blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
072988ddd38519237e86f4c699c9f59b0325b3f5
Python
avoevodin/lab5
/levy_curve.py
UTF-8
638
3.78125
4
[]
no_license
"""Draw Levy curve fractal. """ import turtle turtle.speed('fastest') def draw_levy_curve(edge_width: int, rec_deep: int): """Draw Levy curve fractal. Keyword args: edge_width -- current width of edge (int) rec_deep -- current recursion deep (int) """ if rec_deep == 0: turtle.forward(edge_width) return new_edge_width = (edge_width ** 1 / 2) / 2 turtle.left(45) draw_levy_curve(new_edge_width, rec_deep - 1) turtle.right(90) draw_levy_curve(new_edge_width, rec_deep - 1) turtle.left(45) if __name__ == "__main__": draw_levy_curve(3000000, 9)
true
863a802ac3d73b40e6d2644d48b366a6e288bd78
Python
asanchez78/max7219
/matrix_scroll.py
UTF-8
642
3.21875
3
[]
no_license
#!/usr/bin/python3 import max7219.led as led import argparse device = led.matrix(cascaded = 3) parser = argparse.ArgumentParser(description='Scrolls message on LED matrix') parser.add_argument('-m','--message',help='The message to scroll on the LED matrix',required=True) parser.add_argument('-r','--repeat',help='The number of times to repeat the message. 0 will scroll forever.',required=True,type=int) arguments = parser.parse_args() message = arguments.message scrolls = arguments.repeat if scrolls == 0: while scrolls == 0: device.show_message(message) else: while scrolls > 0 : device.show_message(message) scrolls -= 1
true
b47de52c4bb3bf7c8ed72ac716ad80d43e4418a0
Python
GudUgne/Block_3
/Bit_1.py
UTF-8
1,244
3.046875
3
[]
no_license
# `pc_transaction.py` example from bitcoin.rpc import RawProxy p = RawProxy() #sujungimas # Pavyzdinis ID: "4410c8d14ff9f87ceeed1d65cb58e7c7b2422b2d7529afc675208ce2ce09ed7d" txid = input("Iveskite transakcijos ID\n") # First, retrieve the raw transaction in hex - is pavyzdzio visa tranzakcijos info raw_tx = p.getrawtransaction(txid) # Decode the transaction hex into a JSON object - is pavyzdzio decoded_tx = p.decoderawtransaction(raw_tx) i_sum = [] #saugojimo kintamasis what_got = 0 # Retrieve each of the outputs from the transaction for output in decoded_tx['vout']: i_sum.append(output['value']) #issaugo verte print("Ka tranzakcijos gavejas gavo: ") for ou in i_sum: print(ou) what_got += ou #ka gavo issaugo whole_sum = 0 #bendra suma # Calculating whole sum for input in decoded_tx['vin']: #susumuojami visi pervedimai kuriuos atliko out_index = input['vout'] call_tx = p.getrawtransaction(input['txid']) decoded_call_tx = p.decoderawtransaction(call_tx) whole_sum += decoded_call_tx['vout'][out_index]['value'] print("Visa suma: ") print(whole_sum) tran_fee = whole_sum - what_got print("Trasakcijos mokestis, kuri gavo mineris ") print(tran_fee)
true
ced559d875588c05039e1845b3dc10a43e38a30e
Python
Ruk288/Project-01
/Chapter#05.py
UTF-8
4,059
3.9375
4
[]
no_license
# simple if statement cars=['audi','bmw','suzuki','toyota'] for car in cars: if car=='bmw': print(car.upper()) else: print(car.title()) car='Audi' car.lower() =='audi' # checking for inequality requested_topping='paproni' if requested_topping != 'mashrooms': print("hold the mashrooms!") # Numerical Comparisions answer=17 if answer!=42: print("that is not the correct number") #checking user is not in the list banned_users=['andrew','carolina','david'] user='marie' if user not in banned_users: print(user.title() + ", you can response") # TRY IT YOURSELF #5-1 car='subaru' print("Is car == 'subaru' I predict true") print(car=='subaru') #5-2 for car in cars: if car=='Audi': print(car.lower()=='audi') if car!='audi': print(car=='suzuki') numbers=[1,2,3,5,6,7] for num in numbers: if (num==4 or num==6): print(str(num) + "is not in the list") if(num!=4): print(str(num) + "is in the list") #Simple IF statement age=12 if age >= 18: print("you can vote") print("you can not vote") # if else statement age=17 if age>=18: print("you are eligible for the test") else: print("sorry you are not elligiable") #if-elif-else age=12 if age<4: price=0 elif age < 18: price=5 else: price=10 print("you admission cost is "+str(price)) #MULTIPLE ELIF STATEMENTS age=12 if age<4: price=0 elif age < 18: price=5 elif age<65: price=10 elif age>=65: price=5 print("you admission cost is "+str(price)) #multiple if without else of elif requested_topping=['mushrooms','extra cheese'] if 'mushrooms'in requested_topping: print("adding mushrooms") if'papproni'in requested_topping: print("Add peproni") if 'extra cheese' in requested_topping: print("add extra cheese") ##################### TRY YOURSELF ####################### # AlienColors #5-4 alien_color=['green','yellow','red'] if 'green' in alien_color: print("the player earned 5 points") else: print("th eplayer just earned 10 points") #5-5 alien_color=['green','yellow','red'] if 'green' in alien_color: print("the player earned 5 points") elif 'yellow' in alien_color: print("the player just earned 10 points") else: print("The player earned 15 points") #5-6 age=14 if age<2: print("the person is a baby") elif age==2 or age<4: print("the person is toddler") elif age==4 or age<13: print("the person is kid") elif age==20 or age<65: print("the person is an adult") elif age>=65: print("the person is elder") #5-7 fav_fruits=['apple','mango','banana','pinapple','melon'] if 'apple' in fav_fruits: print("I really like apple") if 'mango' in fav_fruits: print("I really like mango") if 'banana' in fav_fruits: print("I really like banana") if 'pinapple' in fav_fruits: print("I really like pinapple") if 'melon' in fav_fruits: print("I really like melon") # Checking for special items requested_toppings=['mushroom','green peppers','extra cheese'] for requested_topping in requested_toppings: if requested_topping=='green peppers': print("sorry we are out of green peppers right now") else: print("Adding " + requested_topping) print("finished making piza") requested_toppings=[] if requested_toppings: for requested_topping in requested_toppings: print("Adding "+ requested_topping) print("Finish making your pizza") else: print("Are you sure you want a plan pizza") available_toppings=['mushrooms','olives','green peppers','pepproni','pineapple','extra cheese'] requested_toppings=['mushrooms','french fries','extra cheese'] for requested_topping in requested_toppings: if requested_topping in available_toppings: print("Adding "+ requested_topping) else: print("sorry we dont have " + requested_topping) print("Finished making pizza") # TRY YOURSELF #5-8 username=['ali','sara','admin','zara','saira'] for user in username: if user=='admin': print("hi "+ user+ " welocme here") else: print("hi "+ user + "welcome")
true
cb28b141fcfec1c03f55ea3f9300f19a911b2b2c
Python
manelmengibar/Python_Excel
/Pandas/Basic/Create.py
UTF-8
485
3.09375
3
[]
no_license
import pandas as pd # dataframe Name and Age columns df = pd.DataFrame({'Empresa': ['Draexlmaier', 'Seat', 'Fujikura', 'Synergie'], 'Anys': [5, 20, 30, 10]}) # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter('demo.xlsx', engine='xlsxwriter') # Convert the dataframe to an XlsxWriter Excel object. df.to_excel(writer, sheet_name='LListat', index=False) # Close the Pandas Excel writer and output the Excel file. writer.save()
true
ee17411d4662f9c226544cc5d94ced0693e8d994
Python
Instrumedley/hypothesis
/exceptions.py
UTF-8
371
2.984375
3
[]
no_license
class Error(Exception): """Base class for other exceptions""" pass class AddTransactionError(Error): """Raised when you can't create a transaction for Person""" pass class InvalidNumberError(Error): """Raised when input is not an int or float""" pass class InvalidDateError(Error): """Raised when date string is not a valid date""" pass
true
dbf3b203ee329e31f718be93018b26afe9840068
Python
beitay/SpamRepo
/Spammer.py
UTF-8
348
3.125
3
[]
no_license
from pynput.keyboard import Key, Controller import time times_to_spam = input("Enter number of times to spam> ") time.sleep(5) i = 0 while i < int(times_to_spam): keyboard = Controller() # any letter keyboard.press('A') keyboard.release('A') keyboard.press(Key.enter) keyboard.release(Key.enter) i += 1
true
d5b191508f587b8cdde93f7003ba5e08f0858269
Python
arkakrak/Jezyki_Skryptowe
/Zadanie9.py
UTF-8
714
3.609375
4
[]
no_license
input_file = open("input_file.txt", "w") input_file.writelines("I chose to write this line 1\n") input_file.writelines("I chose to write this line 2\n") input_file.writelines("I chose to write this line 3\n") input_file.writelines("I chose to write this line 4\n") input_file.writelines("I chose to write this line 5\n") input_file.close() try: with open("input_file.txt", "r") as input_file: with open("output_file.txt", "w") as output_file: for row in input_file: output_file.write(row) except (IOError, ZeroDivisionError): print("I/O Error or dividing by zero") output_file_read = open("input_file.txt", "r") print(output_file_read.read()) output_file_read.close()
true
ad5ad7c50e54a80248f3008634983c2ddfc28675
Python
mapoferri/Bioinformatics-projects
/GOR-SVM/extract_matrix.py
UTF-8
2,532
2.765625
3
[]
no_license
import os import numpy as np import sys #run with python3! def extract_matrix(pssm_file): with open(pssm_file, "r") as pssm: a = 0 matrix=[[] for line in pssm] with open(pssm_file, "r") as porcod: for line in porcod: line = line.split() #print (line) #iterating for line if a == 0: #first line (residues) a += 1 continue #pass --> veder come funziona e sostituire in caso elif a >= 1 : #cutting first line, MATRIX #print (line) sequence_p = (line[22:42]) print (sequence_p) for value in sequence_p: freq = np.true_divide(int(value),100) matrix[a].append(freq) #normalized a += 1 #matrix_file = "matrix_"+pssm_file #with open(matrix_file, "w+") as m: matrix = matrix[1:len(matrix)] #for line in matrix: #m.write(str(line)+ '\n') return matrix ################################################################################ # code to insert padding in every matrix and save to another open # # extracted matrix will be used for SVM too, so we need different matrices # # as GOR input (solving indexing problems) # ################################################################################ #def padding(matrix): #padding = np.zeros((8,20), dtype = float) #empty arrays of eight rows #print (padding) #matrix = np.loadtxt(matrix, delimiter=',') #print (matrix) #gor_matrix = "gor_input_"+matrix_file #with open(matrix) as matrix: #GORMatrix = np.concatenate((padding[:,None], matrix, padding[:,None]), axis = 0) #GORMatrix = padding + matrix + padding #adding padding to gor input matrices #print (GORMatrix) #with open(gor_matrix, "a+") as gor_matrix: #gor_matrix.write(str(padding)) #gor_matrix.write(str(matrix)) #gor_matrix.write(str(padding)) if __name__ == '__main__': path = sys.argv[1] #giving as input the directory with all files files_list = [f for f in os.listdir(path)] for files in files_list: #iterating for file in directory if files.endswith('.pssm'): pssm_file = files matrix = extract_matrix(pssm_file) #gor_matrix = padding(matrix) #if files.startswith('matrix'): #matrix_file = files #gor_matrix = padding(matrix_file) #matrix_file = extract_matrix(pssm_file) np.save('matrix_prova_{}.npy'.format(pssm_file), matrix) #print (type(matrix_file)) #gor_matrix = padding(matrix) #print (gor_matrix)
true
92b34099ca3cac42e8368a57b77c7200a24bf80e
Python
wuqingtao-GitHub/Speech-Transformer-tf2.0
/test/test_input_mask.py
UTF-8
5,323
2.6875
3
[]
no_license
import tensorflow as tf import numpy as np ##################################################### # NOTE: # 这个mask是为了遮住att输出(N,seq_q,seq_k)中 # 被padding的部分(seq_k对应的那一轴,k是key,也就是被查询的句子) ##################################################### def create_padding_mask(seq): ''' :param seq: [batch_size * seq_len_k] # k means key in MultiheadAttention :return: [batch_size, 1, seq_len_k] ''' seq = tf.cast(tf.math.equal(seq, 0), tf.float32) # add extra dimensions so that we can add the padding # to the attention logits. return seq[:, tf.newaxis, :] # (batch_size, 1, seq_len) def create_padding_mask2(seq,seq_lengths): ''' padding position is set to 1. padding_mask can be broadcast on attention_logits (batch_size * seq_q* seq_k) :param seq: [batch_size * seq_len * feature_dim] :param seq_lengths: [batch_size] (== seq_k in MultiheadAttention) :return: padding_mask: batch_size * 1 * seq_len ''' # seq = tf.math.equal(seq[:,:,0],0) # seq = tf.math.equal(seq,False) # seq = tf.cast(seq, tf.float32) seq_lengths = tf.squeeze(seq_lengths).numpy() # print('seq_lengths shape: ' + str(seq_lengths.shape.as_list())) seq_shape = seq.shape.as_list() padding_mask = np.zeros(seq_shape[:-1],dtype=seq.dtype.as_numpy_dtype) # batch_size * seq_len for i in range(seq_shape[0]): padding_mask[i,int(seq_lengths[i]):] = 1 # eager mode doesnt support item assignment,use numpy instead # add extra dimensions so that we can add the padding to the attention logits. return tf.convert_to_tensor(padding_mask[:,np.newaxis,:]) ##################################################### # NOTE: # 这个mask是为了遮住att输出(N,seq_q,seq_k)中 # 当前时间步i后面的部分(seq_k对应的那一轴,k是key,也就是被查询的句子) ##################################################### def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask # (seq_len, seq_len) AKA (seq_q, seq_k) ##################################################### # NOTE: # encoder与decoder第二个block的self-att只需要考虑遮盖被pad的部分 # decoder第一个block的self-att需要考虑遮盖被pad的部分以及遮盖未来时间步的信息 ##################################################### def create_masks(inp, tar): ''' :param inp: [batch_size * seq_len_k_of_encoder ] :param tar: [batch_size * seq_len_k_of_decoder_block2 ] :return: ''' # Encoder padding mask enc_padding_mask = create_padding_mask(inp) # Used in the 2nd attention block in the decoder. # This padding mask is used to mask the encoder outputs. # encoder outputs [batch_size * seq_len * d_model] 中间那一维相比原始encoder的input不变,所以就按照inp计算了 dec_padding_mask = create_padding_mask(inp) # Used in the 1st attention block in the decoder. # It is used to pad and mask future tokens in the input received by the decoder. look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) dec_target_padding_mask = create_padding_mask(tar) combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) return enc_padding_mask, combined_mask, dec_padding_mask def create_masks2(inp, tar, inp_len, tar_len): ''' :param inp: [batch_size * seq_len * feature_dim] :param tar: [batch_size * seq_len * feature_dim] :param inp_len: [batch_size] :param tar_len: [batch_size] :return: ''' # Encoder padding mask enc_padding_mask = create_padding_mask2(inp,inp_len) # Used in the 2nd attention block in the decoder. # This padding mask is used to mask the encoder outputs. # encoder outputs [batch_size * seq_len * d_model] 中间那一维相比原始encoder的input不变,所以就按照inp计算了 dec_padding_mask = create_padding_mask2(inp,inp_len) # Used in the 1st attention block in the decoder. # It is used to pad and mask future tokens in the input received by the decoder. look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) dec_target_padding_mask = create_padding_mask2(tar,tar_len) combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) return enc_padding_mask, combined_mask, dec_padding_mask if __name__=='__main__': x = np.array([[[7, 6, 1, 1, 1], [1, 2, 3, 1, 1], [1, 1, 1, 1, 1]], [[7., 6, 6, 1, 1], [0.0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]]) length = [3,1] length2 = [3,3] print(create_padding_mask(x[:,:,0])) x2 = np.random.randn(2,3,5) print(create_padding_mask(x2[:,:,0])) temp = create_look_ahead_mask(x2.shape[1]) print(temp) temp = create_masks(x2[:,:,0],x[:,:,0]) print(temp) x = tf.constant([[[7, 6, 1, 1, 1], [1, 2, 3, 1, 1], [1, 1, 1, 1, 1]], [[7., 6, 6, 1, 1], [0.0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]]) length = tf.constant([3,1]) length2 = tf.constant([3,3]) print(create_padding_mask2(x,length)) x2 = tf.random.uniform((2,3, 5)) print(create_padding_mask2(x2,length2)) temp = create_look_ahead_mask(x2.shape[1]) print(temp) temp = create_masks2(x2, x, length2,length) print(temp)
true
efaa3bf10aee5ffe79b7dee0b6f85adb9385b2d2
Python
zilongwang1993/MergeSortedFiles
/mergeFile.py
UTF-8
2,756
3.34375
3
[]
no_license
import heapq import fnmatch import os import sys # Name: hw.py # Author: Zilong Wang # Goal: merge any number of sorted text files with one data per line into a single file. # Requirements: # 1. The program must compile and run without errors on the sample input files. # 2. The program should be self-documenting. Running the program with no input arguments # should produce instructions. The program should require no input from the user except # arguments passed on the command line when executing the program. Do not prompt the user # for input. # 3. The program should be able to handle input files too large to fit entirely in memory. # 4. The program should be able to handle merging a file with itself any number of times. # 5. The program must be robust. It should not crash or show low-level generic exceptions or # stack traces if given unexpected or invalid input. def main(): try: file_names=[] args=sys.argv #If no input argument for file names are found, the default is to #check for all the .txt files in the current directory and use them as input files. if len(args) == 1: for file in os.listdir('.'): if fnmatch.fnmatch(file, '*.txt'): file_names.append(file) #If input file names are provided as command line arguments, #use them as input files. elif len(args)>1: file_names=args[1:] merge(file_names) except: print "Unexpected error in main():", sys.exc_info()[0] def merge(file_names): try: #create a priority queue for maintaining the current smallest strings from each file. pq=[] opened_files = [ open(f) for f in file_names] output_file_name = "output.txt" if os.path.isfile(output_file_name): f= open(output_file_name,'w+') f.close() # print "file exists" # os.remove(output_file_name) for cur_file in opened_files: first = cur_file.readline().rstrip() #detect empty file if (len(first) is 0): continue heapq.heappush(pq,(first,cur_file)) output = open(output_file_name,'w+') #keep popping from the priority queue until it is empty. while(pq): cur = heapq.heappop(pq) output.write(cur[0]+'\n') print cur[0] next=cur[1].readline() if len(next) >0: next=next.rstrip() # check if the input file is sorted properly. # if the file is not sorted, raise exception. if next<cur[0]: raise ValueError('The input file is not sorted properly for ' + cur[1].name +".Please fix it and try again.") #put the next smallest item in the queue heapq.heappush(pq,(next,cur[1])) for f in opened_files: f.close() output.close() except ValueError as err: print(err.args) except: print "Unexpected error in merge():", sys.exc_info()[0] if __name__ == "__main__": main()
