process that optimizes camera poses and the dynamics of 3D Gaussian points based on 2D priors and scene clustering, ensuring fidelity among neighboring points and smooth movement across frames. Since dynamic scenes always introduce new content, we also propose a new pixel-wise densification strategy for Gaussian points to integrate new visual content.",
|
3541 |
+
"Since dynamic scenes always introduce new content, we also propose a new pixel-wise densification strategy for Gaussian points to integrate new visual content. Moreover, GFlow transcends the boundaries of mere 4D reconstruction; it also enables tracking of any points across frames without the need for prior training and segments moving objects from the scene in an unsupervised way. Additionally, the camera poses of each frame can be derived from GFlow, allowing for rendering novel views of a video scene through changing camera pose. By employing the explicit representation, we may readily conduct scene-level or object-level editing as desired, underscoring its versatility and power. Visit our project website at: https://littlepure2333.github.io/GFlow",
|
3542 |
+
"Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks.",
|
3543 |
+
"Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments."
|
3544 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198]
|
|
|
1 |
+
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cc4f7e920986504a8efb479e38c384d0be17c9b97a4fca02add36707cee0b06
|
3 |
+
size 1594712
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2024-05/29/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":172.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 3542 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2024-05/29/04.53.52",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
+
"num_embeddings":609618,
|
63 |
+
"avg_doclen":172.1112365895,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -3536,5 +3536,9 @@
|
|
3536 |
"3534":"2405.18377",
|
3537 |
"3535":"2405.18047",
|
3538 |
"3536":"2405.17991",
|
3539 |
-
"3537":"2405.17976"
|
|
|
|
|
|
|
|
|
3540 |
}
|
|
|
3536 |
"3534":"2405.18377",
|
3537 |
"3535":"2405.18047",
|
3538 |
"3536":"2405.17991",
|
3539 |
+
"3537":"2405.17976",
|
3540 |
+
"3538":"2405.18426",
|
3541 |
+
"3539":"2405.18426",
|
3542 |
+
"3540":"2405.18386",
|
3543 |
+
"3541":"2405.18386"
|
3544 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2024-05\/29\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 172.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 3542 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2024-05\/29\/04.53.52",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
+
"num_embeddings_est": 609617.9999389648,
|
63 |
+
"avg_doclen_est": 172.11123657226562
|
64 |
}
|