NanoCodeSearchNet / nano_code_search_net_eval.py
hotchpotch's picture
Add NanoCodeSearchNet eval script
3b639dd verified
#!/usr/bin/env python3
"""Evaluate a SentenceTransformer model on NanoCodeSearchNet (NDCG@10).
This mirrors the NanoBEIR evaluation style from sentence-transformers, adapted to
hotchpotch/NanoCodeSearchNet's layout (configs: corpus/queries/qrels, splits: NanoCodeSearchNet{Lang}).
"""
from __future__ import annotations
import argparse
import json
import logging
import time
from collections.abc import Callable, Sequence
from typing import Any, cast
import numpy as np
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import InformationRetrievalEvaluator
from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.util import is_datasets_available
from torch import Tensor
from tqdm import tqdm
DATASET_ID = "hotchpotch/NanoCodeSearchNet"
LANGS = ["Go", "Java", "JavaScript", "PHP", "Python", "Ruby"]
_LANGS_BY_LOWER = {name.lower(): name for name in LANGS}
ALIASES = {
"js": "JavaScript",
"py": "Python",
}
logger = logging.getLogger(__name__)
def _normalize_lang(name: str) -> str:
key = name.lower()
key = ALIASES.get(key, key)
return _LANGS_BY_LOWER.get(key, name)
def _split_name(lang: str) -> str:
return f"NanoCodeSearchNet{lang}"
def _human_readable(lang: str) -> str:
return f"NanoCodeSearchNet-{lang}"
class NanoCodeSearchNetEvaluator(SentenceEvaluator):
"""Evaluate a model on NanoCodeSearchNet across languages."""
information_retrieval_class = InformationRetrievalEvaluator
def __init__(
self,
dataset_names: list[str] | None = None,
dataset_id: str = DATASET_ID,
mrr_at_k: list[int] | None = None,
ndcg_at_k: list[int] | None = None,
accuracy_at_k: list[int] | None = None,
precision_recall_at_k: list[int] | None = None,
map_at_k: list[int] | None = None,
show_progress_bar: bool = False,
batch_size: int = 32,
write_csv: bool = True,
truncate_dim: int | None = None,
score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None,
main_score_function: str | SimilarityFunction | None = None,
aggregate_fn: Callable[[list[float]], float] = np.mean,
aggregate_key: str = "mean",
query_prompts: str | dict[str, str] | None = None,
corpus_prompts: str | dict[str, str] | None = None,
write_predictions: bool = False,
ndcg_only: bool = True,
) -> None:
super().__init__()
if dataset_names is None:
dataset_names = LANGS
self.dataset_names = [_normalize_lang(name) for name in dataset_names]
self.dataset_id = dataset_id
self.aggregate_fn = aggregate_fn
self.aggregate_key = aggregate_key
self.write_csv = write_csv
self.query_prompts = self._normalize_prompts(query_prompts)
self.corpus_prompts = self._normalize_prompts(corpus_prompts)
self.show_progress_bar = show_progress_bar
self.score_functions = score_functions or {}
self.score_function_names = sorted(self.score_functions.keys())
self.main_score_function = main_score_function
self.truncate_dim = truncate_dim
self.name = f"NanoCodeSearchNet_{aggregate_key}"
if self.truncate_dim:
self.name += f"_{self.truncate_dim}"
self.ndcg_only = ndcg_only
self.mrr_at_k = mrr_at_k or [10]
self.ndcg_at_k = ndcg_at_k or [10]
if ndcg_only:
self.accuracy_at_k = [10]
self.precision_recall_at_k = [10]
self.map_at_k = [10]
else:
self.accuracy_at_k = accuracy_at_k or [1, 3, 5, 10]
self.precision_recall_at_k = precision_recall_at_k or [1, 3, 5, 10]
self.map_at_k = map_at_k or [100]
self._validate_dataset_names()
self._validate_prompts()
ir_kwargs = {
"mrr_at_k": self.mrr_at_k,
"ndcg_at_k": self.ndcg_at_k,
"accuracy_at_k": self.accuracy_at_k,
"precision_recall_at_k": self.precision_recall_at_k,
"map_at_k": self.map_at_k,
"show_progress_bar": show_progress_bar,
"batch_size": batch_size,
"write_csv": write_csv,
"truncate_dim": truncate_dim,
"score_functions": score_functions,
"main_score_function": main_score_function,
"write_predictions": write_predictions,
}
self.evaluators = [
self._load_dataset(name, **ir_kwargs)
for name in tqdm(self.dataset_names, desc="Loading NanoCodeSearchNet", leave=False)
]
self.csv_file = f"NanoCodeSearchNet_evaluation_{aggregate_key}_results.csv"
