Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- avg_residual.pt +1 -1
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +2 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +2 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe4ea9733ed053b9572b86f7fe42d3568194a025ea5281ebd32fee23e19ba96c
|
3 |
+
size 3003228
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 4378,
|
4 |
+
"num_embeddings": 750516,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eb2bc9dbd0ac1237f29f21f69bce182fec8b7b0e1df2092d6cf78a7a35ad8ba
|
3 |
+
size 96067248
|
avg_residual.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4515a35ef94cdc641a3e1e2bbf24346589a505e9e713bd49fb738e370da96c68
|
3 |
size 1205
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2904
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e74c4a62edaf7f2598d29f01588ec8dc3db9585af6c02646c71ebdf5bb0f1d7
|
3 |
size 2904
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2098342
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be262f97c08f352023a72ffc0032750d4c7b199a341f2f3403405e8b947457fd
|
3 |
size 2098342
|
collection.json
CHANGED
@@ -4375,5 +4375,6 @@
|
|
4375 |
"Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables \"scaling up\" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node.",
|
4376 |
"Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.",
|
4377 |
"We present VLMEvalKit: an open-source toolkit for evaluating large multi-modality models based on PyTorch. The toolkit aims to provide a user-friendly and comprehensive framework for researchers and developers to evaluate existing multi-modality models and publish reproducible evaluation results. In VLMEvalKit, we implement over 70 different large multi-modality models, including both proprietary APIs and open-source models, as well as more than 20 different multi-modal benchmarks. By implementing a single interface, new models can be easily added to the toolkit, while the toolkit automatically handles the remaining workloads, including data preparation, distributed inference, prediction post-processing, and metric calculation. Although the toolkit is currently mainly used for evaluating large vision-language models, its design is compatible with future updates that incorporate additional modalities, such as audio and video. Based on the evaluation results obtained with the toolkit, we host OpenVLM Leaderboard, a comprehensive leaderboard to track the progress of multi-modality learning research. The toolkit is released at https://github.com/open-compass/VLMEvalKit and is actively maintained.",
|
4378 |
-
"Traditional reference segmentation tasks have predominantly focused on silent visual scenes, neglecting the integral role of multimodal perception and interaction in human experiences. In this work, we introduce a novel task called Reference Audio-Visual Segmentation (Ref-AVS), which seeks to segment objects within the visual domain based on expressions containing multimodal cues. Such expressions are articulated in natural language forms but are enriched with multimodal cues, including audio and visual descriptions. To facilitate this research, we construct the first Ref-AVS benchmark, which provides pixel-level annotations for objects described in corresponding multimodal-cue expressions. To tackle the Ref-AVS task, we propose a new method that adequately utilizes multimodal cues to offer precise segmentation guidance. Finally, we conduct quantitative and qualitative experiments on three test subsets to compare our approach with existing methods from related tasks. The results demonstrate the effectiveness of our method, highlighting its capability to precisely segment objects using multimodal-cue expressions. Dataset is available at https://gewu-lab.github.io/Ref-AVS{https://gewu-lab.github.io/Ref-AVS}."
|
|
|
4379 |
]
|
|
|
4375 |
"Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables \"scaling up\" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node.",
|
4376 |
"Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.",
|
4377 |
"We present VLMEvalKit: an open-source toolkit for evaluating large multi-modality models based on PyTorch. The toolkit aims to provide a user-friendly and comprehensive framework for researchers and developers to evaluate existing multi-modality models and publish reproducible evaluation results. In VLMEvalKit, we implement over 70 different large multi-modality models, including both proprietary APIs and open-source models, as well as more than 20 different multi-modal benchmarks. By implementing a single interface, new models can be easily added to the toolkit, while the toolkit automatically handles the remaining workloads, including data preparation, distributed inference, prediction post-processing, and metric calculation. Although the toolkit is currently mainly used for evaluating large vision-language models, its design is compatible with future updates that incorporate additional modalities, such as audio and video. Based on the evaluation results obtained with the toolkit, we host OpenVLM Leaderboard, a comprehensive leaderboard to track the progress of multi-modality learning research. The toolkit is released at https://github.com/open-compass/VLMEvalKit and is actively maintained.",
|
4378 |
+
"Traditional reference segmentation tasks have predominantly focused on silent visual scenes, neglecting the integral role of multimodal perception and interaction in human experiences. In this work, we introduce a novel task called Reference Audio-Visual Segmentation (Ref-AVS), which seeks to segment objects within the visual domain based on expressions containing multimodal cues. Such expressions are articulated in natural language forms but are enriched with multimodal cues, including audio and visual descriptions. To facilitate this research, we construct the first Ref-AVS benchmark, which provides pixel-level annotations for objects described in corresponding multimodal-cue expressions. To tackle the Ref-AVS task, we propose a new method that adequately utilizes multimodal cues to offer precise segmentation guidance. Finally, we conduct quantitative and qualitative experiments on three test subsets to compare our approach with existing methods from related tasks. The results demonstrate the effectiveness of our method, highlighting its capability to precisely segment objects using multimodal-cue expressions. Dataset is available at https://gewu-lab.github.io/Ref-AVS{https://gewu-lab.github.io/Ref-AVS}.",
|
4379 |
+
"Vision language models (VLMs) have achieved impressive progress in diverse applications, becoming a prevalent research direction. In this paper, we build FIRE, a feedback-refinement dataset, consisting of 1.1M multi-turn conversations that are derived from 27 source datasets, empowering VLMs to spontaneously refine their responses based on user feedback across diverse tasks. To scale up the data collection, FIRE is collected in two components: FIRE-100K and FIRE-1M, where FIRE-100K is generated by GPT-4V, and FIRE-1M is freely generated via models trained on FIRE-100K. Then, we build FIRE-Bench, a benchmark to comprehensively evaluate the feedback-refining capability of VLMs, which contains 11K feedback-refinement conversations as the test data, two evaluation settings, and a model to provide feedback for VLMs. We develop the FIRE-LLaVA model by fine-tuning LLaVA on FIRE-100K and FIRE-1M, which shows remarkable feedback-refining capability on FIRE-Bench and outperforms untrained VLMs by 50%, making more efficient user-agent interactions and underscoring the significance of the FIRE dataset."
|
4380 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212]
|
|
|
1 |
+
[178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d588676e206084134eee250183881b0d68f9948dbfc5f792b195ea9b6568d60b
|
3 |
+
size 1978264
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2024-07/17/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":171.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 4378 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2024-07/17/11.54.10",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
+
"num_embeddings":750516,
|
63 |
+
"avg_doclen":171.4289629968,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -4375,5 +4375,6 @@
|
|
4375 |
"4373":"2407.11895",
|
4376 |
"4374":"2407.11895",
|
4377 |
"4375":"2407.11691",
|
4378 |
-
"4376":"2407.10957"
|
|
|
4379 |
}
|
|
|
4375 |
"4373":"2407.11895",
|
4376 |
"4374":"2407.11895",
|
4377 |
"4375":"2407.11691",
|
4378 |
+
"4376":"2407.10957",
|
4379 |
+
"4377":"2407.11522"
|
4380 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2024-07\/17\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 171.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 4378 elements starting with...",
|
41 |
[
|
42 |
"Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
|
43 |
"Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2024-07\/17\/11.54.10",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
+
"num_embeddings_est": 750516.0321350098,
|
63 |
+
"avg_doclen_est": 171.42897033691406
|
64 |
}
|