true
434c72767437a9fdfcd869aa94932a817d004552
Python
svf55/get_image
/client/client.py
UTF-8
2,725
2.75
3
[]
no_license
#!/usr/bin/env python import io from PIL import Image import logging from websocket import create_connection, ABNF import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'proto')) import get_image_pb2 class WebSocketClient(object): """ Getting an image through a Websocket """ def __init__(self, host_ws, port_ws): self.host_ws = host_ws self.port_ws = port_ws self._logger = logging.getLogger(__name__) def get_image(self, image_generator, image_max_width, image_max_height, image_gray): ws = create_connection('ws://' + self.host_ws + ':' + str(self.port_ws)) client_request = get_image_pb2.ClientRequest() client_request.image_generator = image_generator if image_max_width: client_request.image_max_width = image_max_width if image_max_height: client_request.image_max_height = image_max_height client_request.image_gray = image_gray message = client_request.SerializeToString() ws.send(message, opcode=ABNF.OPCODE_BINARY) self._logger.info('Sent') self._logger.info('Receive...') data = ws.recv() server_response = get_image_pb2.ServerResponse() server_response.ParseFromString(data) bio = io.BytesIO(server_response.image_byte) bio.seek(0) image = Image.open(bio) self._logger.info('Save image %s', server_response.image_file_name) image.save(server_response.image_file_name) ws.close() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Websocket client') parser.add_argument('--host_ws', help='Websocket host, example: localhost', required=True) parser.add_argument('--port_ws', type=int, default=8888, help='Websocket port, example: 9500') parser.add_argument('--image_generator', default='PIL', choices=['file', 'PIL'], help='Image generator', required=True) parser.add_argument('--image_max_width', type=int, help='Image max width (integer)') parser.add_argument('--image_max_height', type=int, help='Image max height (integer)') parser.add_argument('--image_gray', action='store_true', default=False, help='Image is gray') args = parser.parse_args() # Setup logging FORMAT = '%(asctime)s %(process)d %(levelname)s %(name)s %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) # Getting an image through a Websocket WebSocketClient(args.host_ws, args.port_ws).get_image(args.image_generator, args.image_max_width, args.image_max_height, args.image_gray)
true
bc0183f0b653f7114426f94fd340cc72fb234550
Python
AbubakarSaad/NN-Assignment2
/functions.py
UTF-8
561
2.921875
3
[]
no_license
import math import numpy as np class Functions(): def neighbourhood(self, radius, numIteration, timeConstant): return radius * np.exp(-(numIteration / timeConstant)) def guassin(self, radius, dist): return np.exp(-(dist**2)/(2*(radius**2))) # updating the learning rate def updateLR(self, learningRate, numIteration, timeConstant): return learningRate * np.exp(-(numIteration / timeConstant)) def mexicanhat(self, radius, dist): return (1-(dist**2/radius**2)) * np.exp(-(dist**2)/(2*(radius**2)))
true
66f39aa0f7da929f6b74eb0678719c9f598de6e0
Python
dineshkumarkummara/my-basic-programs-in-java-and-python
/folders/python/instagram/90class.py
UTF-8
327
4.4375
4
[]
no_license
#Creating a class in Python. In the example, the class has a single method called "talk", # which prints a default greeting. Then, two objects (or instances) of that class are created, # and "talk" is called on each of them. class animal: def talk(self): print("i am an animal") animal1=animal() animal1.talk()
true
cf5cfb7497d9646be831c6f8d2f58598566dc853
Python
SRH-BDBA/movie-data
/aggregation.py
UTF-8
538
2.5625
3
[]
no_license
import pymongo import config conn = config.MONGO_URL client = pymongo.MongoClient(conn) db = client["movies"] collection1 = db.movies_collection collection2 = db.budget_collection collection3 = db.aggregated_collection data = list(collection1.aggregate( [ { "$lookup" : { "from" : "budget_collection", "localField" : "original_title", "foreignField" : "title", "as": "aggregate" } }, ])) collection3.insert_many(data) print(f'{len(data)} is the number of movies inserted in the aggregated_collection')
true
b280a01ec97b2770213f75e29d67faf276d4e857
Python
mauromatsudo/brazilian-stocks-analyzer
/B3Analyzer/data/B3_list.py
UTF-8
4,196
3.0625
3
[ "Apache-2.0" ]
permissive
''' Author: Mauro Matsudo This script uses the official B3 web site get the list of all thhe firm trade in brazilian stock market ''' import openpyxl import requests from pandas import DataFrame from zipfile import ZipFile from io import BytesIO from sys import exit from os.path import exists class Plan: def __init__(self): self._url = 'http://www.b3.com.br/lumis/portal/file/fileDownload.jsp?fileId=8AA8D0975A2D7918015A3C81693D4CA4' def download_plan(self): try: request = requests.get(self._url) except requests.exceptions.ConnectionError: print('There is a problem with your connection to http://www.b3.com.br.') if request.status_code is False: print( 'An Error occurred, if evertything alright with your internet and proxy, so the worksheet is no longer available in ' 'http://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/acoes/consultas/classificacao-setorial/') exit(request.status_code) file = ZipFile(BytesIO(request.content)) name = file.infolist()[0].filename # The file name contain release date, so if the worksheet was previously downloaded and has the same date # it isn't necessay to upgrade our data if exists(name): print("The excel file from B3 is the last release. There is no reason to download new version.\n" "If there is any problem with your plan, please delete it and run the scrip again!") else: file.extractall() return openpyxl.load_workbook(name) def organize_plan(self, download_new=False): if download_new == True: plan = self.download_plan() else: plan = openpyxl.load_workbook("Setorial B3 03-03-2020 (português).xlsx") # It'll select the first plan doesn't matter its name, so it b3 change it, there'll be no effect sheet = plan[plan.sheetnames[0]] # Nornally the column D is responsable to store the ticker, so it will be our reference max_row_d = max((d.row for d in sheet['D'] if d.value is not None)) # Get the number of companies trade in B3 tickers = {} for row in sheet.iter_rows(min_row=1, max_row= max_row_d, min_col=4 ,max_col=4): # iterating the rows containing the tickers code current_row = row[0] ticker = current_row.value # Note every classification is taken based on the way they are organized at the plan industry_cell = sheet.cell(row=current_row.row, column=1) # the instustry sector is stored in the first column if industry_cell.value == 'SETOR ECONÔMICO': # the general industry is defined bellow the 'SETOR ECONÔMICO' header, however that header his merged and occupies # 2 rows, that's why there +2. Note that, until the next header, all the firms belongs to the same industry industry = sheet.cell(row=(industry_cell.row+2), column=1).value sub_industry_cell = sheet.cell(row = current_row.row, column=2) # the sub-instustry sector is stored in the second column if current_row.row > 6 and sub_industry_cell.value is not None and sub_industry_cell.value != 'SUBSETOR': sub_industry = sub_industry_cell.value segment_cell = sheet.cell(row=current_row.row, column=3) if segment_cell.row > 6 and segment_cell.value is not None and ticker is None: segment = segment_cell.value if ticker != None and (len(ticker) == 4): row_addr = current_row.row tickers[row_addr] = {'Ticker': ticker, 'Trade Name': sheet.cell(row=row_addr, column=3).value.strip(), 'Industry': industry.strip(), 'Sub-Industry': sub_industry.strip(), 'Segment': segment} b3_df = DataFrame.from_dict(tickers, orient='index') b3_df.to_excel("B3_list.xlsx", index=False) if __name__ == "__main__": plan = Plan() plan.organize_plan()
true
ee4281029b847a8422580fe79cf4f0a31d92432b
Python
viniciusarruda/genetic-algorithm
/src/Image/lena_polygon.py
UTF-8
3,629
2.796875
3
[]
no_license
import time import numpy as np import matplotlib.pyplot as plt from skimage.draw import polygon, set_color from skimage.io import imread from skimage.measure import compare_ssim from skimage import img_as_float from random import randint, random, uniform # center, radius, color # [x,y , r, r,g,b] alpha = None original = None mx = None my = None img = None def print_pop(population): for p in population: print p print '\n\n' def individual(): n = randint(3, 5) return [np.array([uniform(0, mx) for _ in xrange(n)]), np.array([uniform(0, my) for _ in xrange(n)]), random(), random(), random()] def fitness(individual): tmp = img.copy() rr, cc = polygon(individual[0], individual[1], original.shape) set_color(tmp, (rr, cc), (individual[2], individual[3], individual[4]), alpha) return (1.0 - compare_ssim(original, tmp, multichannel=True)) def mutate_x(value): value *= uniform(0.9, 1.1) return mx if value > mx else value def mutate_y(value): value *= uniform(0.9, 1.1) return mx if value > mx else value def mutate_grow(x, y): idx = randint(0, len(x)) return np.insert(x, idx, uniform(0, mx)), np.insert(y, idx, uniform(0, my)) def mutate_color(r, g, b): r *= uniform(0.9, 1.1) g *= uniform(0.9, 1.1) b *= uniform(0.9, 1.1) r = 1.0 if r > 1.0 else r g = 1.0 if g > 1.0 else g b = 1.0 if b > 1.0 else b return r, g, b def crossover(male, female): return [[male[0].copy()] + [male[1].copy()] + female[2:]] + [[female[0].copy()] + [female[1].copy()] + male[2:]] def genetic_algorithm(n_individuals=500, figs=100, epochs=50, selection_rate=0.05, crossover_rate=0.6, mutation_rate=0.01): retain = int(n_individuals * (1.0 - crossover_rate)) for _ in xrange(figs): population = map(lambda _: individual(), xrange(n_individuals)) for _ in xrange(epochs): population = list(zip(*sorted(zip(map(fitness, population), population), key=lambda t: t[0]))[1]) parents = population[:retain] + [i for i in population[retain:] if selection_rate > random()] n_parents = len(parents) n_children = n_individuals - n_parents children = [] while len(children) < n_children: male, female = randint(0, n_parents-1), randint(0, n_parents-1) if male != female: children.extend(crossover(parents[male], parents[female])) population = parents + children for i in population: for g in xrange(len(i[0])): if mutation_rate > random(): i[0][g] = mutate_x(i[0][g]) for i in population: for g in xrange(len(i[1])): if mutation_rate > random(): i[1][g] = mutate_y(i[1][g]) for i in population: if mutation_rate > random(): i[0], i[1] = mutate_grow(i[0], i[1]) for i in population: if mutation_rate > random(): i[2], i[3], i[4] = mutate_color(i[2], i[3], i[4]) best = min(zip(map(fitness, population), population), key=lambda t: t[0]) print "Fitness of adding circle: ", best[0] rr, cc = polygon(best[1][0], best[1][1], original.shape) set_color(img, (rr, cc), (best[1][2], best[1][3], best[1][4]), alpha) def main(): global alpha, original, mx, my, img alpha = 0.3 original = img_as_float(imread('lena.png')) mx, my, _ = original.shape img = np.zeros(original.shape, dtype=np.double) start = time.clock() genetic_algorithm() print "Time elapsed: ", time.clock() - start print "Final fitness: ", (1.0 - compare_ssim(original, img, multichannel=True)) fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(6, 3)) ax1.imshow(original) ax1.set_title('Original') ax2.imshow(img) ax2.set_title('Generated') plt.show() if __name__ == "__main__": main()
true
f09773d08e6a70777646e0c7218780c701ecaed7
Python
bundgus/py_curate_json
/xml_to_csv_pipeline.py
UTF-8
2,837
2.703125
3
[ "MIT" ]
permissive
import xml.etree.ElementTree as ET from xmljson import yahoo as jencoder from py_curate_json import curate_json_core as cjc from py_curate_json.flatten_denorm_json import flatten_denorm_json import json import csv def fixup_element_prefixes(elem, uri_map, memo): def fixup(name): try: return memo[name] except KeyError: if name[0] != "{": return uri, tag = name[1:].split("}") if uri in uri_map: new_name = uri_map[uri] + ":" + tag memo[name] = new_name return new_name # fix element name name = fixup(elem.tag) if name: elem.tag = name # fix attribute names for key, value in elem.items(): name = fixup(key) if name: elem.set(name, value) del elem.attrib[key] def set_prefixes(elem, prefix_map): # check if this is a tree wrapper if not ET.iselement(elem): elem = elem.getroot() # build uri map and add to root element uri_map = {} for prefix, uri in prefix_map.items(): uri_map[uri] = prefix elem.set("xmlns:" + prefix, uri) # fixup all elements in the tree memo = {} for elem in elem.getiterator(): fixup_element_prefixes(elem, uri_map, memo) def xml_to_json(xml_string): #xml_data = ET.parse('sample_json/EUOZJB.xml').getroot() root = ET.fromstring(xml_string) ns = {'asds4_0': 'http://services.sabre.com/res/asds/v4_0', 'stl15': 'http://webservices.sabre.com/pnrbuilder/v1_15', 'ns18': 'http://services.sabre.com/res/or/v1_8'} set_prefixes(root, ns) # Convert to JSON return jencoder.data(root) # xml file with one complete xml record per line input_xml_file_name = 'sample_json/EUOZJB.xml' # Get Flattened Keys From All Records cj = cjc.CurateJson() with open(input_xml_file_name, encoding='utf-8-sig') as xml_file: for xml_row_string in xml_file: # convert xml to json json_row = xml_to_json(xml_row_string) # curate json (get flattened keys) cj.curate_json(json.dumps(json_row)) # collect flattened keys flattened_keys = cj.get_master_dict() # Flatten and Denormalize All Records to CSV with open(r'output/EUOZJB_pipeline.csv', 'w') as csv_file: w = csv.DictWriter(csv_file, sorted(flattened_keys.keys()), lineterminator='\n', extrasaction='ignore') w.writeheader() with open(input_xml_file_name, encoding='utf-8-sig') as xml_file: for xml_row_string in xml_file: # convert xml to json json_row = xml_to_json(xml_row_string) # denormalize and flatten denormrows = flatten_denorm_json(json.dumps(json_row), flattened_keys) if denormrows is not None: w.writerows(denormrows)
true
b6b961e924bc7a85a81716bedfadfa9068c596d4
Python
JamesG-Projects/Misc_Projects
/Python/lab/lab11.py
UTF-8
2,114
3.296875
3
[]
no_license
"""Lab11.py: Coroutines""" __author__ = "James Garrett" __credits__ = [""] __email__ = "garretjb@mail.uc.edu" ##################### # Lab11 Co-Routines # ##################### def supplier(ingredients, chef): for ingredient in ingredients: try: chef.send(ingredient) except StopIteration as e: print(e) raise chef.close() def customer(): served = False while True: try: dish = yield print('Yum! Customer got a {}!'.format(dish)) served = True except GeneratorExit: if not served: print('Customer never got served.') raise def chef(customers, dishes): """ >>> cust = customer() >>> next(cust) >>> c = chef({cust: 'hotdog'}, {'hotdog': ['bun', 'hotdog']}) >>> next(c) >>> supplier(['bun', 'hotdog'], c) Yum! Customer got a hotdog! Chef went home. >>> cust = customer() >>> next(cust) >>> c = chef({cust: 'hotdog'}, {'hotdog': ['bun', 'hotdog']}) >>> next(c) >>> supplier(['bun'], c) Chef went home. Customer never got served. >>> cust = customer() >>> next(cust) >>> c = chef({cust: 'hotdog'}, {'hotdog': ['bun', 'hotdog']}) >>> next(c) >>> supplier(['bun', 'hotdog', 'mustard'], c) Yum! Customer got a hotdog! No one left to serve! """ remaining_customers = dict(customers) ingredients = set() while True: try: ingredient = yield except GeneratorExit: print('Chef went home.') for customer in customers: customer.close() raise ingredients.add(ingredient) if not remaining_customers: raise StopIteration('No one left to serve!') for customer, dish_name in dict(remaining_customers).items(): if not set(dishes[dish_name]) - ingredients: customer.send(dish_name) del remaining_customers[customer] #Run def _test(): import doctest doctest.testmod(verbose=True) if __name__ == '__main__': _test()
true
ba062c5e5a753908383a0c2497ea1656ceb94f53
Python
reikoreinup/AdventOfCode2020
/Day12/Ex2.py
UTF-8
1,237
3.640625
4
[]
no_license
ship_pos, wp_pos = (0, 0), (1, 10) def move(command, amount, current_pos): if command == 'N': return current_pos[0] + amount, current_pos[1] elif command == 'E': return current_pos[0], current_pos[1] + amount elif command == 'S': return current_pos[0] - amount, current_pos[1] elif command == 'W': return current_pos[0], current_pos[1] - amount for textInput in open('Input.txt', 'r').readlines(): command = textInput[0] amount = int(textInput[1:]) if command == 'L' or command == 'R': turns = amount // 90 if command == 'L' and turns == 1 or command == 'R' and turns == 3: wp_pos = wp_pos[1], -wp_pos[0] elif command == 'L' and turns == 3 or command == 'R' and turns == 1: wp_pos = -wp_pos[1], wp_pos[0] elif turns == 2: wp_pos = -wp_pos[0], -wp_pos[1] elif command == 'F': ship_pos = move("E" if wp_pos[1] >= 0 else "W", abs(wp_pos[1] * amount), ship_pos) ship_pos = move("N" if wp_pos[0] >= 0 else "S", abs(wp_pos[0] * amount), ship_pos) else: wp_pos = move(command, amount, wp_pos) print(f'Manhattan value for position {ship_pos}: {abs(ship_pos[0]) + abs(ship_pos[1])}')
true
6d1418eeee22c94150d8d773fdd3b95033ff37ce
Python
rkapdi/SENG265
/Assignments/assign3/.svn/text-base/s265fmt2.py.svn-base
UTF-8
2,746
2.859375
3
[]
no_license