self.csv_headers = ["epoch", "steps"]
self._append_csv_headers(self.score_function_names)
def _normalize_prompts(self, prompts: str | dict[str, str] | None) -> dict[str, str] | None:
if prompts is None:
return None
if isinstance(prompts, str):
return {name: prompts for name in self.dataset_names}
normalized: dict[str, str] = {}
for key, value in prompts.items():
normalized[_normalize_lang(key)] = value
return normalized
def _append_csv_headers(self, score_function_names):
for score_name in score_function_names:
for k in self.accuracy_at_k:
self.csv_headers.append(f"{score_name}-Accuracy@{k}")
for k in self.precision_recall_at_k:
self.csv_headers.append(f"{score_name}-Precision@{k}")
self.csv_headers.append(f"{score_name}-Recall@{k}")
for k in self.mrr_at_k:
self.csv_headers.append(f"{score_name}-MRR@{k}")
for k in self.ndcg_at_k:
self.csv_headers.append(f"{score_name}-NDCG@{k}")
for k in self.map_at_k:
self.csv_headers.append(f"{score_name}-MAP@{k}")
def _load_dataset(self, lang: str, **ir_kwargs) -> InformationRetrievalEvaluator:
if not is_datasets_available():
raise ValueError("datasets is required; install via `pip install datasets`.")
from datasets import load_dataset
split_name = _split_name(lang)
t0 = time.perf_counter()
corpus_ds = load_dataset(self.dataset_id, "corpus", split=split_name)
queries_ds = load_dataset(self.dataset_id, "queries", split=split_name)
qrels_ds = load_dataset(self.dataset_id, "qrels", split=split_name)
logger.info("[NanoCodeSearchNet] loaded datasets for %s in %.2fs", lang, time.perf_counter() - t0)
corpus_dict = {}
t1 = time.perf_counter()
for sample in corpus_ds:
row = cast(dict[str, Any], sample)
text = row.get("text")
if text:
corpus_dict[row["_id"]] = text
queries_dict = {}
for sample in queries_ds:
row = cast(dict[str, Any], sample)
text = row.get("text")
if text:
queries_dict[row["_id"]] = text
qrels_dict: dict[str, set[str]] = {}
for sample in qrels_ds:
row = cast(dict[str, Any], sample)
qid = row["query-id"]
cids = row["corpus-id"]
if isinstance(cids, list):
qrels_dict.setdefault(qid, set()).update(cids)
else:
qrels_dict.setdefault(qid, set()).add(cids)
logger.info(
"[NanoCodeSearchNet] materialized dicts for %s in %.2fs (corpus=%d, queries=%d, qrels=%d)",
lang,
time.perf_counter() - t1,
len(corpus_dict),
len(queries_dict),
len(qrels_dict),
)
if self.query_prompts is not None:
ir_kwargs["query_prompt"] = self.query_prompts.get(lang, None)
if self.corpus_prompts is not None:
ir_kwargs["corpus_prompt"] = self.corpus_prompts.get(lang, None)
evaluator = InformationRetrievalEvaluator(
queries_dict,
corpus_dict,
qrels_dict,
name=_split_name(lang),
**ir_kwargs,
)
return evaluator
def _validate_dataset_names(self) -> None:
valid = set(LANGS)
missing = [name for name in self.dataset_names if name not in valid]
if missing:
raise ValueError(f"Invalid language(s): {missing}. Valid: {sorted(valid)}")
def _validate_prompts(self) -> None:
error_msg = ""
if self.query_prompts is not None:
missing = [lang for lang in self.dataset_names if lang not in self.query_prompts]
if missing:
error_msg += f"Missing query prompts for: {missing}\n"
if self.corpus_prompts is not None:
missing = [lang for lang in self.dataset_names if lang not in self.corpus_prompts]
if missing:
error_msg += f"Missing corpus prompts for: {missing}\n"
if error_msg:
raise ValueError(error_msg.strip())
def __call__(
self,
model: SentenceTransformer,
output_path: str | None = None,
epoch: int = -1,
steps: int = -1,
*args,
**kwargs,
) -> dict[str, float]:
per_metric_agg: dict[str, list[float]] = {}
per_dataset: dict[str, float] = {}
if self.score_functions is None:
self.score_functions = {model.similarity_fn_name: model.similarity}
self.score_function_names = [model.similarity_fn_name]
self._append_csv_headers(self.score_function_names)
for evaluator in tqdm(self.evaluators, desc="Evaluating NanoCodeSearchNet", disable=not self.show_progress_bar):
logger.info("Evaluating %s", evaluator.name)
results = evaluator(model, output_path, epoch, steps)
for key, value in results.items():
per_dataset[key] = value
