huyhuy123 commited on
Commit
02be50b
·
verified ·
1 Parent(s): 222c07c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ViOCRVQA: Vietnamese Optical Character Recognition - Visual Question Answering
2
+ =====
3
+
4
+ ![examples](sample.png)
5
+
6
+ # ViOCRVQA Dataset
7
+
8
+ Welcome to ViOCRVQA (Vietnamese Optical Character Recognition - Visual Question Answering ) dataset! This dataset is the largest scale dataset in Vietnamese specializing in understanding text appearing in images.
9
+
10
+ ## Overview
11
+
12
+ ViOCRVQA contains over consisting of 28,000+ images and 120,000+ question-answer pairs. In this dataset, all the images contain
13
+ text and questions about the information relevant to the text in the images.
14
+
15
+ ## Purpose
16
+
17
+ The purpose of ViOCRVQA is to provide a benchmark for evaluating the reading comprehension ability of Visual Question Answering (VQA) models in the Vietnamese language. As a developing country, Vietnam is still in need of resources and benchmarks to advance research in AI and machine learning.
18
+
19
+ ## Key Features
20
+
21
+ - 28,282 images
22
+ - 123,781 questions with answers
23
+ - Focus on understanding text within images
24
+ - Meticulously crafted to ensure diverse and challenging questions
25
+
26
+ ## Importance of ViOCRVQA
27
+
28
+ Understanding text in images is crucial for many real-world applications, such as assisting the visually impaired, enhancing image search engines, and improving AI understanding of multimedia content. convenient. ViOCRVQA fills an important gap by providing the largest-scale dataset relevant to Vietnamese.
29
+
30
+ ## Usage
31
+
32
+ Researchers and developers can use ViOCRVQA to train and evaluate their VQA models, analyze the performance of different approaches, and contribute to advancing research in this field. The dataset is freely available for research purposes.
33
+
34
+ ## Contributions
35
+ - Create the largest-scale dataset for text-based VQA tasks in Vietnamese, focusing on text appearing in images.
36
+
37
+ - Analyze the challenge of the ViOCRVQA dataset by evaluating the performance of the OCR system.
38
+
39
+ - Through extensive testing, we found that the VQA models used for English are not really effective on Vietnamese. We recommend our proposed VisionReader model
40
+
41
+ - Our experiments demonstrate the effectiveness of building relationships between objects and text information in images.
42
+
43
+ ## Availability
44
+
45
+ The ViOCRVQA dataset will be available for download after our article is accepted.
46
+
47
+ You can find it at the following link: [ViOCRVQA Dataset](link)
48
+
49
+ ## Citation
50
+
51
+ If you use ViOCRVQA dataset in your research, please cite our paper (preprint):
52
+
53
+ [ViOCRVQA](https://arxiv.org/abs/2404.18397)
54
+
55
+ ## Authors
56
+ - Huy Quang Pham
57
+ - Email: [21522163@gm.uit.edu.vn](mailto:21522163@gm.uit.edu.vn)
58
+
59
+ - Thang Kien-Bao Nguyen
60
+ - Email: [21521432@gm.uit.edu.vn](mailto:21521432@gm.uit.edu.vn)
61
+
62
+ - Quan Van Nguyen
63
+ - Email: [215622163@gm.uit.edu.vn](mailto:215622163@gm.uit.edu.vn)
64
+
65
+ - Dan Quang Tran
66
+ - Email: [21521917@gm.uit.edu.vn](mailto:21521917@gm.uit.edu.vn)
67
+
68
+
69
+ - BS Nghia Hieu Nguyen
70
+ - Email: [nghiangh@uit.edu.vn](mailto:nghiangh@uit.edu.vn)
71
+
72
+ - MSc Kiet Van Nguyen
73
+ - Email: [kietnv@uit.edu.vn](mailto:kietnv@uit.edu.vn)
74
+
75
+ - Assoc. Prof Ngan Luu-Thuy Nguyen
76
+ - Email: [ngannlt@uit.edu.vn](mailto:ngannlt@uit.edu.vn)
77
+
78
+ ### Affiliations
79
+
80
+ - Faculty of Information Science and Engineering, University of Information Technology
81
+ - Vietnam National University, Ho Chi Minh City, Vietnam
82
+
83
+ ## Contact
84
+
85
+ For any inquiries or feedback regarding the ViOCRVQA dataset, please contact [21522163@gm.uit.edu.vn](mailto:215622163@gm.uit.edu.vn).
86
+
87
+ Thank you for your interest in ViOCRVQA! We hope this dataset contributes to the advancement of research in text-based Visual Question Answering around the world, especially in Vietnam.