#!/usr/bin/python import os import sys import optparse import re from formatting import seng265_formatter def main(): s = """?pgwdth 50 ?mrgn 15 Call me Ishmael. Some years ago--never mind how long precisely--having little or no money in my purse, and nothing particular to interest me on ?mrgn +5 shore, I thought I would sail about a little and see the watery part of the world. It is a way I have of driving off the spleen and regulating the circulation. Whenever I find myself growing grim about the mouth; ?mrgn +5 whenever it is a damp, drizzly November in my soul; whenever I find myself involuntarily pausing before coffin warehouses, and bringing up ?mrgn +5 the rear of every funeral I meet; and especially whenever my hypos get such an upper hand of me, that it requires a strong moral principle to ?mrgn +5 prevent me from deliberately stepping into the street, and methodically knocking people's hats off--then, I account it high time to get to sea as soon as I can. This is my substitute for pistol and ball. With a ?mrgn +5 philosophical flourish Cato throws himself upon his sword; I quietly ?mrgn +5 take to the ship. There is nothing surprising in this. If they but knew it, almost all men in their degree, some time or other, cherish very nearly the same feelings towards the ocean with me. There now is your insular city of the Manhattoes, belted round by ?mrgn +5 wharves as Indian isles by coral reefs--commerce surrounds it with her surf. Right and left, the streets take you waterward. Its extreme downtown is the battery, where that noble mole is washed by waves, and ?mrgn +5 cooled by breezes, which a few hours previous were out of sight of land. Look at the crowds of water-gazers there.""" fp_exist = 0 #variable for checking if tempwrite.txt exists fp = "" if(len(sys.argv)>1): fp = sys.argv[1] if(re.match(r"\.txt$",fp)): pass else: process_stdin() fp_exist = 1 fp = "tempwrite.txt" if(check_if_empty(fp)): fp = s.splitlines() fp_exist = 0 f = seng265_formatter(fp) f = f.get_lines() for x in f: print x, if(fp_exist!=0): os.remove("tempwrite.txt") fp_exist=0 def process_stdin(): """No file name was input, so have to accept text from console""" fpout = open("tempwrite.txt",'w') x = raw_input() while(x != "-1"): fpout.write(x+"\n") x = raw_input() fpout.close() return None def check_if_empty(fp): filename = open(fp,'r') filename.seek(0) first_char = filename.read(1) if not first_char: return True else: return False if __name__ == "__main__": main()
true
857479fbf7bc61d5abb25e2bcc1a93bf2a32521a
Python
frankurcrazy/SimpleFileTransfer
/SimpleFileTransfer/base.py
UTF-8
1,443
2.546875
3
[]
no_license
#!/usr/bin/env python #-*- coding: utf-8 -*- import pickle import asyncio import struct from .message import * class SimpleFileTransferBase(asyncio.Protocol): def __init__(self): self.rcvbuf = bytearray() self.pause = False def message_received(self, msg): raise NotImplementedError def pause_writing(self): self.pause = True def resume_writing(self): self.pause = False def decode_msgs(self): while len(self.rcvbuf) > 4: view = memoryview(self.rcvbuf) msg_len, = struct.unpack("!I", view[:4]) msg = None if len(view[4:]) >= msg_len: msg = pickle.loads(view[4:4+msg_len]) self.message_received(msg) del view if msg: del self.rcvbuf[:4+msg_len] else: break def data_received(self, data): self.rcvbuf += data self.decode_msgs() def send_message(self, msg): raw = pickle.dumps(msg) raw = struct.pack("!I", len(raw)) + raw self.transport.write(raw) def send_error(self, error_msg): err = { SimpleFileTransferMessageField.ACTION: \ SimpleFileTransferActionType.ERROR, SimpleFileTransferMessageField.MSG: \ error_msg, } self.send_message(err)
true
6d8f47465ee0320241d7df2bd94d935484b5e990
Python
caranuial/ud036_StarterCode
/media.py
UTF-8
651
3.109375
3
[]
no_license
import webbrowser # Movie Class that supports required functionality class Movie(object): # This is the Constructor that initializes the object in memory def __init__(self, movie_title, story_line, poster_image_url, trailer_youtube_id): # Instace Variables self.title = movie_title self.story_line = story_line self.poster_image_url = poster_image_url self.trailer_youtube_url = trailer_youtube_id def show_trailer(self): # Function to open a trailer webbrowser.open(self.trailer_youtube_id)
true
ed29c2579dabe47de5065cea960d50a6d86a2302
Python
MiaZhang0/Learning
/QuestionTypes/demo05.py
UTF-8
341
4.1875
4
[]
no_license
#分别统计列表[True,False,0,1,2]中True,False,0,1,2的元素个数,发现了什么? list = [True,False,0,1,2] a = list.count(True) b = list.count(False) c = list.count(0) d = list.count(1) e = list.count(2) print(a,b,c,d,e) #结果为2,2,2,2,1 #count()不区分True和1,False和0,但None、‘’不会被视为False
true
a64481033a16a2b95fbd761b61fdb46e8ef25fb5
Python
KVS-CODE/area_module
/unsolved q no_04.py
UTF-8
225
3.453125
3
[]
no_license
#unsolved q no: 04 def star(n): if n==0: return print("please enter any natural number ") else: return "*"*n,"\n",star(n-1) #ain inputs a=int(input('enter a positive integer')) print(star(a),sep='\n')
true
8adacf078fed3137eeaed70412c51dab4aac59d1
Python
JiguangLi/quasar_variability
/z_luminosity_plot.py
UTF-8
3,657
2.515625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 8 14:11:49 2017 @author: jiguangli """ from astropy.io import fits import pandas as pd import matplotlib.pyplot as plt import numpy as np from astropy.cosmology import FlatLambdaCDM def compute_luminosity(sdss_name,sdss_magz_dict,cosmo): z=sdss_magz_dict[sdss_name][1] radio_l_watt=sdss_magz_dict[sdss_name][0]*(10**(-29)) l_distance=cosmo.luminosity_distance(z) l_distance_meters=l_distance.value*3.085677758*(10**22) l=4*np.pi*radio_l_watt*(l_distance_meters**2) return l #Store SDSS names of two populations into two lists loud_stats=pd.read_csv('better_rl_stats.csv') #quiet_stats=pd.read_csv('normalized_large_quiet_stats.csv') #upper_limit=np.percentile(quiet_stats['Chi-square'],90) #quiet_stats=quiet_stats[quiet_stats['Chi-square']<upper_limit] #============================================================================== # loud_id=loud_stats['Unnamed: 0'].tolist() # loud_id=[x[:-4] for x in loud_id] # quiet_id=quiet_stats['Unnamed: 0'].tolist() # quiet_id=[y[:-4] for y in quiet_id] # # look_up=pd.read_csv('lightcurve_lookup.csv') # #loud_table=look_up[look_up['id'].isin(loud_id)] # #loud_sdss_names=loud_table['SDSS_NAME'].tolist() # ids=look_up['id'].tolist() # sdss_names=look_up['SDSS_NAME'].tolist() # id_sdss_dict=dict(zip(ids,sdss_names)) # loud_sdss_names=[id_sdss_dict[int(hehe)] for hehe in loud_id] # loud_stats['SDSS_NAME']=pd.Series(loud_sdss_names) # quiet_sdss_names=[id_sdss_dict[int(hinhin)] for hinhin in quiet_id] # quiet_stats['SDSS_NAME']=pd.Series(quiet_sdss_names) # # quiet_table=look_up[look_up['id'].isin(quiet_id)] # quiet_sdss_names=quiet_table['SDSS_NAME'].tolist() # # # #build a dictionary: # #key: SDSS_name Values: (I magnitude,Z) # input_file = fits.open('DR12Q(type1).fits') # tbdata = input_file[1].data # mag_arrays=tbdata.field('FIRST_FLUX') # SDSS_names=tbdata.field('SDSS_NAME') # red_shifts=tbdata.field('Z_VI') # mag_z_tuple=zip(mag_arrays,red_shifts) # sdss_magz_dict=dict(zip(SDSS_names,mag_z_tuple)) # # #compute luminosity # cosmo = FlatLambdaCDM(H0=70, Om0=0.3) #============================================================================== #============================================================================== # quiet_l_values=[compute_luminosity(x,sdss_magz_dict,cosmo) # for x in quiet_sdss_names] #============================================================================== # #============================================================================== # loud_l_values=[compute_luminosity(y,sdss_magz_dict,cosmo) # for y in loud_sdss_names] # loud_stats['Luminosity']=pd.Series(loud_l_values) # #quiet_z_values=np.array([sdss_magz_dict[zq][1] for zq in quiet_sdss_names ]) # loud_z_values=np.array([sdss_magz_dict[zl][1] for zl in loud_sdss_names ]) # loud_stats['Z']=pd.Series(loud_z_values) #============================================================================== #============================================================================== # quiet_z_values=np.array([sdss_magz_dict[zl][1] for zl in quiet_sdss_names ]) # quiet_stats['Z']=pd.Series(quiet_z_values) #============================================================================== loud_z_values=loud_stats['Z'].tolist() loud_l_values=loud_stats['Luminosity'].tolist() #plot Z-l fig=plt.figure() plt.xlabel('Z') plt.ylabel('Luminosity (W)') #plt.scatter(quiet_z_values,quiet_l_values,s=50, c='blue',label='radio-quiet') plt.scatter(loud_z_values,loud_l_values,s=21, c='red',marker='o',label='radio-loud') #ax=fig.gca() #ax.set_ylim(10**4, 10**8) plt.yscale('log') plt.legend()
true
cd0e7a6e182def35292f2fdf0a1063989e461229
Python
andreaslundin47/Advent-Of-Code-2020
/day22/day22.py
UTF-8
2,162
3.765625
4
[]
no_license
from queue import deque with open('input', 'r') as f: p1, p2 = f.read().strip().split('\n\n') deck_one = [int(v) for v in p1.split('\n')[1:]] deck_two = [int(v) for v in p2.split('\n')[1:]] def combat(deck_1, deck_2): mine_hand = deque(deck_1) crab_hand = deque(deck_2) turns = 0 while mine_hand and crab_hand: turns += 1 my_card, crab_card = mine_hand.popleft(), crab_hand.popleft() if my_card > crab_card: mine_hand.append(my_card) mine_hand.append(crab_card) elif crab_card > my_card: crab_hand.append(crab_card) crab_hand.append(my_card) if mine_hand: return 1, list(mine_hand) else: return 2, list(crab_hand) def recursive_combat(deck1, deck2): # Make queues from the decks of cards p1_deck = deque(deck1) p2_deck = deque(deck2) deck_record = set() while p1_deck and p2_deck: # Check record record = ( tuple(p1_deck), tuple(p2_deck) ) if record in deck_record: return 1, [] else: deck_record.add( record ) # Pop off top! top_1, top_2 = p1_deck.popleft(), p2_deck.popleft() # Determine the winner! if top_1 <= len(p1_deck) and top_2 <= len(p2_deck): winner, _ = recursive_combat(list(p1_deck)[:top_1], list(p2_deck)[:top_2]) else: winner = 1 if top_1 > top_2 else 2 # Add the two card to the bottom of the winner's deck! if winner == 1: p1_deck.append(top_1) p1_deck.append(top_2) else: p2_deck.append(top_2) p2_deck.append(top_1) # One deck is now empty if p1_deck: return 1, list(p1_deck) else: return 2, list(p2_deck) def deck_score(deck): return sum(idx * card for idx, card in enumerate(reversed(deck), start=1)) # Part 1 winner, deck = combat(deck_one, deck_two) score = deck_score(deck) print(f"Part 1. Winner's Score: {score}") # Part 2 winner, deck = recursive_combat(deck_one, deck_two) score = deck_score(deck) print(f"Part 2. Winner's Score: {score}")
true
2eb1bc151b59ae8a66511ca2bf78231492e2a1fe
Python
onitonitonito/py_police
/py_police.py
UTF-8
3,071
3.046875
3
[]
no_license
"""------------------------- # 경찰차 애니매이션 - 총 8장의 스프라이트 # 오브젝트 딕트와 리스트가 막 뒤죽박죽 됬는데 .. 일단은 놔두고 # 천천히 리펙토링을 해야겠다~ 지금은 여기서 끝! # #\n\n\n""" print(__doc__) import sys import time from asset.config import * # 따로 저장한 변수를 불러온다. from asset.main import * # 따로 저장한 변수를 불러온다. player = set_obj('player', DESTIN_DIR + 'car_top.png', rotate=90) enemy = set_obj('enemy', DESTIN_DIR + 'kr_police_0.png', rotate=0) """ # 애니메이션을 불러온다.. 이게 좋은방법은 아니지만; 일단 한다. """ # 좋은 방법은 나중에 생각한다.. 리팩터링은 나중에 한가할 때, 인터넷 검색! p_rotate = 45 pcars = { 'pcar_0': set_obj('enemy', DESTIN_DIR + 'kr_police_0.png', p_rotate), 'pcar_1': set_obj('enemy', DESTIN_DIR + 'kr_police_1.png', p_rotate), 'pcar_2': set_obj('enemy', DESTIN_DIR + 'kr_police_2.png', p_rotate), 'pcar_3': set_obj('enemy', DESTIN_DIR + 'kr_police_3.png', p_rotate), 'pcar_4': set_obj('enemy', DESTIN_DIR + 'kr_police_4.png', p_rotate), 'pcar_5': set_obj('enemy', DESTIN_DIR + 'kr_police_5.png', p_rotate), 'pcar_6': set_obj('enemy', DESTIN_DIR + 'kr_police_6.png', p_rotate), 'pcar_7': set_obj('enemy', DESTIN_DIR + 'kr_police_7.png', p_rotate), } e_rotate = 0 ecars = { 'ecar_0': set_obj('enemy', DESTIN_DIR + 'jp_police_0.png', e_rotate), 'ecar_1': set_obj('enemy', DESTIN_DIR + 'jp_police_1.png', e_rotate), 'ecar_2': set_obj('enemy', DESTIN_DIR + 'jp_police_2.png', e_rotate), 'ecar_3': set_obj('enemy', DESTIN_DIR + 'jp_police_3.png', e_rotate), 'ecar_4': set_obj('enemy', DESTIN_DIR + 'jp_police_4.png', e_rotate), 'ecar_5': set_obj('enemy', DESTIN_DIR + 'jp_police_5.png', e_rotate), 'ecar_6': set_obj('enemy', DESTIN_DIR + 'jp_police_6.png', e_rotate), 'ecar_7': set_obj('enemy', DESTIN_DIR + 'jp_police_7.png', e_rotate), } if __name__ == '__main__': ongame = True # 루프를 빠져나가기 위한 옵션 anim = 0 # 아니메 스프라이트 8장 카운트를 위한 숫자 while ongame: SCREEN.fill(BLACK) draw_socre(anim) draw_game_over() draw_object(player, x, y) # 아니메 카운터를 위한 숫자 # if anim < 7: # anim += 1 # else: # anim = 0 anim += 1 if anim < 7 else -7 # 패드폭 안에 있으면 마이너스 해서 리턴한다. if ENEMY_WIDTH < EPOS_X < PAD_WIDTH - ENEMY_WIDTH: EPOS_X -= EPOS_MOV else: EPOS_X = PAD_WIDTH - (1.5 * ENEMY_WIDTH) # 경찰차1,2,3 애니매이션 draw_object(ecars['ecar_' + str(anim)], EPOS_X, EPOS_Y) [draw_object( pcars['pcar_' + str(anim)], xi, 400,) for xi in range(100, 350, 35)] pygame.display.update() FPS_CLK.tick(FPS) time.sleep(0.1)
true
37c936ae1e22170c8ae7ed44314bfee04d6671f1
Python
wnagy/pymframe
/WEB-INF/mvc/domain/lovdomain.py
UTF-8
2,664
2.640625
3
[ "Apache-2.0" ]
permissive
# -*- coding: iso-8859-15 -*- from dbaccess.core import * class LovDomain(Domain) : lovID = None lovClass = None lovKey = None lovValue = None lovFlag1 = None lovFlag2 = None lovFlag3 = None lovFlag4 = None lovRemark = None meta = { 'tablename':'lov', 'primarykey':'lovID', 'fields':{ 'lovID' : {'dbfield':'lovID', 'type':'Integer'}, 'lovClass' : {'dbfield':'lovClass', 'type':'String'}, 'lovKey' : {'dbfield':'lovKey', 'type':'String'}, 'lovValue' : {'dbfield':'lovValue', 'type':'String'}, 'lovFlag1' : {'dbfield':'lovFlag1', 'type':'String'}, 'lovFlag2' : {'dbfield':'lovFlag2', 'type':'String'}, 'lovFlag3' : {'dbfield':'lovFlag3', 'type':'String'}, 'lovFlag4' : {'dbfield':'lovFlag4', 'type':'String'}, 'lovRemark' : {'dbfield':'lovRemark', 'type':'String'} } } def getDatasourceClass(self,addempty=None): retval = list() where = "lovClass='CLASS'" if addempty != None: retval.append(['0',addempty]) for lov in self.eachDomain(where=where,orderby='lovKey'): retval.append([lov.lovKey,lov.lovKey]) return retval def truncate(self,value,size): if len(value) > size : value = value[:size] while ord(value[-1]) > 127: value = value[:-1] value += '&hellip;' return value def getDatasource(self,theClass,addempty=None,orderby='lovKey',truncate=None): retval = list() where = "lovClass='{0}'".format(theClass) if addempty != None: retval.append(['',addempty]) for lov in self.eachDomain(where=where,orderby=orderby): title = None if truncate is not None: text = self.truncate(lov.lovValue,truncate) title = lov.lovValue else: text = lov.lovValue option = { 'value':lov.lovKey, 'text':text, 'title':title } retval.append(option) return retval def getLovValue (self,lovClass,lovKey): """ Liefert ueber eine Klasse und Key den Inhalt. @param lovClass Klasse @param lovKey Schluessel @return Wert, oder None wenn nicht gefunden. """ lov = LovDomain(self.db) where = "lovClass='{0}' and lovKey='{1}'".format(lovClass,lovKey) lov.get(where=where) if lov.isOk: return lov.lovValue else: return None
true
51496e34b0fccd109f0316e734be2a7845f9d35e
Python
bsk17/PYTHONTRAINING1
/GUI/guidemo2.py
UTF-8
907
3.328125
3
[]
no_license
from tkinter import * from tkinter import messagebox as mb def register(): name = e1.get() password = e2.get() print("NAME = ", name) print("PASSSWORD = ", password) mb.showinfo("DATA", "Welcome "+name+" Your Password is"+password) window = Tk() window.geometry("300x400") window.title("First Page") # creating our widgets l1 = Label(window, text="Welcome to Python Project", bg="#FF512F") l2 = Label(window, text="Enter Name = ", bg="#EA384D") l3 = Label(window, text="Enter Pass = ", bg="#EA384D") e1 = Entry(window) e2 = Entry(window, show="*") # to hide the password b1 = Button(window, text="Register", bg="#DA22FF", command=register) b2 = Button(window, text="Cancel", bg="#DA22FF") # placing our widgets l1.place(x=60, y=0) l2.place(x=10, y=30) e1.place(x=110, y=30) l3.place(x=10, y=60) e2.place(x=110, y=60) b1.place(x=40, y= 90) b2.place(x=200, y=90) window.mainloop()
true
25f34b1c0777b9123c28adeb0ad2a41f319192ad
Python
abbyssoul/mood-prob
/emotions/emotion.py
UTF-8
374
2.734375
3
[]
no_license
import json class Emotion(object): """ Representation of a single emotion """ def __init__(self, desc, dim, id=-1): self.description = desc self.dim = dim self.id = id def __str__(self): return self.description def to_JSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
true
d588701393ee593a9805d6e8c2a6ae608d192853
Python
nuria/study
/advent/2021/advent5.py
UTF-8
2,608
3.15625
3
[]
no_license
#!usr/local/bin import sys lines = list(open(sys.argv[1])) lines_i = [] x_max =0 y_max = 0 # print matrix concisely for debugging def print_matrix(G): txt = '' for i in range(0, len(G[0])): for j in range(0, len(G[i])): if G[i][j] == 0: txt = txt + '.' else: txt = txt + str(G[i][j]) txt = txt +"\n" return txt ###### READ DATA ######## for l in lines: p1, separator, p2 = l.split() x1, y1 = p1.split(',') x2, y2 = p2.split(',') x1 = int(x1) x2 = int(x2) y1 = int(y1) y2 = int(y2) points = [] if x1 == x2 or y1 == y2: # we need max x max y to see dimensions of grid tmp_max = max(x1, x2) if tmp_max> x_max: x_max = tmp_max tmp_max = max(y1,y2) if tmp_max > y_max: y_max = tmp_max # calculate points in this line if x1 == x2: # only increment y delta = abs(y2-y1) # same point if delta == 0: #lines_i.append([(x1, y1)]) continue if y2 > y1: for i in range(y1, y2+1): points.append((x1,i)) elif y2 < y1: # y1 > y2 for i in range(y2, y1 +1): points.append((x1, i)) lines_i.append(points) elif y1 == y2: # only increment x delta = abs(x2-x1) # same point if delta == 0: #lines_i.append([(x1, y1)]) continue if x2 > x1: for i in range(x1, x2+1): points.append((i,y1)) elif x2 < x1: # x1 > x2 for i in range(x2, x1 +1): points.append((i, y1)) lines_i.append(points) # this array now holds every point for every line as a element #print lines_i # GRID row = [0] * (x_max +1) G = [] for k in range(0, y_max+1): G.append(row[:]) print "x_max:{0}, y_max:{1}".format(x_max, y_max) print print_matrix(G) # now loop through array and build grid overlap = 0 for line in lines_i: for p in line: x = p[0] y = p[1] #print"{0}, {1}".format (x,y) G[y][x] = G[y][x] + 1 for i in range(0, len(G[0])): for j in range(0, len(G[i])): if G[i][j] >=2: overlap = overlap +1 print print_matrix(G) print "overlap" print overlap
true
0b9ca43606893b5ba3b170f3f412051da3f4dac1
Python
lizardnoises/daily-coding-problem
/033_running_median/running_median.py
UTF-8
2,438
4.40625
4
[]
no_license