if "_" in key:
_, metric_name = key.split("_", 1)
else:
metric_name = key
per_metric_agg.setdefault(metric_name, []).append(value)
agg_results = {
f"{self.name}_{metric}": self.aggregate_fn(vals)
for metric, vals in per_metric_agg.items()
}
if not self.primary_metric:
main_score_fn = self.main_score_function
main = None if main_score_fn is None else str(main_score_fn)
ndcg_target = f"ndcg@{max(self.ndcg_at_k)}"
candidates = [k for k in agg_results if k.endswith(ndcg_target)]
if main:
preferred = [k for k in candidates if main in k]
if preferred:
self.primary_metric = preferred[0]
if not self.primary_metric and candidates:
self.primary_metric = candidates[0]
if self.primary_metric and self.primary_metric in agg_results:
logger.info("Primary %s: %.4f", self.primary_metric, agg_results[self.primary_metric])
per_dataset.update(agg_results)
if self.ndcg_only:
per_dataset = {k: v for k, v in per_dataset.items() if "ndcg@10" in k}
return per_dataset
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Evaluate a model on NanoCodeSearchNet")
parser.add_argument("--model-path", required=True, help="Path or HF id for SentenceTransformer model")
parser.add_argument("--langs", nargs="*", default=None, help="Languages (default: all)")
parser.add_argument("--batch-size", type=int, default=128, help="Eval batch size")
parser.add_argument("--output", default=None, help="Optional JSON output path for metrics")
parser.add_argument("--show-progress", action="store_true", help="Show per-language tqdm during eval")
parser.add_argument(
"--no-autocast",
action="store_true",
help="Disable torch.autocast (default: enabled on CUDA with bf16 if available)",
)
parser.add_argument(
"--autocast-dtype",
choices=["bf16", "fp16"],
default="bf16",
help="autocast dtype (bf16 or fp16)",
)
parser.add_argument("--query-prompt", default=None, help="Prefix applied to queries")
parser.add_argument("--corpus-prompt", default=None, help="Prefix applied to corpus/passages")
parser.add_argument(
"--all-metrics",
action="store_true",
help="Return all metrics (default: ndcg@10 only)",
)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Pass trust_remote_code=True to SentenceTransformer (needed for some HF models)",
)
return parser.parse_args()
def main(argv: Sequence[str] | None = None) -> None:
args = parse_args()
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
langs = args.langs or LANGS
model = SentenceTransformer(args.model_path, prompts=None, trust_remote_code=args.trust_remote_code)
model.eval()
evaluator = NanoCodeSearchNetEvaluator(
dataset_names=langs,
batch_size=args.batch_size,
show_progress_bar=args.show_progress,
write_csv=False,
query_prompts=args.query_prompt if args.query_prompt else None,
corpus_prompts=args.corpus_prompt if args.corpus_prompt else None,
ndcg_only=not args.all_metrics,
)
use_autocast = not args.no_autocast
autocast_dtype = {"bf16": "bfloat16", "fp16": "float16"}[args.autocast_dtype]
autocast_ctx = None
if use_autocast:
import torch
device_type = "cuda" if torch.cuda.is_available() else "cpu"
autocast_ctx = torch.autocast(device_type=device_type, dtype=getattr(torch, autocast_dtype))
if autocast_ctx:
with autocast_ctx:
results = evaluator(model)
else:
results = evaluator(model)
score_fn = model.similarity_fn_name
ndcg_key_suffix = f"{score_fn}_ndcg@10"
per_lang = {}
for lang in evaluator.dataset_names:
key = f"{_split_name(lang)}_{ndcg_key_suffix}"
if key in results:
per_lang[lang] = results[key]
avg = float(np.mean(list(per_lang.values()))) if per_lang else float("nan")
print("NanoCodeSearchNet Evaluation (NDCG@10)")
print(f"Model: {args.model_path}")
for lang in evaluator.dataset_names:
val = per_lang.get(lang)
if val is None:
continue
print(f"{_split_name(lang)}_{ndcg_key_suffix}: {val:.4f}")
print(f"NanoCodeSearchNet_mean_{ndcg_key_suffix}: {avg:.4f}")
if args.output:
payload = {"model": args.model_path, "avg": avg, "per_lang": per_lang, "metrics": results}
with open(args.output, "w", encoding="utf-8") as f:
json.dump(payload, f, ensure_ascii=False, indent=2)
if __name__ == "__main__":
main()