__author__ = "Sean Moore" """ Problem: Compute the running median of a sequence of numbers. That is, given a stream of numbers, print out the median of the list so far on each new element. Recall that the median of an even-numbered list is the average of the two middle numbers. For example, given the sequence [2, 1, 5, 7, 2, 0, 5], your algorithm should print out: 2 1.5 2 3.5 2 2 2 """ """ To calculate the median of numbers seen so far, those numbers need to be collected. That means we need to assume that we have enough space to store the entire stream in the most general case. This solution makes that assumption. If we maintain a sorted aggregation on the stream, then the median can be calculated just by using the middle one or two numbers like this: median = middle value if odd average of middle values if even. So ideally, we need to be able to access the two middle elements efficently each time an element is added to the collection, and also keep the collection sorted. Using insertion sort on an array could work, but the runtime complexity would be very poor with O(n^2). A more efficient approach could use two heaps, one max heap of values smaller than the median and one min heap of values equal to or larger than the median. In the odd case, pick the top element of the min heap. In the even case, average the top elements of both heaps. Keep the heaps balanced by poping and pushing to ensure the middle elements stay on top. Insertion on a heap is O(log n). """ import heapq def running_median(number_stream): left = [] # numbers less than the running median right = [] # numbers greater or equal to the running median for x in number_stream: # add the number if len(right) == 0 or x >= right[0]: heapq.heappush(right, x) else: heapq.heappush(left, -x) # balance the heaps if len(left) > len(right): heapq.heappush(right, -heapq.heappop(left)) elif len(right) > len(left) + 1: heapq.heappush(left, -heapq.heappop(right)) # calculate the median if (len(left) + len(right)) % 2 == 0: median = (-left[0] + right[0]) / 2.0 else: median = right[0] yield median def list_medians(numbers): return [median for median in running_median(numbers)] def print_medians(numbers): for median in running_median(numbers): print(median)
true
167237e4708d99f3344968f035e2c418ba4ab060
Python
ccas08/prueba
/list.py
UTF-8
734
3.734375
4
[]
no_license
"""def run(): squares = [] for i in range(1, 101): if i % 3 != 0: squares.append(i ** 2) print(squares)""" # funcion normal def eleva_al_2(i): return i ** 2 def run(): squares = [i ** 2 for i in range(1, 101) if i % 3 != 0] ones = [1 for i in range(5)] # [1, 1, 1, 1, 1] squares2 = [eleva_al_2(i) for i in range(5)] # [0, 1, 4, 9, 16] print(squares, " ", ones, " ", squares2) def eleva_al_2(i): return i ** 2 cuadrados = [eleva_al_2(i) for i in range(5)] # [0, 1, 4, 9, 16] if __name__ == "__main__": run() """reto def run(): my_dict = {i: round(i ** 0.5, 2) for i in range(1, 1001)} print(my_dict) if __name__ == "__main__": run() """
true
ee05d48c995291cbb25cabc54df0ea4f67e624b1
Python
tjuxiaoyi/qqZoneModeSpider
/qzoneMoodSpider.py
UTF-8
6,278
2.640625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Feb 13 13:55:57 2019 @author: xy """ #以下为需要使用的库 from selenium.webdriver.support.ui import WebDriverWait as WebWait from selenium.webdriver.chrome import options from selenium.webdriver.common.by import By from selenium.webdriver.common.action_chains import ActionChains as AC from selenium.webdriver.support import expected_conditions as EC from selenium import webdriver from selenium.common.exceptions import NoSuchElementException import time from bs4 import BeautifulSoup class moodSpider(): #定义QQ账号密码 user = '670127565' passwd = '*********' def __init__(self): #初始化,打开浏览器并最大化,以下两句话为设置无头浏览器 #options = options.Options() #options.add_argument('--headless') self.driver = webdriver.Chrome(executable_path='C:\Program Files (x86)\Google\Chrome\Application\chromedriver.exe')#,chrome_options=options) self.driver.maximize_window() def get_to_mood_page(self): #本函数用于登录QQ空间并跳转至说说界面 driver = self.driver #访问QQ空间 driver.get('https://i.qq.com') #print('geted') #输入账户密码的frame不是默认的frame 所以需要更改frame 不然找不到元素 driver.switch_to.frame('login_frame') #print('switched') #显示等待id为switcher_plogin的按钮,该按钮用于更改登录方式为账号密码登录 switch = WebWait(driver,5).until(EC.element_to_be_clickable((By.ID,'switcher_plogin'))) switch.click() #print('clicked') #找到输入账号和密码的文本框并输入账号密码 driver.find_element_by_id('u').send_keys(moodSpider.user) driver.find_element_by_id('p').send_keys(moodSpider.passwd) login = WebWait(driver,5).until(EC.element_to_be_clickable((By.ID,'login_button'))) login.click() #登录后跳转至说说界面 time.sleep(2) driver.get('http://user.qzone.qq.com/'+moodSpider.user+'/311') def load_all_resoure(self): driver = self.driver #下拉到页面最下方,保证所有说说被加载 driver.execute_script('window.scrollBy(0,10000)') time.sleep(2) driver.execute_script('window.scrollBy(0,10000)') time.sleep(2) driver.execute_script('window.scrollBy(0,10000)') time.sleep(2) #找到说说所在的frame,否则无法找到说说的元素 driver.switch_to.frame('app_canvas_frame') time.sleep(2) def view_full_content(self): driver = self.driver #找到所有展开查看全文的按钮,并点击,保证说说完整加载 all_extended = False while not all_extended: try: button = driver.find_element_by_link_text('展开查看全文') try: ''' 此处的逻辑我写了很久,因为想点击展开查看全文,必须使得按钮在页面中,否则会报未知错误 报错的同时也会将页面跳至按钮附近 所以我在捕获异常里将页面向上移动 下次即可直接点击按钮了 ''' button.click() time.sleep(2) #actions.click(button) #actions.perform() except Exception as e: print('fuck!') driver.switch_to.parent_frame() driver.execute_script('window.scrollBy(0,-200)') time.sleep(1) driver.switch_to.frame('app_canvas_frame') #如果找不到展开查看全文的按钮,则结束循环 except NoSuchElementException as e: print(e) all_extended = True def process_content(self): #保存所有的说说文本 self.soup = BeautifulSoup(self.driver.page_source,'xml') mood_content = self.soup.find_all('pre',{'class':'content'}) filename = 'mood.txt' #因为有些字符可能不能直接保存为gbk格式,所以此处指明使用utf-8 with open (filename ,'a',encoding='utf-8') as f: for c in mood_content: content_text = c.get_text('pre') #以下两句为替换部分表情字符 content_text = content_text.replace('pre',' ') content_text = content_text.replace('\ue412',' ') f.write(content_text) def to_next_page(self): driver = self.driver #此函数用于跳转至下一页 #因为下一页的id是会变化的,所以在文本里识别出来下一页的id soup = self.soup next_page_id = soup.find('a',{'title':'下一页'})['id'] to_next = WebWait(driver,5).until(EC.element_to_be_clickable((By.ID,next_page_id))) to_next.click() driver.switch_to.parent_frame() #翻页后返回顶端,以保证所以的说说被加载 driver.execute_script('window.scrollBy(0,-10000)') time.sleep(1) driver.execute_script('window.scrollBy(0,-10000)') time.sleep(1) driver.execute_script('window.scrollBy(0,-10000)') time.sleep(1) def download_mood(self): self.get_to_mood_page() finished = False #当下一页无法被点击时,到下一页的函数会抛出异常 #于是结束程序 while not finished: self.load_all_resoure() self.view_full_content() self.process_content() try: self.to_next_page() except NoSuchElementException as e: print(e) finished = True except: print('fuck') print('done') spider = moodSpider() spider.download_mood()
true
965daabaf3188d98f66dcfad1425fbc1c289c7c3
Python
sevenian3/ChromaStarPy
/Planck.py
UTF-8
4,446
2.78125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import math import Useful def planck(temp, lambda2): """ /** * Inputs: lambda: a single scalar wavelength in cm temp: a single scalar * temperature in K Returns log of Plank function in logBBlam - B_lambda * distribution in pure cgs units: ergs/s/cm^2/ster/cm */""" #//int numLams = (int) (( lamSetup[1] - lamSetup[0] ) / lamSetup[2]) + 1; #double logBBlam; //, BBlam; #//double c = Useful.c; //linear logC = Useful.logC() # //log #//double k = Useful.k; //linear logK = Useful.logK() #//log #//double h = Useful.h; //linear logH = Useful.logH() #//log logPreFac = math.log(2.0) + logH + 2.0 * logC #//log logExpFac = logH + logC - logK #//log #//double preFac = 2.0 * h * ( c * c ); //linear #//double expFac = ( h / k ) * c; //linear #//System.out.println("logC " + logC + " logK " + logK + " logH " + logH); #//System.out.println("logPreFac " + logPreFac + " logExpFac " + logExpFac); #//Declare scratch variables: #double logLam, logPreLamFac, logExpLamFac, expon, logExpon, eTerm, denom, logDenom; //log #//double preLamFac, expLamFac, expon, denom; //linear #//for (int il = 0; il < numLams; il++){ #//lambda = lambda[il] * 1.0E-7; // convert nm to cm #//lambda = lambda * 1.0E-7; // convert nm to cm logLam = math.log(lambda2) #// Do the call to log for lambda once //log #//System.out.println("lambda " + lambda + " logLam " + logLam); logPreLamFac = logPreFac - 5.0 * logLam #//log logExpLamFac = logExpFac - logLam #//log #//System.out.println("logPreLamFac " + logPreLamFac + " logExpLamFac " + logExpLamFac); #// Be VERY careful about how we divide by lambda^5: #//preLamFac = preFac / ( lambda * lambda ); //linear #//preLamFac = preLamFac / ( lambda * lambda ); //linear #//preLamFac = preLamFac / lambda; //linear #//expLamFac = expFac / lambda; #//for (int id = 0; id < numDeps; id++){ #//logExpon = logExpLamFac - temp[1][id]; #//This is very subtle and dangerous! logExpon = logExpLamFac - math.log(temp) #// log of hc/kTlambda #//System.out.println("temp " + temp + " logTemp " + Math.log(temp)); expon = math.exp(logExpon) #// hc/kTlambda #//System.out.println("logExpon " + logExpon + " expon " + expon + " denom " + denom); #// expon = expLamFac / temp; //linear eTerm = math.exp(expon) #// e^hc/ktlambda denom = eTerm - 1.0 #// e^hc/ktlambda - 1 logDenom = math.log(denom) #// log(e^hc/ktlambda - 1) #//BBlam[1][id][il] = logPreLamFac - logDenom; #//BBlam[0][id][il] = Math.exp(BBlam[1][id][il]); logBBlam = logPreLamFac - logDenom #//log #// Not needed? BBlam = math.exp(logBBlam) #//log #//BBlam = preLamFac / denom; //linear #// } //id loop - depths #// } //il loop - lambdas return logBBlam; #} //end method planck() def dBdT(temp, lambda2): """// Computes the first partial derivative of B(T) wrt T, dB/dT:""" #double logdBdTlam; #//double c = Useful.c; //linear logC = Useful.logC() #//log #//double k = Useful.k #//linear logK = Useful.logK() #//log #//double h = Useful.h #//linear logH = Useful.logH() #//log logPreFac = math.log(2.0) + logH + 2.0 * logC #//log logExpFac = logH + logC - logK #//log #//Declare scratch variables: #double logLam, logTemp, logPreLamFac, logExpLamFac, expon, logExpon, eTerm, denom, logDenom; //log #//lambda = lambda * 1.0E-7; // convert nm to cm logLam = math.log(lambda2) #// Do the call to log for lambda once //log logTemp = math.log(temp) logPreLamFac = logPreFac + logExpFac - 6.0 * logLam - 2.0 * logTemp #//log logExpLamFac = logExpFac - logLam #//log #//This is very subtle and dangerous! logExpon = logExpLamFac - logTemp #// log of hc/kTlambda expon = math.exp(logExpon) #// hc/kTlambda eTerm = math.exp(expon) #// e^hc/ktlambda denom = eTerm - 1.0 #// e^hc/ktlambda - 1 logDenom = math.log(denom) #// log(e^hc/ktlambda - 1) logdBdTlam = logPreLamFac + expon - 2.0 * logDenom #//log return logdBdTlam; #} //end method dBdT
true
993ca8aaa805e6f982d63a0857749fd8a11d460f
Python
JohnSmitoff/blog_rest
/forum/models.py
UTF-8
945
2.5625
3
[]
no_license
from django.db import models from datetime import datetime from django.utils import timezone # Create your models here. class Question(models.Model): author = models.CharField(default="Anonymous", max_length=200) question = models.TextField() question_time = models.DateTimeField(default=timezone.now) def __str__(self): return f"{self.author} asked | {self.question}" class Answer(models.Model): author = models.CharField(max_length=200, default="Anonymous") content = models.TextField() likes = models.PositiveIntegerField(default=0) dislikes = models.PositiveIntegerField(default=0) answer_time = models.DateTimeField(default=timezone.now) question = models.ForeignKey( Question, on_delete=models.CASCADE, related_name="answers" ) def __str__(self): return f"{self.author} answered - {self.content} | {self.question} | likes:{self.likes} dislikes:{self.dislikes}"
true
dd7b5a401130437f064413ff4c24280d4353e393
Python
jancijen/oas-hepb
/bin/model_performance.py
UTF-8
2,237
2.8125
3
[]
no_license
from bin.prediction import predict_in_batches def model_performance(model_tuple, data, metric_fns, sample_weights, verbose, batches_cnt=5): model_name, model = model_tuple X_train, X_valid, y_train, y_valid = data try: if verbose: print(f'Training {model_name}...') # Fit the model model.fit(X_train, y_train) if verbose: print(f'Predicting using {model_name}...') # Validation performance y_pred = predict_in_batches(model, X_valid.values, batches_cnt=batches_cnt) validation_weights = sample_weights.loc[y_valid.index] if sample_weights is not None else None metric_vals = [(metric_name, metric_fn(y_valid, y_pred, sample_weight=validation_weights)) for metric_name, metric_fn in metric_fns] non_weighted_metric_vals = [(f'Non-weighted {metric_name}', metric_fn(y_valid, y_pred)) for metric_name, metric_fn in metric_fns] metric_vals.extend(non_weighted_metric_vals) if verbose: metric_vals_str = ', '.join(['{}: {:.3f}'.format(metric_name, metric_val) for metric_name, metric_val in metric_vals]) print(f'{model_name} - {metric_vals_str}\n') except ValueError as error: print(f'{model_name}: {error}\n') return None return model_tuple, metric_vals, y_pred def model_selection(models, data, metric_fns, sample_weights=None, verbose=True): if verbose: print(f'Metric values:\n') model_performances = {} trained_models = {} for model in models: model_tuple, metric_vals, _ = model_performance(model, data, metric_fns, sample_weights, verbose) model_perf = (model_tuple, metric_vals[0]) if model_perf: model_performances[model_perf[0][0]] = model_perf[1] trained_models[model_perf[0][0]] = model_perf[0][1] # Get information about the best performing model on the data best_perf = max(model_performances.items(), key=lambda x: x[1][1]) print('-' * 30) print('-' * 30) print(f'Best performing model is {best_perf[0]} with metric value ({best_perf[1][0]}) = {"{:.3f}".format(best_perf[1][1])}') return best_perf, model_performances, trained_models
true
35879ae589c85720d0cc08b479c3ebffb2ee4475
Python
cwyz-dev/deal-scraper
/utils.py
UTF-8
503
3.40625
3
[]
no_license
def convert_price_to_number(price): price = price.split("$")[1] try: price = price.replace("\n", ".") except: Exception() try: price = price.split(",")[0] + price.split(",")[1] except: Exception() return float(price) def my_range(start, end, step, forwards): if (forwards): while start <= end: yield start start += step else: while start >= end: yield start start -= step
true
0f2780e64709ed227bae713fd46d168379362c4a
Python
ksercs/lksh
/2014/Работа в ЛКШ/Python/day11/A/turtle.py
UTF-8
600
3.234375
3
[]
no_license
fin = open("turtle.in", "r") fout = open("turtle.out", "w") row, col = [int(x) for x in fin.readline().split()] acid = [] for i in range(row): acid.append(list(map(int, fin.readline().split()))) table = [[0] * col for i in range(row)] ans = 0 for i in range(row): ans += acid[i][0] table[i][0] = ans ans = 0 for j in range(col): ans += acid[0][j] table[0][j] = ans for i in range(1, row): for j in range(1, col): table[i][j] = acid[i][j] + min(table[i - 1][j], table[i][j - 1]) print(table[row - 1][col - 1], file=fout) fout.close()
true
75820f1251acc6b343c1c4d1479338a8f086b967
Python
bar2104y/FunnyVKBots
/AvatarSecurity/avatar.py
UTF-8
2,593
2.78125
3
[]
no_license
#Загрузка необходимых модулей import vk_api from vk_api.longpoll import VkLongPoll, VkEventType from vk_api import VkUpload from vk_api.utils import get_random_id # Перменная-костыль для избежания рекурсии IsMyUpdate = False def main(): # Настройки vk_token="" # Токен пользователя app_id = "" # ID приложения vk_client_secret = "" # Ключ приложения chat_id = # id отслеживаемого чата (Обязательно число) mesAnswer = True # Подкрепляется ли восстановление втарки сообщением mesTxt = "Технологии на страже революции" # Текст сообщения dialog_id = 2000000000 + chat_id # СОздание peer_id # Авторизация vk_session = vk_api.VkApi(token=vk_token, app_id=app_id, client_secret=vk_client_secret) vk = vk_session.get_api() global IsMyUpdate # Объявления костыля как глобального # Подключение дополнительных библиотек longpoll = VkLongPoll(vk_session) upload = VkUpload(vk_session) # Перебор данных for event in longpoll.listen(): if event.type == VkEventType.CHAT_UPDATE: # Проверяем нужный ли чат if event.chat_id == chat_id: # Если не мы меняли аватар if not IsMyUpdate: try: # Загружаем новую r = upload.photo_chat(photo='gerb.png', chat_id=chat_id) print(r) print("Капитализм не пройдет!") # Отмечаем, что это мы, теперь это смена автара не обработается из за условия вше IsMyUpdate = True except Exception as e: print(e) # выводим ошибки, если таковые имеются if mesAnswer: try: # Отправка сообщения vk.messages.send( peer_id=dialog_id, random_id=get_random_id(), message=mesTxt ) except Exception as e: print(e) # выводим ошибки, если таковые имеются else: IsMyUpdate = False # Сбрасываем костыль elif event.type == VkEventType.MESSAGE_NEW: print(event.__dict__) else: print(event.type) #Бесконечный цикл с обработкой ошибок while True: try: main() except Exception as e: print(e.__class__)
true
6af9eeb6390544042d23a7f2befc9d140d8de257
Python
praneethreddypanyam/DataStructures-Algorithms
/LinkedList/insertionInSortedList.py
UTF-8
1,264
4
4
[]
no_license
class Node: def __init__(self,data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def insertion(self,data): if self.head == None: self.head = Node(data) else: current = self.head while current.next != None: current = current.next current.next = Node(data) def display(self): current = self.head while current.next != None: print(current.data,end="->") current = current.next print(current.data) def sortedInsertion(self,data): node = Node(data) current = self.head previous = None inserted = False while current != None and not inserted: if current.data > data: inserted = True else: previous = current current = current.next if previous == None: node.next = self.head self.head = node else: node.next = previous.next previous.next = node l = LinkedList() l.insertion(1) l.insertion(2) l.insertion(4) l.display() l.sortedInsertion(3) l.sortedInsertion(5) l.display()
true
162b89ff997292cd1ece3e2aacd2def9a1d9c6b9
Python
jangmyounhoon/python
/day3/turtle_run2.py
UTF-8
429
4.1875
4
[]
no_license
import turtle as t a = t.Turtle() # 주인공 b = t.Turtle() # 악당 c = t.Turtle() # 먹이 a.shape("turtle") b.shape("turtle") c.shape("circle") a.color("blue") # 주인공 파란색 b.color("red") # 악당 빨간색 c.color("green") # 먹이 초록색 a.speed(0) b.speed(0) c.speed(0) b.up() b.goto(0, 200) # 위 방향으로 200 이동 c.up() c.goto(0, -200) # 아래 방향으로 200 이동
true
7b61bd05acb0bf4622058a1fb64f481cd0f0a43b
Python
rufusmitchellheggs/neuro_analysis
/preprocessing/lr_alignment_functions.py
UTF-8
23,303
2.859375
3
[]
no_license
#All imports import pandas as pd import numpy as np from numpy import * import scipy.signal import cv2 import os from scipy import stats from scipy.spatial import distance from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from math import floor #Functions def events_pivot_correction(events, traces): """Changes format of timestamped events file to time series format as with raw data traces INPUT: ------ events = events timestamp csv location (table format below) --------------------------- |Time (s)|Cell Name|Value| --------------------------- | | | | trace = raw traces csv location OUTPUT: ------ save_as = corrected event traces over input events csv and outputs the file location """ #create new csv save_as = events #Read in all sessions for event traces event = pd.read_csv(events) #Table must be less than 10 columns if event.shape[1] < 10: #Read in all sessions for df/f raw trace trace = pd.read_csv(traces) #Pivot event traces so that cell identities are column headers event = event.pivot(index='Time (s)', columns=' Cell Name', values=' Value') event.fillna(value=0, inplace=True, axis=1) event.index = event.index.map(float) event = event.sort_index(axis=0) #Prepare events frame for merging event['Time (s)'] = event.index del event.index.name event.astype(float) event['Time (s)']=event['Time (s)'].astype(float) #Isolate time column from traces trace = trace[1:] trace.rename(columns={trace.columns[0]: "Time (s)" }, inplace = True) trace = trace.drop(trace.columns[1:], axis=1) trace['Time (s)']=trace['Time (s)'].astype(float) #Merge events with traces time column, any time gaps are filled with 0s event = pd.merge(trace,event, on="Time (s)", how="left") event.fillna(value=0, inplace=True, axis=1) event = event.astype(float) event['Time (s)'] = trace['Time (s)'].values #Overwrite csv event.to_csv(save_as, index=False) print('File', save_as[-25:], 'has corrected and been overwitten') return save_as def lr_data_correction(lr_traces_or_events, timestamps): """Labels and corrects timings for longitudinally registered csv file of multiple sessions/stages INPUT ----- lr_traces_or_events = .csv file location for longitudinally registered events or traces timestamps = .csv file for timestamps of manually identified stage start and endings timestamps table format: --------------------------- |session|pre |sam | cho | --------------------------- | N01 |12701|21496|30611| --------------------------- OUPUT: ----- corrected_data = A datafame containing labelled sessions and stages with corrected timings """ input_file = lr_traces_or_events[-7:-4] #Read in lr_trace file location and make minor corrections lr_traces_or_events = pd.read_csv(lr_traces_or_events) if input_file == 'TRA': lr_traces_or_events = lr_traces_or_events.drop(lr_traces_or_events.index[0]) lr_traces_or_events = lr_traces_or_events.reset_index(drop=True) lr_traces_or_events = lr_traces_or_events.rename(columns={" ": "Time (s)"}) #Read in timestamp info timestamps = pd.read_csv(timestamps) sessions = list(timestamps['session']) stages = list(timestamps['stage']) #Identify start and end frames for all sessions all_data = list(lr_traces_or_events["Time (s)"].astype(float)) stage_starts = [0] stage_ends = [] for i in range(len(all_data)): if i + 1 < len(all_data): if abs(all_data[i+1] - all_data[i]) > 1 : stage_starts.append(i+1) stage_ends.append(i) stage_ends.append(len(lr_traces_or_events)) indiv_stages = [] for sesh, stage, start, end in zip(sessions, stages, stage_starts, stage_ends): indiv_stage = lr_traces_or_events[start:end] indiv_stage = indiv_stage.reset_index(drop=True) #Correct timings and add column showing stage stage_timings = np.arange(0, len(indiv_stage), 1)*0.05006 indiv_stage.insert(loc=0, column='stage', value=list((stage,) * len(indiv_stage))) indiv_stage.insert(loc=0, column='Session', value=list((sesh,) * len(indiv_stage))) indiv_stage["Time (s)"] = stage_timings indiv_stages.append(indiv_stage) #Concatenate all sessions into single table corrected_data = pd.concat(indiv_stages) return corrected_data def led_time(behavioural_video): """Find frame that an LED is switched on INPUT: - behavioural_video = the video being analysed OUTPUT: - Frame of LED turing on""" #Read in video cap = cv2.VideoCapture(behavioural_video) #Start Frame number frame = 1 while True: pixels = cap.read() # Read in Pixel values #Define approximate LED region and extract mean of highest 100 pixel values light_region = pixels[1][400:-50][:,50:300] # LED Region (y range = [400:-1], x range = 0:300) light_frame = max(np.array(light_region).flatten()) #Maximum pixel value for region #If max value exceeds 250 then LED is switched on if light_frame > 250: start_frame_vid = frame start_time_vid = start_frame_vid*(0.04) break else: frame +=1 try: start_frame_vid except NameError: start_frame_vid = 'unknown' start_time_vid = 'unknown' print('START Time =', start_time_vid) else: print('START Time =', start_time_vid, 's') return start_frame_vid def door_time(behavioural_video, y_correction = 0): """Obtains the frame that the event arena door opens INPUT: - behavioural_video = video being analysed - y_correction = adapt for strange start areas OUTPUT: - Frame of door opening - Top edge of the startbox""" #Read in video cap = cv2.VideoCapture(behavioural_video) #Start Frame number frame = 1 delta_door_frame = [] while frame < 12000: pixels = cap.read() # Read in Pixel values if frame == 1: box_region = np.mean(pixels[1][350:520][:,300:500], axis=2) # Start box region #box region correction (if pixel shift required) box_region_correction = 0 if np.mean(box_region) > 120: box_region_correction = 50 box_region = np.mean(pixels[1][350:520][:,300+box_region_correction:500+box_region_correction], axis=2) #Pixel coordinate inside box inside_box = np.argmin(box_region) y = int((inside_box/200))+y_correction x = int(round(200*((inside_box/200)-int(inside_box/200)))) #right edge detection pix = 1 pix_val = box_region[y][x] while pix_val < 25: pix_val = box_region[y][x+pix] right_edge = x+pix pix +=1 #top edge detection pix = 1 pix_val = box_region[y][right_edge] while pix_val < 60: pix_val = box_region[y-pix][right_edge] top_edge = y-pix pix +=1 # print('right edge =',right_edge) # print('top edge =', top_edge) # print('y', 350+top_edge-42,350+top_edge, 'x', 300+box_region_correction+right_edge-100,300+box_region_correction+right_edge-90) #Door region obtained from top right corner (consistent for all videos) door_region = pixels[1][350+top_edge-42:350+top_edge][:,300+box_region_correction+right_edge-100:300+box_region_correction+right_edge-90] #Monitor door opening by tracking slope of pixel values door_frame = mean(np.array(door_region).flatten()) #Maximum pixel value for region delta_door_frame.append(door_frame) if len(delta_door_frame) > 10: slope, intercept, r_value, p_value, std_err = stats.linregress(np.arange(0,10),delta_door_frame[-10:]) if abs(slope) > 3.2: door_frame_vid = frame door_time_vid = door_frame_vid*(0.04) break else: frame+=1 else: frame +=1 #If no door opening found try: door_frame_vid except NameError: door_frame_vid = 'unknown' door_time_vid = 'unknown' print('Door Opening Time =','corrupted - trying again') else: print('Door Opening Time =', door_time_vid, 's') return door_frame_vid, 350+top_edge def sandwell_loc(behavioural_video): """Indentify Sandwell locations and radii from first frame INPUT - Behavioural video OUTPUT - Sandwell locations for: sw1, sw2, sw3""" # Read in first video frame cap = cv2.VideoCapture(behavioural_video) correct_sandwell = 'n' frame=1 while correct_sandwell != 'y': img = cap.read()[1] # Read in Pixel values gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_blurred = cv2.blur(gray, (3, 3)) # Circle detection algorithm sandwells = cv2.HoughCircles(gray_blurred, cv2.HOUGH_GRADIENT, 1, 100, param1 = 50, param2 = 30, minRadius = 10, maxRadius = 20) if sandwells is not None: # Convert the circle parameters a, b and r to integers. sandwells = np.uint16(np.around(sandwells)) # Manually check that sandwells are correct if frame == 1 or frame % 50 == 0: for pt in sandwells[0, :]: x, y, r = pt[0], pt[1], pt[2] cv2.circle(img, (x, y), r+20, (0, 255, 0), 2) avg_dis = np.mean(distance.cdist(sandwells[0][:,:2], sandwells[0][:,:2], 'euclidean')) if len(sandwells[0])==3 and avg_dis < 130: print(len(sandwells[0]),'Wells detected') plt.imshow(img) plt.show() correct_sandwell = input("Are all sandwells correct - y/n?") frame+=1 else: correct_sandwell = 'n' frame+=1 else: frame+=1 # Classify which sandwell is sw1, sw2, sw3 for pt in sandwells[0, :]: x, y = pt[0], pt[1] if y == min(np.array(sandwells).transpose()[1]): sw1 = [x,y] elif x == max(np.array(sandwells).transpose()[0]): sw2 = [x,y] else: sw3 = [x,y] print(len(sandwells[0]),'Wells correctly detected') return sw1,sw2,sw3 def speed(xy, pix_cm = 65/20, framerate=25): """ Calculate the speed in cm/s and label as movin INPUT: ----- xy = array of x and y coordinates pix_cm = how many pixels there are in a cm (default 65/20) framerate = the number of frames in a second (default (25)) OUPUT: ----- v = array with speed for each frame cm/s moving = array of movement status for each frame (>= 2cm/s is considered moving)""" #Calculate speed c = np.array([]); moving = np.array([]) window = framerate for pos in range(len(xy)): if len(xy)-window <= framerate+1: speed = 0 c = np.append(c,speed) else: speed = distance.euclidean(xy[pos], xy[window])/pix_cm c = np.append(c, speed) #Add labels if speed >= 2: moving = np.append(moving, 'moving') else: moving = np.append(moving, 'stationary') window+=1 #smooth speed with std 1 c = gaussian_filter(c, sigma=1) return c, moving def resample_Dataframe(df,nsamp): # df is dataframe - nsamp is number of samples to resample to resampFact = nsamp/max(df.index) reSampIdx = np.arange(nsamp).astype(int) # obtain list of new samples totalPos = (np.round(reSampIdx / resampFact)).astype(int) df_ = df.loc[totalPos] # obtain resamp duplicates resamp_df = df_.reset_index(drop=True).reindex(reSampIdx) # re-index df w resamp return resamp_df def trace_behav_sync(directory_name, output_directory, file_dictionary, lr_traces, lr_events, animal, session, stage): """Synchronise raw calcium traces with rat XY coordinates (Deeplabcut). INPUT: ------ - directory_name containing all files for one animal - output_directory is the directory you want to save it to, default = directory with all files - file_dictionary is a dictionary containing all individual sessions - lr_traces = longitudinally registered traces table - lr_events = longitudinally registered events table (corrected) - animal = amimal ID - session = recording session - stage = recording context Required directory contents: - GPIO file (start and end time for calcium) .csv - Behavioural video .flv - Raw Calcium Trace .csv - Events trace .csv - Deep lab cut x,y coordinate .csv OUTPUT: ------ trace_dlc = data frame and saved csv with calcium traces (as below) event_dlc = data frame and saved csv with event traces (as below) door_frame_vid = Frame of start box door opening sandwells = List of sandwell locations ------------------------------------------------------------- |Time (s)|well|position|x|y|likelihood|Session|stage|C000|Cn| ------------------------------------------------------------- | | | | | | | | | | """ #-------------------------------------------------------------------------------------------------------------- # Save DLC, Behavioural vids and GPIO files locations as local variables files = file_dictionary[animal][session][stage] for file in files: if file.endswith("DLC.csv"): input_dlc = os.path.join(directory_name, file) elif file.endswith("BEH.flv"): input_behavioural_video = os.path.join(directory_name, file) elif file.endswith('LED.csv'): input_gpio = os.path.join(directory_name, file) #See if there is an events file to process also for file in file_dictionary[animal]['ALL']['ALL']: if file.endswith('EVE.csv'): input_events = os.path.join(directory_name, file) events_file = True #-------------------------------------------------------------------------------------------------------------- # Read in GPIO pulse .csv file and extract LED section gpio = pd.read_csv(input_gpio) gpio = gpio[gpio[' Channel Name']==' GPIO-1'].convert_objects(convert_numeric=True) # Define start/end time and duration gpio_start = np.round(gpio[gpio['Time (s)'] < 100][gpio[gpio['Time (s)'] < 100][' Value'] > 1000].iloc[0][0] / 0.05) * 0.05 gpio_end = np.round(gpio[gpio['Time (s)'] > 100][gpio[gpio['Time (s)'] > 100][' Value'] > 1000].iloc[0][0] / 0.05) * 0.05 duration = np.round((gpio_end - gpio_start)/ 0.05) * 0.05 #-------------------------------------------------------------------------------------------------------------- #Clean up DLC dataframe dlc = pd.read_csv(input_dlc) # dlc = dlc.drop([0,1]).convert_objects(convert_numeric=True) dlc = dlc.convert_objects(convert_numeric=True) dlc = dlc.rename(columns={dlc.columns[0]:'Time (s)', dlc.columns[1]:'x', dlc.columns[2]:'y'}) dlc['Time (s)'] = dlc['Time (s)']*0.04 # LED light turning on identification led_start = led_time(input_behavioural_video)*0.04 # Trim DLC file before LED and after dlc = dlc[dlc['Time (s)'] >= led_start] dlc['Time (s)'] = dlc['Time (s)']-dlc['Time (s)'].iloc[0] dlc = dlc[dlc['Time (s)'] <= duration] dlc = dlc.reset_index(drop=True) #-------------------------------------------------------------------------------------------------------------- #Isolate individual sessions and stages to align with gpio file trace = lr_traces[lr_traces['Session']==session][lr_traces[lr_traces['Session']==session]['stage']==stage] trace = trace.reset_index(drop=True) # Trim traces using GPIO start/end times and reset to 0 start trace_trimmed = trace[trace['Time (s)'] >= gpio_start][trace[trace['Time (s)'] >= gpio_start]['Time (s)'] <= gpio_end] trace_trimmed['Time (s)'] = trace_trimmed['Time (s)']-trace_trimmed['Time (s)'].iloc[0] trace_trimmed = trace_trimmed.reset_index(drop=True) #Check that behaviour end is the same length as calcium recording and update it if not if np.array(trace_trimmed['Time (s)'])[-1]-np.array(dlc['Time (s)'])[-1] > 0.2: print('Calcium traces are longer than DLC - Ive corrected this for you') gpio_end = gpio_start+(ceil(np.array(dlc['Time (s)'])[-1]*100)/100)+0.01 elif np.array(trace_trimmed['Time (s)'])[-1]-np.array(dlc['Time (s)'])[-1] < -0.2: print('DLC are longer than Caclium traces - Ive corrected this for you') duration = (ceil(np.array(trace_trimmed['Time (s)'])[-1]*100)/100)+0.01 dlc = dlc[dlc['Time (s)'] <= duration] dlc = dlc.reset_index(drop=True) # Trim traces using GPIO start/end times and reset to 0 start trace_trimmed = trace[trace['Time (s)'] >= gpio_start][trace[trace['Time (s)'] >= gpio_start]['Time (s)'] <= gpio_end] trace_trimmed['Time (s)'] = trace_trimmed['Time (s)']-trace_trimmed['Time (s)'].iloc[0] trace_trimmed = trace_trimmed.reset_index(drop=True) #Trim trace and events to correct start time and end time try: input_events except NameError: events_file = False event_dlc = 0 else: #Isolate individual sessions and stages to align with gpio file event = lr_events[lr_events['Session']==session][lr_events[lr_events['Session']==session]['stage']==stage] event = event.reset_index(drop=True) # Trim traces using GPIO start/end times and reset to 0 start event_trimmed = event[event['Time (s)'] >= gpio_start][event[event['Time (s)'] >= gpio_start]['Time (s)'] <= gpio_end] event_trimmed['Time (s)'] = event['Time (s)']-event['Time (s)'].iloc[0] event_trimmed = event_trimmed.reset_index(drop=True) #-------------------------------------------------------------------------------------------------------------- # Door opening and tone frame door_frame_vid, start_box = door_time(input_behavioural_video) if door_frame_vid == 'unknown' or door_frame_vid < 1: door_frame_vid, start_box = door_time(input_behavioural_video, y_correction=10) tone_frame = door_frame_vid - (125) #Assign all points that in the vicinity of the start box to the start box dlc['y'][dlc['y'] > start_box] = np.mean(np.array(dlc[dlc['y'] > start_box]['y'])) dlc['x'][dlc['y'] > start_box] = np.mean(np.array(dlc[dlc['y'] > start_box]['x'])) dlc['y'][dlc['Time (s)'] < door_frame_vid*0.04] = np.mean(np.array(dlc[dlc['y'] > start_box]['y'])) dlc['x'][dlc['Time (s)'] < door_frame_vid*0.04] = np.mean(np.array(dlc[dlc['y'] > start_box]['x'])) #-------------------------------------------------------------------------------------------------------------- #DLC resampling from 25hz to 20hz (different methods avialable) # dlc = scipy.signal.resample(dlc, len(trace_trimmed['Time (s)'])) # Interpolation method # dlc = resample_Dataframe(dlc, len(trace_trimmed['Time (s)'])) # Interpolation method # dlc = dlc.iloc[:,1:] # dlc = np.array(dlc.values) dlc['time'] = pd.date_range('1/1/2000',periods=len(dlc),freq='40ms') dlc = dlc.iloc[:,1:] dlc = dlc.resample('50.06ms', on='time').mean() dlc.index = np.arange(0,len(dlc),1) dlc = np.array(dlc.values) if len(trace_trimmed)-len(dlc.transpose()[0])>0: print('dropping the last frame') trace_trimmed = trace_trimmed.drop([len(trace_trimmed)-1]) #-------------------------------------------------------------------------------------------------------------- #Add Additional columns c, c_label = speed(dlc, pix_cm = 65/20, framerate=25) well = [input_dlc[-15:-12]]*len(trace_trimmed) # Well that pellet is hidden in (SW1,2,3) print(input_behavioural_video) sandwells = sandwell_loc(input_behavioural_video) # Sandwell center coordinates and radius sw_radius = 32 #<-------------------------------------SAND WELL RADIUS position = [] for i in range(len(trace_trimmed)): if i < door_frame_vid: position.append(12) elif dlc.transpose()[1][i] > start_box: position.append(12) elif distance.euclidean(sandwells[0], [dlc.transpose()[0][i], dlc.transpose()[1][i]]) < sw_radius: position.append(1) elif distance.euclidean(sandwells[1], [dlc.transpose()[0][i], dlc.transpose()[1][i]]) < sw_radius: position.append(2) elif distance.euclidean(sandwells[2], [dlc.transpose()[0][i], dlc.transpose()[1][i]]) < sw_radius: position.append(3) else: position.append(0) #Creat output dataframe dlc = pd.DataFrame({'Time (s)':list(trace_trimmed['Time (s)']), 'well':well, 'position':position, 'x':dlc.transpose()[0], 'y':dlc.transpose()[1], 'Speed (cm/s)':c, 'Movement status':c_label, 'door_frame':[door_frame_vid]*len(trace_trimmed), 'tone_frame':[tone_frame]*len(trace_trimmed), 'SW_locs':[sandwells]*len(trace_trimmed)}) trace_trimmed = trace_trimmed.drop(['Time (s)'], axis=1) trace_dlc = pd.merge(dlc,trace_trimmed,left_index=True, right_index=True) #-------------------------------------------------------------------------------------------------------------- #Saves file to CSV trace_dlc.to_csv(output_directory+input_behavioural_video[-25:-7]+'trace_dlc.csv', index=False) print(input_behavioural_video[-25:-7]+'trace_dlc.csv', 'saved to:', output_directory) if events_file: event_trimmed = event_trimmed.drop(['Time (s)'], axis=1) event_dlc = pd.merge(dlc,event_trimmed,left_index=True, right_index=True) #Saves file to CSV event_dlc.to_csv(output_directory+input_behavioural_video[-25:-7]+'events_dlc.csv', index=False) print(input_behavioural_video[-25:-7]+'events_dlc.csv', 'saved to:', output_directory) else: event_dlc = 'EMPTY' #-------------------------------------------------------------------------------------------------------------- return trace_dlc, event_dlc
true
922ccfd763646816d1fdaa5e7f862edc13477579
Python
betteroutthanin/BrewComputer
/Dev/Zobjects/States/Recovery.py
UTF-8
4,421
2.578125
3
[]
no_license
import Config from Zobjects.States.State import State from StateManager import StateManager class Recovery(State): ############################################################## def __init__(self): super(Recovery, self).__init__() self.loggingPrefix = "State.Recovery" # Normally these details are loaded in from the json file # Force them to emulate the loading self.id = 0 self.type = "Zobjects.States.Recovery.Recovery" self.nameShort = "REC" self.nameLong = "Recovery" self.oldSM = False self.newSM = False self.LogMe("Booted") ############################################################## def OnEntry(self): super(Recovery, self).OnEntry() self.EnableQuiteMode() self.oldSM = StateManager() if self.oldSM.LoadStateMachineFromDisk(Config.currentStateMachine) == False: self.oldSM = False self.newSM = StateManager() if self.newSM.LoadStateMachineFromDisk(Config.newStateMachine) == False: self.newSM = False self.DisableQuiteMode() return True ############################################################## def Process(self): # must call the parent process - see comments on State.Process super(Recovery, self).Process() sm = self.bb.Get("sm") timeSec = sm.Get("timeSec") # if both the new and old are invalid then shit is really broken if (self.oldSM == False) and (self.newSM == False): return False # If there is nothing to recover then just punch out and exit recovery mode completely if self.oldSM == False: self.LogMe("Process: No previous Statemachine found - recovery mode not need") sm.Set("recoverOldStateMachine", False) return True # Pressing the button implies that the user wants to dump the old stateMachine and start fresh buttonPressed = self.bb.Get("dm").GetDevice("KeyBoard").ButtonWasPressed("proceed") if buttonPressed == True: sm.Set("recoverOldStateMachine", False) self.LogMe("Process: User pressed the proceed button - recoverOldStateMachine=False") return True # Keeping checking for to see if the timer expires - if so, then recover the old stateMachine thresholdTimeSec = Config.recoveryTimeOutSec + self.startTimeSec if timeSec > thresholdTimeSec: sm.Set("recoverOldStateMachine", True) self.LogMe("Process: Timeout - recoverOldStateMachine=True") return True # Else - keep on ticking return False ############################################################## def RenderWeb(self): oldTitle = False newTitle = False # We want to show the titles of the old and new statemachines if self.oldSM: oldTitle = self.oldSM.Get('name') if self.newSM: newTitle = self.newSM.Get('name') timeLeftSec = (self.startTimeSec + Config.recoveryTimeOutSec) - self.bb.Get("sm").Get("timeSec") buffer = "" buffer = buffer + "<div class='title'>Recover Mode</div>" # if both the new and old are invalid then shit is really broken if (self.oldSM == False) and (self.newSM == False): buffer = buffer + "<div class='proceed'>Can't proceed</div>" buffer = buffer + "<div class='proceed'>Old and New are both missing</div>" buffer = buffer + "<div class='proceed'>What have you done!</div>" return buffer buffer = buffer + "<div class='proceed'>Time Left: " + str(int(timeLeftSec)) + "</div>" buffer = buffer + "<div class='message'>Press PROCEED to dump the OLD run and load the NEW run<br><br>or<br><br>Wait and the OLD run will recover</div>" if oldTitle: buffer = buffer + "<div class='proceed'>OLD = " + str(oldTitle) + "</div>" if newTitle: buffer = buffer + "<div class='proceed'>NEW = " + str(newTitle) + "</div>" return buffer
true
3f4b1253c2a2e182ae6ef676f16c82ae804fac51
Python
AK-1121/code_extraction
/python/python_27232.py
UTF-8
212
3.390625
3
[]
no_license
# How can you tell if numbers in a list are bigger than 126? If it is bigger the program needs to add 94 to it for i, element in enumerate(addOffset): if element &gt; 126: addOffset[i] = element + 94
true
b6f44dc86674462620799c0311643c9b400d8f7e
Python
danielabud/Data_Science_Projects
/Transforming data with Python/count.py
UTF-8
484
3.453125
3
[]
no_license
import read import collections df = read.load_data() headlines = df['headline'] #join all headlines together string = "" for i in headlines: string = string + " " + str.lower(str(i)) print("Successfully joined headlines into one string") #split strings headline_words = string.split() print("Successfully split string into individual words") #count occurances c = collections.Counter(headline_words) print(c.most_common(100)) print("Successfully print most common 100 words")
true
d421e32fc72dc715edadc2595e1489a9cc5fac90
Python
happyhappyhappyhappy/pythoncode
/atcoder/mizuiro_h20/unionfind/ABC157D_FriendSuggestions/used/sample2.py
UTF-8
3,026
2.78125
3
[]
no_license
# ライブラリのインポート import sys # import heapq,copy import pprint as pp from collections import defaultdict # pypy3用 # import pypyjit # 再帰制御解放 # pypyjit.set_param('max_unroll_recursion=-1') # sys.setrecursionlimit(10**6) from logging import getLogger, StreamHandler, DEBUG # 入力のマクロ def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] # デバッグ出力の作成 logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) logger.propagate = False # クラス+メソッドを一関数 xdebug=logger.debug ppp=pp.pprint # Const MAXSIZE = ( 1 << 59 ) -1 MINSIZE = -( 1 << 59) + 1 class UnionFind(): def __init__(self,n): self.n=n self.parents=[-1]*n def find(self,x): if self.parents[x]<0: return x else: self.parents[x]=self.find(self.parents[x]) return self.parents[x] def union(self,x,y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[y]<self.parents[x]: x,y = y,x self.parents[x]=self.parents[x]+self.parents[y] self.parents[y]=x def size(self,x): res = (-1)*self.parents[self.find(x)] return res def same(self,x,y): ok = (self.find(x)==self.find(y)) return ok def members(self,x): root = self.find(x) res = [j for j in range(0,self.n) if self.find(j) == root ] return res def roots(self): res = [j for j , x in enumerate(self.parents) if x < 0] return res def group_count(self): return len(self.roots()) def all_group_members(self): group_members=defaultdict(list) for m in range(0,self.n): group_members[self.find(m)].append(m) return group_members def __str__(self): res = "\n".join(f"{r}: {m}" for r,m in self.all_group_members().items()) return res N,M,K=MI() F=[0]*N # 友好リスト B=[0]*N # ブロックリスト uf = UnionFind(N) for _ in range(0,M): AR,BR = MI() a = AR-1 b = BR-1 F[a]=F[a]+1 F[b]=F[b]+1 uf.union(a,b) for _ in range(0,K): CR,DR = MI() c = CR-1 d = DR-1 if uf.same(c,d): B[c]=B[c]+1 B[d]=B[d]+1 ANS_L = [] for j in range(0,N): xdebug(f"人 {j+1} について") xdebug(f"この人の所属するグループの数は {uf.size(j)} 人 ") xdebug(f"友好関係にある人は {F[j]} 人") xdebug(f"グループは同じだがブロックしている人は {B[j]} 人") ans = uf.size(j)-1-F[j]-B[j] ANS_L.append(ans) # print(ans) ANS_L_STR=" ".join(list(map(str,ANS_L))) print(ANS_L_STR)
true
3a4cb9aa61cab0eac7c3dc41ac1818ac5d289b30
Python
nishiyamayo/atcoder-practice
/src/main/scala/abc150/F.py
UTF-8
1,514
2.890625
3
[]
no_license
N = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) C = [0] * (2 * N - 1) D = [0] * N for i in range(2 * N - 1): C[i] = A[i % N] ^ A[(i + 1) % N] D[i % N] = B[i % N] ^ B[(i + 1) % N] class KMP: def __init__(self, W): self.W = W self.L = len(W) self.T = self._build(W) def _build(self, W): T = [0] * self.L T[0] = -1 T[1] = 0 i = 2 j = 0 while i < self.L: if W[i - 1] == W[j]: T[i] = j + 1 i += 1 j += 1 elif j > 0: j = T[j] else: T[i] = 0 i += 1 return T def search(self, S): m = 0 i = 0 L = len(S) while m + i < L: # print(m, i) if self.W[i] == S[m + i]: i += 1 if i == self.L: i -= 1 ret = m m = m + i - self.T[i] i = self.T[i] yield ret else: m = m + i - self.T[i] if i > 0: i = self.T[i] # def ok(x, i): # for j in range(N): # if A[(j + i) % N] ^ B[j] != x: # return False # return True # # # for i in range(N): # x = A[i] ^ B[0] # if ok(x, i): # print(i, x) kmp = KMP(D) for x in kmp.search(C): xor = A[x] ^ B[0] print(x, xor)
true
afedd1171099a36870e9c586b13c58be59105ac7
Python
Linxi-brave/HogwartsStudy
/testing_my_selenium_PO/base/seleniumAction.py
UTF-8
6,190
2.796875
3
[]
no_license
import os import time from selenium.webdriver import ActionChains, TouchActions from selenium.webdriver.remote.webdriver import WebDriver from selenium.webdriver.support import expected_conditions from selenium.webdriver.support.wait import WebDriverWait from util.handle_time import timenow parent_dir = os.path.abspath(os.path.join(os.getcwd(),'../..')) class SeleniumAction: def __init__(self,driver:WebDriver): self.driver = driver def save_screenshot(self): '''截图''' time = str(timenow()) filename = parent_dir + '/screenshot/'+ time +'.png' self.driver.save_screenshot(filename) def click_ele(self,ele): ele.click() print("true") def click_ele_wait(self,locator,ele): '''等待元素出现之后进行点击''' WebDriverWait(self.driver,10,0.5).until( expected_conditions.element_to_be_clickable(locator) ) ele.click() print("true") def sendkeys_ele(self,ele,value): ele.send_keys(value) def click_ele_try(self,loctor,time_out=10): ''' 封装点击元素,元素可能存在无法点击,这里不断点击元素''' # loctor = (By.XPATH,'') def wait_for_next(x:WebDriver): try: x.find_element(*loctor).click() except: return False WebDriverWait(self.driver,timeout= time_out).until(wait_for_next) def actoinchain_click(self,ele): ''' 使用 ActionChain 对元素进行单击,传入参数 ele 为元素 :param ele: 元素 ''' action = ActionChains(self.driver) action.click(ele) action.perform() def actionchain_contextclick(self,ele): ''' 使用 ActionChain 对元素进行右击,传入参数 ele为元素 :param ele: 元素 ''' action = ActionChains(self.driver) action.context_click(ele) action.perform() def actionchain_doubleclick(self,ele): ''' 使用 ActionChain对元素进行双击,传入参数 ele为元素 :param ele: 元素 ''' action = ActionChains(self.driver) action.double_click(ele) action.perform() def actionchain_movetoelement(self,ele): ''' 使用 ActionChain 将光标移动到元素上 :param ele: 元素 ''' action = ActionChains(self.driver) action.move_to_element(ele) action.perform() def actionchain_dragdrop(self,ele1,ele2): ''' 使用 ActionChain 将元素1拖动到元素2上面 :param ele1: 元素1 :param ele2: 元素2 ''' action = ActionChains(self.driver) action.drag_and_drop(ele1,ele2) action.perform() def actionchain_keys(self,ele,key,second): ''' 使用 ActionChain 模拟键盘操作 :param ele: 元素输入框 :param key: 键盘数字 Keys.BACKSPACE = '\ue003' Keys.BACK_SPACE = BACKSPACE ''' ele.click() action = ActionChains(self.driver) action.send_keys(key).pause(second) # pause(1) 延时1秒,观看效果 action.perform() def touchaction_scrollbottom(self,ele): ''' 使用 TouchActions 实现界面滑动到底部 :param ele: ''' action = TouchActions(self.driver) action.scroll_from_element(ele,0,10000) action.perform() def switch_windows(self,n): ''' 切换当前操作的窗口 :param 第n个窗口 ''' print(self.driver.current_window_handle) # 打印当前窗口 print(self.driver.window_handles) # 打印所有窗口 windows = self.driver.window_handles self.driver.switch_to_window(windows[n]) def switch_frame(self,frameId): ''' 切换frame进行操作 ''' self.driver.switch_to_frame(frameId) def alert_accept(self): ''' 点击alert弹框中的同意按钮 ''' self.driver.switch_to_alert().accept() def alert_dismiss(self): ''' 点击alert弹框中的拒绝按钮 ''' self.driver.switch_to_alert.dismiss() def execute_jsscript(self,jsscript): ''' 执行js语句 ''' self.driver.execute_script(jsscript) def get_title(self): ''' 获取界面title ''' title = self.driver.title return title def get_elementtext(self,ele): ''' 返回元素的值 ''' elementtext = ele.text return elementtext def get_elementattribute(self,ele,attribute): ''' 获取元素的属性值 :param ele: 元素 :param attribute: 属性值 ''' # elementattribute = ele.get_attribute("textContent") elementattribute = ele.get_attribute(attribute) return elementattribute def inputfile(self,inputele,filepath): ''' 文件上传 ''' inputele.send_keys(filepath) # 获取屏幕的宽高 def getsize(self): size = self.driver.get_window_size() width = size["width"] height = size["height"] return width, height #向左滑动 def swipeleft(self): x1 = self.getsize()[0] /10 x2 = self.getsize()[0] /10 * 9 y1 = self.getsize()[1] /2 self.driver.swipe(x1,y1,x2,y1,2000) # 向右滑动 def swiperight(self): x1 = self.getsize()[0] / 10 x2 = self.getsize()[0] / 10 * 9 y1 = self.getsize()[1] / 2 self.driver.swipe(x2, y1, x1, y1, 2000) # 向上滑动 def swipeup(self): self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") # 向下滑动 def swipedown(self): y1 = self.getsize()[1] / 10 y2 = self.getsize()[1] / 10 * 9 x1 = self.getsize()[0] / 2 self.driver.swipe(x1, y2, x1, y1, 2000) #浏览器返回上一界面 def driverback(self): self.driver.back() time.sleep(2)
true
efc21d91b3513136fa29c353e7594a4ab7d767e6
Python
perdikeas/python
/programs/constantine_space_invaders.py
UTF-8
5,355
3.234375
3
[]
no_license
#!/usr/bin/env python3 import random import turtle import math import time #global variables tick=0 aliens=[] missiles=[] aliens_escaped=0 kills=0 player_health=15 class Color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' #Setting up the Screen screen=turtle.Screen() screen.bgcolor('black') screen.title("Space invaders") spaceship=turtle.Turtle() spaceship.speed(0) spaceship.setheading(90) spaceship.penup() spaceship.shapesize(1,0.75,0.75) spaceship.shape("triangle") spaceship.color('turquoise') spaceship.goto(0,-260) spaceship_speed=10 #Setting up the border border_pen=turtle.Turtle() border_pen.color('white') border_pen.penup() border_pen.speed(0) x=300 y=270 border_pen.setposition(-x,-y) border_pen.pendown() border_pen.hideturtle() border_pen.color('green') for i in range(4): border_pen.forward(x+y) border_pen.left(90) border_pen.color('white') colors=['red','orange','chartreuse','dark green'] #defining missile class class Missile(): global spaceship def __init__(self,speed): self.speed=speed self.avatar=turtle.Turtle() self.avatar.hideturtle() self.avatar.setheading(90) self.avatar.penup() self.avatar.color('yellow') self.avatar.speed(0) self.avatar.goto(spaceship.xcor(),spaceship.ycor()+15) self.avatar.shapesize(0.5,1.2,0.5) self.avatar.shape('triangle') def live(self): self.avatar.showturtle() self.avatar.forward(self.speed) #defining alien class class Alien(): global colors #initialization of alien instance def __init__(self,speed): self.speed=speed self.clone=turtle.Turtle() self.clone.setheading(270) self.clone.penup() self.clone.health=4 self.clone.speed(0) self.clone.goto(random.randint(-250,250),270) self.clone.shapesize(1.75,1.75,1.75) self.clone.shape('circle') self.tick=0 #method for Alien instances def live(self): self.tick+=1 if (self.tick%5==0): if (random.randint(1,2)==1): self.clone.left(random.randint(5,10)) else: self.clone.right(random.randint(5,10)) self.clone.forward(self.speed) self.clone.color(colors[self.clone.health-1]) #functions def sqrt(a): return math.sqrt(a) def distance_between(a,b): return sqrt( math.pow(a.xcor()-b.xcor(),2)+ math.pow(a.ycor()-b.ycor(),2)) def border_check_x(a): limit=265 b=a.clone if ((b.xcor()>=limit) and (b.heading()>270 or b.heading()<90)): b.setheading(230) elif((b.xcor()<=-1*limit) and (b.heading()>90 and b.heading()<270)): b.setheading(300) def border_check_y(a): limit=260 global aliens,aliens_escaped,player_health b=a.clone if ((b.ycor()>=limit) and (b.heading()<180 and b.heading()>0)): b.setheading(b.heading()*-1) elif (b.ycor()<limit*-1): b.hideturtle() aliens.remove(a) aliens_escaped+=1 player_health-=1 def right(): global spaceship,spaceship_speed x=spaceship.xcor() x+=spaceship_speed spaceship.setx(x) def left(): global spaceship,spaceship_speed x=spaceship.xcor() x-=spaceship_speed spaceship.setx(x) def add_missile(): global missiles missiles.append(Missile(30)) #main loop while aliens_escaped<10 and kills<10 and player_health!=0: #counter tick+=1 print('you now have {} kills'.format(kills)) #key binding and user input turtle.listen() turtle.onkey(left,'Left') turtle.onkey(right,'Right') turtle.onkey(add_missile,'space') #collison checking for missile in missiles: for alien in aliens: if distance_between(missile.avatar,alien.clone)<20: alien.clone.health-=1 alien.speed-=1 missiles.remove(missile) missile.avatar.hideturtle() for alien in aliens: if distance_between(alien.clone,spaceship)<20: player_health-=0.75 #thorough boundaries check for all turtles for alien in aliens: border_check_x(alien) border_check_y(alien) if alien.clone.health==0: aliens.remove(alien) alien.clone.hideturtle() kills+=1 if spaceship.xcor()<-270: spaceship.setx(-270) elif spaceship.xcor()>265: spaceship.setx(265) #geneating new aliens if (tick%100==0): if len(aliens)<10: aliens.append(Alien(5)) #alien movement for alien in aliens: alien.live() #missile movement for missile in missiles: missile.live() if missile.avatar.ycor()>270: missiles.remove(missile) missile.avatar.hideturtle() turtle.clearscreen() screen.bgcolor('white') turtle.color('red') style=('Courier',15,'bold') if kills<=15: turtle.write('Congratulations, you won and killed 10 aliens',font=style,align='center') else: spaceship.hideturtle() turtle.write('You fucked up, too many aliens escpaed or damaged your spaceship,',font,align='right') turtle.done()
true
5c35bd554ab749fbe42de071819377389c91c853
Python
schrismartin/434_proj2
/PA1/AuthenticateHere.py
UTF-8
1,214
2.765625
3
[]
no_license
#!/usr/bin/env python import socket #set variables for server connection TCP_IP = '127.0.0.1' TCP_PORT = 2017 BUFFER = 1024 #create socket for server and listen for Alice s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) #connect to Alice conn, addr = s.accept() print 'Connection address: ', addr #set variables for client connection HOST = 'taranis.eecs.utk.edu' TCP_PORT = 15153 #connect to Bob t = socket.socket(socket.AF_INET, socket.SOCK_STREAM) t.connect((HOST, TCP_PORT)) #get challenge string from Bob challenge = t.recv(BUFFER) print 'Received challenge string: ', challenge #send challenge string to Alice conn.send(challenge) #get authentication string from Alice authentication = conn.recv(BUFFER) print 'Authentication message is: ', authentication #close connection with Alice. We don't need her anymore. MUAHAHA conn.close() #send Bob the proper authentication string for his challenge t.send(authentication) #get secret from bob and print secret = t.recv(BUFFER) print 'THE SECRET IS: ', secret #close connection to Bob. All has gone according to plan. *insert ultimate evil laugh* t.close()
true
7c762d0699a24e73b976e211960e170bb3661fbf
Python
ufbmi/olass-server
/app/olass/routes/oauth.py
UTF-8
5,698
2.546875
3
[ "MIT" ]
permissive
""" Goal: Implement routes specific to OAuth2 provider @authors: Andrei Sura <sura.andrei@gmail.com> Client Credentials Grant: http://tools.ietf.org/html/rfc6749#section-4.4 Note: client credentials grant type MUST only be used by confidential clients. --- Confidential Clients --- Clients capable of maintaining the confidentiality of their credentials (e.g., client implemented on a secure server with restricted access to the client credentials), or capable of secure client authentication using other means. +---------+ +---------------+ | | | | | |>--(A)- Client Authentication --->| Authorization | | Client | | Server | | |<--(B)---- Access Token ---------<| | | | | | +---------+ +---------------+ Client Credentials Flow The flow illustrated above includes the following steps: (A) The client authenticates with the authorization server and requests an access token from the token endpoint. (B) The authorization server authenticates the client, and if valid, issues an access token. ------------------------------------------------------------------------------- According to the rfc6749, client authentication is required in the following cases: - Resource Owner Password Credentials Grant: see `Section 4.3.2`. - Authorization Code Grant: see `Section 4.1.3`. - Refresh Token Grant: see `Section 6`. """ # TODO: read http://flask-oauthlib.readthedocs.io/en/latest/client.html from datetime import datetime, timedelta from flask_oauthlib.provider import OAuth2Provider from flask import request from olass import utils from olass.main import app from olass.models.oauth_client_entity import OauthClientEntity from olass.models.oauth_access_token_entity import OauthAccessTokenEntity TOKEN_TYPE_BEARER = 'Bearer' # TODO: read this options from config file TOKEN_EXPIRES_SECONDS = 3600 # one hour TOKEN_LENGTH = 40 # max 255 log = app.logger oauth = OAuth2Provider(app) @oauth.usergetter def load_user(): log.info("==> load_user()") return None @oauth.clientgetter def load_client(client_id): """ This method is used by provider->authenticate_client() """ return OauthClientEntity.query.filter_by(client_id=client_id).one() @oauth.tokengetter def load_token(access_token=None, refresh_token=None): tok = None if access_token: tok = OauthAccessTokenEntity.query.filter_by( access_token=access_token).one_or_none() elif refresh_token: tok = OauthAccessTokenEntity.query.filter_by( refresh_token=refresh_token).one_or_none() if tok: log.debug('Loaded token [{}] for user [{}]'.format(tok.id, tok.client)) return tok @oauth.tokensetter def save_token(token_props, req, *args, **kwargs): """ Saves token to the database """ result_token = None token_id = token_props.get('id') token = OauthAccessTokenEntity.get_by_id(token_id) # log.debug("From {} got {}".format(token_id, token)) if token and not token.is_expired(): # log.debug("Reuse access token: {} expiring on {} ({} seconds left)" # .format(token.id, token.expires, token.expires_in)) result_token = token else: access_token = utils.generate_token() # access_token = utils.generate_token_urandom(TOKEN_LENGTH) expires = datetime.utcnow() + timedelta(seconds=TOKEN_EXPIRES_SECONDS) added_at = utils.get_db_friendly_date_time() if token: result_token = OauthAccessTokenEntity.update( token, access_token=access_token, expires=expires, added_at=added_at) else: result_token = OauthAccessTokenEntity.create( access_token=access_token, token_type=TOKEN_TYPE_BEARER, _scopes='', expires=expires, client_id=req.client.client_id, added_at=added_at ) # log.info("return from save_token: {}".format(result_token)) return result_token @app.route('/oauth/token', methods=['POST', 'GET']) @oauth.token_handler def handle_request_auth_token(): """ The dictionary returned by this method is passed to the meth:`save_token` in order to be saved """ if request.method == 'POST': client_id = request.form.get('client_id') client_secret = request.form.get('client_secret') else: client_id = request.args.get('client_id') client_secret = request.args.get('client_secret') if client_id is None: raise Exception("Error: Missing client_id") if client_secret is None: raise Exception("Error: Missing client_secret") client = OauthClientEntity.query.filter_by( client_id=client_id).one_or_none() if client is None: raise Exception("Error: invalid client_id") if client.client_secret != client_secret: raise Exception("Error: invalid client_secret") token = OauthAccessTokenEntity.query.filter_by( client_id=client_id, token_type=TOKEN_TYPE_BEARER).one_or_none() # log.info("return from handle_request_auth_token(): {}".format(token)) return token.serialize() if token else {} @oauth.grantgetter def load_grant(client_id, code): log.debug("==> load_grant()") return None @oauth.grantsetter def save_grant(client_id, code, req): log.debug("==> save_grant()") return None
true
e5dfe0b34e123408cc50aaaf6e908df60d14c4dd
Python
Jaydeep-07/Python-Assignments
/Assignment 1/Assignment1_2.py
UTF-8
171
3.53125
4
[]
no_license
def main(no): if(no%2==0): print("Even Number") else: print("Odd Number") print("Enter The Number") num=input() num=int(num) if __name__=='__main__': main(num)
true
7f46b692ae0b4bcbaa6000519271e429f82221e6
Python
Kennnnnnji/MapReduce
/problem3/python/frdMapper.py
UTF-8
476
3.0625
3
[]
no_license
#!/usr/bin/env python from __future__ import print_function import sys import json friendsof_a = {} # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the line with json method record = json.loads(line) a = record[0] b = record[1] friendsof_a.setdefault(a, set([])) if b not in friendsof_a[a]: friendsof_a[a].add(b) print("%s\t%s" % (a, 1))
true
ad27fb722814a0d2a568bc4f8b1ba6e3a6740be2
Python
jnshwu/py3gemast
/ANSWERS/file_count.py
UTF-8
427
2.75
3
[]
no_license
#!/usr/bin/env python """ @author: jstrick Created on Thu Mar 21 00:26:40 2013 """ import sys import logging import os logging.basicConfig( filename='file_count.log', level=logging.INFO, filemode='w', # create new log each time program is run ) start_dir = sys.argv[1] for curr_dir, dir_list, file_list in os.walk(start_dir): message = '{0}: {1}'.format(curr_dir,len(file_list)) logging.info(message)
true
0aa043e3563307132af47edf045f329462223816
Python
baigarkalpana/Python_Numbers
/Problems_on_Numbers/starpattrn1.py
UTF-8
404
3.953125
4
[]
no_license
''' program which accepting one number display * pattern ***** ***** ***** ***** ***** ''' #accepting number fron user num=int(input("enter number")) #function defination for displaying star pattern def stardisplay(star): for x in range(star): for y in range(star): print("*",end=" ") print() #function call stardisplay(num)
true
c196a87f68c52d2ca2e42998949c275029bb12ae
Python
jerryhanhuan/LearnPython
/re/do_re.py
UTF-8
589
3.5625
4
[]
no_license
#!/usr/bin/env python3 # -*- coding:utf-8 -*- #File Name:do_re.py #Created Time:2019-07-20 08:49:03 import re # 使用 r 前缀,不用考虑转义的问题 match_re = r'^\d{3}\-\d{3,8}$' def main(): str = input('Phone Num:') if re.match(match_re,str): print('match') else: print('Not match') # 分组,用 () 表示的就是要提取的分组 (group) pattern = r'^(\d{3})-(\d{3,8})$' m = re.match(pattern,str) # 原始字符串 print(m.group(0)) print(m.group(1)) print(m.group(2)) if __name__ == '__main__': main()
true
acc34034a686217ab82ee0c6a411da87d3b56288
Python
sgiardl/LeafClassification
/classifiers/Ridge.py
UTF-8
865
3.03125
3
[]
no_license
from sklearn.linear_model import RidgeClassifier from classifiers.Classifier import Classifier class Ridge(Classifier): """ CLASS NAME: Ridge DESCRIPTION: Child class for the Ridge classifier, inherits from the Classifier parent class. """ def __init__(self): """ PARAMETERS: None. RETURNS: None. DESCRIPTION: Initializes the class with the range of parameters to test during hyperparameter search in the self.param_grid attribute. The sklearn classifier class is specified in the self.classifier attribute. """ super(Ridge, self).__init__() self.classifier = RidgeClassifier() self.param_grid = {'alpha': [1e-8, 1e-7, 1e-6, 1e-5, 1e-4]}
true
e9cb4c9858b0f392e46dece2c11f3f6af2ef1dd6
Python
Leberwurscht/eartrainer
/guitar.py
UTF-8
3,007
2.859375
3
[ "WTFPL" ]
permissive
#!/usr/bin/python import gtk, gobject from playnote import play_note import random strings = "ebgdaE" current_fret = 0 current_note = 0 buttons = {} status = gtk.Label() status.set_markup('<span size="x-large"> </span>') right = 0 total = 0 def play(*args): global current_note play_note(current_note) def new_question(): global current_note current_note = random.randint(-29, -5+12) play() def note_name(note): note_names = [" a ","ais"," b "," c" ,"cis"," d ","dis"," e "," f ","fis"," g ","gis"] while note<0: note += 12 return note_names[note % 12] def note(string, fret): tunings = [-5, -10, -14, -19, -24, -29] return tunings[string] + fret def select(widget, data): global buttons, current_note, right, total string, fret = data try: buttons[string, fret].grab_focus() except KeyError: pass guess = note(string, fret) play_note(guess) total += 1 if guess==current_note: right += 1 status.set_markup('<span foreground="dark green" size="x-large">RIGHT</span> %d%%' % int(100.0*right/total)) gobject.timeout_add(1500, new_question) else: status.set_markup('<span foreground="red" size="x-large">FALSE</span> %d%%' % int(100.0*right/total)) gobject.timeout_add(400, play) def key_callback(window, event): global current_fret, strings key = gtk.gdk.keyval_name(event.keyval) if key=="Escape": current_fret = 0 play() if key.isdigit(): current_fret *= 10 current_fret += int(key) if key in strings: string = strings.index(key) fret = current_fret current_fret = 0 select(None, (string, fret)) w = gtk.Window() table = gtk.Table(7, 15, False) for string in xrange(6): label = gtk.Label(" %s " % strings[string]) table.attach(label, 0, 1, string+1, string+2) circle = "\xe2\x97\x8f" for fret in [5,7,9,12]: label = gtk.Label(circle) table.attach(label, fret+2, fret+3, 0, 1) for string in xrange(6): #button = gtk.Button("%d/%d" % (string+1, 0)) button = gtk.Button(note_name(note(string, 0))) button.connect("clicked", select, (string, 0)) table.attach(button, 1, 2, string+1, string+2) buttons[string, 0] = button label = gtk.Label("|") table.attach(label, 2, 3, string+1, string+2) for fret in xrange(12): #button = gtk.Button("%d/%d" % (string+1, fret+1)) button = gtk.Button(note_name(note(string, fret+1))) button.connect("clicked", select, (string, fret+1)) table.attach(button, fret+3, fret+4, string+1, string+2) buttons[string, fret+1] = button #status.connect("clicked", play) vbox = gtk.VBox() w.add(vbox) vbox.add(status) vbox.add(table) w.set_events(gtk.gdk.KEY_PRESS_MASK) w.connect("key_press_event", key_callback) w.show_all() w.connect("destroy", lambda *args: gtk.main_quit()) w.connect("delete_event", lambda *args: gtk.main_quit()) new_question() gtk.main()
true
08c7d456f9ddf0e9da23beea4477409a55c090a4
Python
IEEE-NITK/NLQ_to_SQL
/chandana/ml/_rnn1.py
UTF-8
1,133
3.203125
3
[]
no_license
import torch import torch.nn as nn import torch.nn.functional as F import os import numpy as np class SingleRNN(nn.Module): def __init__(self, n_inputs, n_neurons): super(SingleRNN, self).__init__() self.Wx = torch.randn(n_inputs, n_neurons) # 4 X 1 self.Wy = torch.randn(n_neurons, n_neurons) # 1 X 1 self.b = torch.zeros(1, n_neurons) # 1 X 4 def forward(self, X0, X1): self.Y0 = torch.tanh(torch.mm(X0, self.Wx) + self.b) # 4 X 1 self.Y1 = torch.tanh(torch.mm(self.Y0, self.Wy) + torch.mm(X1, self.Wx) + self.b) # 4 X 1 return self.Y0, self.Y1 N_INPUT = 4 N_NEURONS = 1 X0_batch = torch.tensor([[0,1,2,0], [3,4,5,0], [6,7,8,0], [9,0,1,0]], dtype = torch.float) #t=0 => 4 X 4 X1_batch = torch.tensor([[9,8,7,0], [0,0,0,0], [6,5,4,0], [3,2,1,0]], dtype = torch.float) #t=1 => 4 X 4 model = SingleRNN(N_INPUT, N_NEURONS) Y0_val, Y1_val = model(X0_batch, X1_batch) print(Y0_val) print(Y1_val)
true
be90a24bc3ced1411b2a889c776bde96b8f5ae76
Python
tehwentzel/cd_map
/backend/Stats.py
UTF-8
379
2.765625
3
[]
no_license
import numpy as np import pandas as pd def records_to_array(record_list,keys = None): #should take a list of dicts from json stuff #[{x0: 1, x1: 1...},{x0: 0...}...] -> np.array([[x0,x1,x2...],[ x0...]...] if keys is None: keys = record_list[0].keys() keys=set(keys) records = [[v for k,v in entry.items() if k in keys] for entry in record_list] return np.array(records)
true
2784a2db1d55796b62c258762aab60e7acdaa746
Python
atulanandnitt/arun
/uploadFileToAWS.py
UTF-8
843
2.53125
3
[]
no_license
import boto3 bucket_name = 'bucket_name' # having public access def upload_text_file(): content = open('local_file.txt', 'rb') s3 = boto3.client('s3') s3.put_object( Bucket=bucket_name, Key='remote-file.txt', Body=content ) upload_text_file() def upload_media_file(f1): content = open(f1, 'rb') s3 = boto3.client('s3') s3.put_object( Bucket=bucket_name, Key='remote-file-2.png', Body=content ) # f1 = 'python_java.mp4' # f1 = 'local_file.txt' f1 = 'bitmoji.png' upload_media_file(f1) def upload_media_file(f1, key1): content = open(f1, 'rb') s3 = boto3.client('s3') s3.put_object( Bucket=bucket_name, Key=key1, Body=content ) f1 = 'python_java.mp4' key1 = 'remote-file-3.mp4' upload_media_file(f1, key1) print("done")
true
514a140cdfbcf4bc1c2da6fc2e8f3dc2c9857b81
Python
atavares75/MQP-URL_Classifier
/src/Metrics/AlgorithmPerformance.py
UTF-8
6,182
3.140625
3
[]
no_license
from itertools import cycle import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, roc_curve, auc from sklearn.preprocessing import label_binarize class AlgorithmPerformance: def __init__(self, test_urls, test_output, prediction, algorithm, autoGenerateMetrics=True): """ Initializes parameters to generate algorithm performance metrics :param test_urls: the labeled input the model was tested with :param test_output: the labeled output model was tested with :param prediction: the predicted output of model :param algorithm: algorithm used by model (default is empty string) :param autoGenerateMetrics: boolean value indicating if all metrics should be automatically generated """ self.data_labels = np.unique(test_output) self.test_urls = test_urls self.test_output = test_output self.prediction = prediction self.algorithm = algorithm if autoGenerateMetrics is True: self.cmtx = self.createConfusionMatrix() self.FP = self.cmtx.sum(axis=0) - np.diag(self.cmtx) self.FN = self.cmtx.sum(axis=1) - np.diag(self.cmtx) self.TP = np.diag(self.cmtx) self.TN = self.cmtx.values.sum() - (self.FP.values.sum() + self.FN.values.sum() + self.TP.sum()) else: self.cmtx = None self.FP = None self.FN = None self.TP = None self.TN = None def createConfusionMatrix(self): """ Creates a confusion matrix from the predicted and actual output :return: a data frame with the confusion matrix and labeled rows and column """ c_matrix = confusion_matrix(self.test_output, self.prediction, self.data_labels) idx = list() c = list() for label in self.data_labels: idx.append('true: ' + label) c.append('pred: ' + label) self.cmtx = pd.DataFrame(c_matrix, index=idx, columns=c) self.FP = self.cmtx.sum(axis=0) - np.diag(self.cmtx) self.FN = self.cmtx.sum(axis=1) - np.diag(self.cmtx) self.TP = np.diag(self.cmtx) self.TN = self.cmtx.values.sum() - (self.FP.values.sum() + self.FN.values.sum() + self.TP.sum()) return self.cmtx def createClassificationReport(self): """ Wrapper function for sklearn.metrics classification_report function :return: returns a dictionary containing classification report """ return classification_report(self.test_output, self.prediction) def calculateAccuracy(self): """ Wrapper function for sklearn.metrics accuracy_score function :return: float """ return accuracy_score(self.test_output, self.prediction) def generateROC(self): """ Generates an ROC curve and ROC area for each class :return: plot with ROC curve """ fpr = dict() tpr = dict() n_classes = len(self.data_labels) roc_auc = dict() y_test = label_binarize(self.test_output, classes=self.data_labels) y_score = label_binarize(self.prediction, classes=self.data_labels) for i in range(n_classes): t = y_test[:, i] fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) plt.figure() lw = 2 plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue', 'skyblue', 'red']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve for {0} URLs (area = {1:0.2f})' ''.format(self.data_labels[i], roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title(self.algorithm + ' - Multi-class ROC Curve Plot') plt.legend(loc="lower right") return plt.gcf() def calculateFalsePostiveRate(self): """ :RETURN: returns the false positive rate """ return self.FP / (self.FP + self.TN) def calculateFalseNegativeRate(self): """ :RETURN: returns the false negative rate """ return self.FN / (self.TP + self.FN) def get_results(self, metric): """ This method returns the wanted metric inputted by the user :PARAM metric: the wanted metric inputed by the user :RETURN: the value of the wanted metric """ if metric == "accuracy": return self.calculateAccuracy() elif metric == "false_positive": return self.calculateFalsePostiveRate() elif metric == "false_negative": return self.calculateFalseNegativeRate() def set_prediction(self, new): """ Sets new prediction. Used for tagging method. :param new: new prediction :return: None """ self.prediction = pd.Series(new)
true
122c69caa2d9159acc6c47e46adbe825539ded96
Python
nimadorostkar/img-size
/a.py
UTF-8
478
3.171875
3
[]
no_license
import cv2 # read image imgA = cv2.imread('p1.jpg', cv2.IMREAD_UNCHANGED) imgB = cv2.imread('p2.jpg', cv2.IMREAD_UNCHANGED) # height, width heightA = imgA.shape[0] widthA = imgA.shape[1] heightB = imgB.shape[0] widthB = imgB.shape[1] print('Image A :') print(' Height : ',heightA) print(' Width : ',widthA) print(' -------------------------------- ') print('Image B :') print(' Height : ',heightB) print(' Width : ',widthB)
true
f478d87a40506ae09e10affcb01210685ef6dac9
Python
Samuel-Maddock/Zilean
/league_api/graphs/games_per_month.py
UTF-8
2,662
2.953125
3
[]
no_license
from riotwatcher import RiotWatcher import datetime import matplotlib.pyplot as plt from .base_graph import Graph class GamesPerMonthGraph(Graph): def __init__(self, api_watcher, region): super(GamesPerMonthGraph, self).__init__(api_watcher, region) def retrieve_matchlist(self, summoner): canBeLoaded = True beginIndex = -100 total = 0 gameDateList = [] # Retrieve a list of all game dates while canBeLoaded: beginIndex += 100 history = self.api_watcher.match.matchlist_by_account(self.region, summoner["accountId"], begin_index=beginIndex) if len(history["matches"]) < 100: canBeLoaded = False for match in history["matches"]: gameDate = datetime.datetime.fromtimestamp(match["timestamp"]/1000).strftime('%Y-%m-%d %H:%M:%S.%f') gameDateList.append(gameDate) total += len(history["matches"]) print("All Game Dates have been loaded for: " + summoner["name"]) return gameDateList def render(self, summoner_name="SamuelTheRandom", filepath="gpm-summoner.png"): api_watcher = self.api_watcher summoner = api_watcher.summoner.by_name(self.region, summoner_name) gameDateList = self.retrieve_matchlist(summoner) # Format data into a dictionary of games played per month dateData = dict() yearSet = set() for gameDate in gameDateList: year = gameDate[0:4] month = gameDate[5:7] day = gameDate[8:10] key = year + "-" + month yearSet.add(year) if key not in dateData: dateData[key] = 1 else: dateData[key] += 1 # Formatting the Graph months = ["01", "02", "03", "04","05","06","07","08","09","10","11","12"] years = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"] plt.clf() for year in sorted(yearSet): gamesPlayed = list() for month in months: key = year + "-" + month if key in dateData.keys(): gamesPlayed.append(dateData[key]) else: gamesPlayed.append(0) plt.plot(years, gamesPlayed, "o-", label=year) plt.title("League of Legends Games Played Per Month for: " + summoner["name"]) plt.xlabel("Months of the Year") plt.ylabel("Number of Games Played") plt.legend(bbox_to_anchor=(1.05, 1),loc=2, borderaxespad=0.) plt.savefig(filepath, bbox_inches='tight')
true
888d8c467c55d5279dfdfda38dfdf92f989084a7
Python
ankurtaly/Integrated-Gradients
/IntegratedGradients/integrated_gradients.py
UTF-8
4,902
3.375
3
[]
no_license
import numpy as np def integrated_gradients( inp, target_label_index, predictions_and_gradients, baseline, steps=50): """Computes integrated gradients for a given network and prediction label. Integrated gradients is a technique for attributing a deep network's prediction to its input features. It was introduced by: https://arxiv.org/abs/1703.01365 In addition to the integrated gradients tensor, the method also returns some additional debugging information for sanity checking the computation. See sanity_check_integrated_gradients for how this information is used. This method only applies to classification networks, i.e., networks that predict a probability distribution across two or more class labels. Access to the specific network is provided to the method via a 'predictions_and_gradients' function provided as argument to this method. The function takes a batch of inputs and a label, and returns the predicted probabilities of the label for the provided inputs, along with gradients of the prediction with respect to the input. Such a function should be easy to create in most deep learning frameworks. Args: inp: The specific input for which integrated gradients must be computed. target_label_index: Index of the target class for which integrated gradients must be computed. predictions_and_gradients: This is a function that provides access to the network's predictions and gradients. It takes the following arguments: - inputs: A batch of tensors of the same same shape as 'inp'. The first dimension is the batch dimension, and rest of the dimensions coincide with that of 'inp'. - target_label_index: The index of the target class for which gradients must be obtained. and returns: - predictions: Predicted probability distribution across all classes for each input. It has shape <batch, num_classes> where 'batch' is the number of inputs and num_classes is the number of classes for the model. - gradients: Gradients of the prediction for the target class (denoted by target_label_index) with respect to the inputs. It has the same shape as 'inputs'. baseline: [optional] The baseline input used in the integrated gradients computation. If None (default), the all zero tensor with the same shape as the input (i.e., 0*input) is used as the baseline. The provided baseline and input must have the same shape. steps: [optional] Number of intepolation steps between the baseline and the input used in the integrated gradients computation. These steps along determine the integral approximation error. By default, steps is set to 50. Returns: integrated_gradients: The integrated_gradients of the prediction for the provided prediction label to the input. It has the same shape as that of the input. The following output is meant to provide debug information for sanity checking the integrated gradients computation. See also: sanity_check_integrated_gradients prediction_trend: The predicted probability distribution across all classes for the various (scaled) inputs considered in computing integrated gradients. It has shape <steps, num_classes> where 'steps' is the number of integrated gradient steps and 'num_classes' is the number of target classes for the model. """ if baseline is None: baseline = 0*inp assert(baseline.shape == inp.shape) # Scale input and compute gradients. scaled_inputs = [baseline + (float(i)/steps)*(inp-baseline) for i in range(0, steps+1)] predictions, grads = predictions_and_gradients(scaled_inputs, target_label_index) # shapes: <steps+1>, <steps+1, inp.shape> # Use trapezoidal rule to approximate the integral. # See Section 4 of the following paper for an accuracy comparison between # left, right, and trapezoidal IG approximations: # "Computing Linear Restrictions of Neural Networks", Matthew Sotoudeh, Aditya V. Thakur # https://arxiv.org/abs/1908.06214 grads = (grads[:-1] + grads[1:]) / 2.0 avg_grads = np.average(grads, axis=0) integrated_gradients = (inp-baseline)*avg_grads # shape: <inp.shape> return integrated_gradients, predictions def random_baseline_integrated_gradients( inp, target_label_index, predictions_and_gradients, steps=50, num_random_trials=10): all_intgrads = [] for i in range(num_random_trials): intgrads, prediction_trend = integrated_gradients( inp, target_label_index=target_label_index, predictions_and_gradients=predictions_and_gradients, baseline=255.0*np.random.random([224,224,3]), steps=steps) all_intgrads.append(intgrads) avg_intgrads = np.average(np.array(all_intgrads), axis=0) return avg_intgrads
true
fe49fe70acacca4c739a28860c6900d166d5616a
Python
sparshagarwal16/Assignment
/Assignment18.py
UTF-8
1,477
3.171875
3
[]
no_license
import tkinter from tkinter import * import tkinter as tk #Question 1 print("Question 1") dict={} for i in range(2): name=input("Enter the name: ") mob=int(input("Enter mobile number: ")) dict[name]=mob r= Tk() z=Label(r,text="DATA",width=15,bg="blue") z.pack() scrollbar = Scrollbar(r) scrollbar.pack( side = RIGHT, fill = Y ) mylist = Listbox(r, yscrollcommand = scrollbar.set ) for line in dict: mylist.insert(END, str(line)) mylist.pack( side = LEFT, fill = BOTH ) scrollbar.config( command = mylist.yview ) all_items=mylist.get(0,tkinter.END) def poll(): z.after(200, poll) sel = mylist.curselection() print(sel) if(len(sel)>0): t=all_items[sel[0]] z.config(text=dict[t]) poll() print(all_items) #Question 2 print("Question 2") dict2={} name1="" name2="" mob1=0 mob2=0 def add(): name1=input("Enter the name: ") mob1=int(input("Enter mobile number: ")) name2=input("Enter the name: ") mob2=int(input("Enter mobile number: ")) dict2[name1]=mob1 dict2[name2]=mob2 print(dict2) def insert(): for line2 in dict2: #entry added to GUI mylist.insert(END, str(line2)) mylist.pack(side=LEFT, fill=BOTH) button=tk.Button(r, text='ADD',width=15,activebackground='#1CDDD8',activeforeground="black",bg="#1CDDD8",command=add) button.pack() button2=tk.Button(r, text='Insert',width=15,activebackground='#1CDDD8',activeforeground="black",bg="#1CDDD8",command=insert) button2.pack() mainloop()
true
ce2eb2a5232159594b23316331ee21f2c39e721c
Python
zhuyanxi/CarnoFinance
/pythonVer/main.py
UTF-8
903
2.78125
3
[ "MIT" ]
permissive
import xlrd CSI_300_GROWTH_INDEX_EXCEL = "csi_300_growth_index.xls" CSI_300_VALUE_INDEX_EXCEL = "csi_300_value_index.xls" print("hello py") bookGrowth = xlrd.open_workbook(CSI_300_GROWTH_INDEX_EXCEL) sheetGrowth = bookGrowth.sheet_by_index(0) growthList = sheetGrowth.col_values(5)[1:] # print(growthList) bookValue = xlrd.open_workbook(CSI_300_VALUE_INDEX_EXCEL) sheetValue = bookValue.sheet_by_index(0) valueList = sheetValue.col_values(5)[1:] # print(valueList) niubiStock = [x for x in growthList if x in valueList] print(niubiStock, len(niubiStock)) print("--------------------------------") niubiStock1 = [x for x in growthList if x not in valueList] print(niubiStock1, len(niubiStock1)) print("--------------------------------") niubiStock2 = [x for x in valueList if x not in growthList] print(niubiStock2, len(niubiStock2)) bookValue = xlrd.open_workbook(CSI_300_VALUE_INDEX_EXCEL)
true
04d15225faec3a4a70e7f3db4ac3ddabf78f5cde
Python
RuolinZheng08/phonetic-acoustic-word-embeddings
/lib/data/batch_samplers.py
UTF-8
2,611
2.703125
3
[]
no_license
import logging as log import random import numpy as np class _StatefulBatchSampler: def __len__(self): return len(self.batches) def __iter__(self): while self.iter < len(self): batch = self.batches[self.iter] self.iter += 1 yield batch self.init_iter() def state_dict(self, itr): return { "iter": self.iter - (itr._send_idx - itr._rcvd_idx), "batches": np.array(self.batches) } def load_state_dict(self, state_dict): self.iter = state_dict["iter"] self.batches = state_dict["batches"].tolist() class BatchSampler(_StatefulBatchSampler): def __init__(self, examples, batch_size, shuffle=False): log.info(f" >> # examples= {len(examples)}") log.info(f" >> batch_size= {batch_size}") log.info(f" >> shuffle= {shuffle}") self.examples = list(examples) self.batch_size = batch_size self.shuffle = shuffle self.init_iter() def init_iter(self): if self.shuffle: random.shuffle(self.examples) self.iter = 0 self.batches = [] batch = [] for example in self.examples: if len(batch) < self.batch_size: batch.append(example) else: self.batches.append(batch) batch = [example] if len(batch) > 0: self.batches.append(batch) class PackedBatchSampler(_StatefulBatchSampler): def __init__(self, examples, batch_size, sort_by, variable=False, shuffle=False): log.info(f" >> # examples= {len(examples)}") log.info(f" >> batch_size= {batch_size}") log.info(f" >> shuffle= {shuffle}") log.info(f" >> sort by {sort_by}") log.info(f" >> variable= {variable}") self.examples = examples self.batch_size = batch_size def get_size(k): return self.examples[k][sort_by] self.get_size = get_size self.variable = variable self.shuffle = shuffle self.init_iter() def init_iter(self): self.iter = 0 batches = [] batch = [] batch_size = 0 examples = sorted(self.examples, key=self.get_size, reverse=True) example_size = self.get_size(examples[0]) if self.variable else 1 for example in examples: if batch_size + example_size <= self.batch_size: batch.append(example) batch_size += example_size else: batches.append(batch) batch = [example] example_size = self.get_size(example) if self.variable else 1 batch_size = example_size if len(batch) > 0: batches.append(batch) self.batches = batches[::-1] if self.shuffle: random.shuffle(self.batches)
true
483ea429b898a70e49dda119ca8d460329ca22e0
Python
blackglowen/BookManager
/books/management/commands/seed.py
UTF-8
2,056
2.65625
3
[ "MIT" ]
permissive
from django.core.management.base import BaseCommand, CommandError from django.contrib.auth.models import User from faker import Faker from books import models from data import genres, authors def create_authors(): for author in authors.DEFAULT_AUTHORS: auth = models.Author(name=author['name'], country=author['country']) auth.save() def create_genres(): for genre in genres.DEFAULT_CATEGORIES: cat = models.Category(name=genre) cat.save() def create_user(): faker = Faker() first_name = faker.first_name() last_name = faker.last_name() email = '{}.{}@example.com'.format(first_name.lower(), last_name.lower()) password = 'Pwd987654321@' username = first_name.lower() + '.' + last_name.lower() user = User.objects.create_user(username, email, password, first_name=first_name, last_name=last_name) user.save() class Command(BaseCommand): help = 'Populates the database with records' def add_arguments(self, parser): self.parser = parser parser.add_argument('-u', '--users', metavar='N', type=int, help='The number of fake users to create.') parser.add_argument('-g', '--genres', action='store_true', help='Flag to create default book genres.') parser.add_argument('-a', '--authors', action='store_true', help='Flag to create default authors.') def handle(self, *args, **options): if options['users']: for _ in range(options['users']): create_user() self.stdout.write(self.style.SUCCESS('Successfully created %s users' % options['users'])) if options['genres']: create_genres() self.stdout.write(self.style.SUCCESS('Successfully created book genres')) if options['authors']: create_authors() self.stdout.write(self.style.SUCCESS('Successfully created book authors')) if not (options['users'] or options['genres'] or options['authors']): self.parser.print_help()
true
92b7f82c0b66b874f9839be4bdd804b226557e97
Python
shonenada/crawler
/tests/test_link_item.py
UTF-8
834
2.78125
3
[ "MIT" ]
permissive
#-*- coding: utf-8 -*- import unittest from crawler.link import Link from crawler.item import Item class LinkItemTestCase(unittest.TestCase): def setUp(self): self.item = Item('img', r'(?P<img><img [^>]+?>)') self.link = Link('movie.douban', 'http://movie.douban.com/', [self.item]) def test_register_funcs(self): def cf(one): print one return one self.link.register_funcs([cf]) self.assertTrue(cf in self.item.clean_funcs) def test_fetch(self): results = self.link.fetch() douban_logo = '<img style="top: -5px; position: relative;" src="http://img3.douban.com/pics/site/icon_site_beta.gif"/>' self.assertIn('img', results) movie = results['img'] self.assertIn(douban_logo, [m['img'] for m in movie])
true
bad3b25b62280567cf51c2caff704cd4ad0a6a12
Python
mdauthentic/ETLProject-Batch
/src/config.py
UTF-8
400
2.71875
3
[]
no_license
from os import path, getcwd import json class Config: def __init__(self) -> None: pass def __get_path_from_rel(self, rel_path: str): return path.join(getcwd(), rel_path) def load_config(self): config_path = self.__get_path_from_rel("config.json") with open(config_path, 'r') as f: config_data = json.load(f) return config_data
true
e6664a43bde9dde96c1e42eab1927c6a70aaaa5d
Python
shhuan/algorithms
/py/codeforces/321D.py
UTF-8
2,470
3.03125
3
[ "MIT" ]
permissive
""" created by huash06 at 2015-07-15 """ __author__ = 'huash06' import os import sys import functools import collections import itertools import math h, q = [int(x) for x in input().split()] def rightIndex(index, height): res = index for _ in range(height): res = res * 2 + 1 return res def cross4(l1, r1, l2, r2): return l2 <= r1 <= r2 or l1 <= l2 <= r1 def cross2(range1, range2): l1 = range1[0] r1 = range1[1] l2 = range2[0] r2 = range2[1] return cross4(l1, r1, l2, r2) def merge4(l1, r1, l2, r2): return min(l1, l2), max(l2, r2) def merge2(range1, range2): l1 = range1[0] r1 = range1[1] l2 = range2[0] r2 = range2[1] return merge4(l1, r1, l2, r2) def intersection(range1, range2): l1 = range1[0] r1 = range1[1] l2 = range2[0] r2 = range2[1] return max(l1, l2), min(r1, r2) def difference(range1, range2): if cross2(range1, range2): l1 = range1[0] r1 = range1[1] l2 = range2[0] r2 = range2[1] if l1 < l2: return l1, l2 - 1 elif r1 > r2: return r2 + 1, r1 else: return None else: return range1 def addRange(rangeList, newRange): ar = newRange for i, v in enumerate(rangeList): r = difference(newRange, v) if ar: ar = difference(ar, v) if not r: return False else: rangeList[i] = r if ar: rangeList.append(ar) return True possible = [] impossible = [] res = None for qi in range(q): i, l, r, ans = [int(x) for x in input().split()] if res: continue newRange = (int(math.pow(2, h - i) * l), rightIndex(r, h - i)) if ans == 0: if not addRange(impossible, newRange): res = "Game cheated!" break else: if not addRange(possible, newRange): res = "Game cheated!" break if not possible: possible.append((int(pow(2, h - 1)), int(pow(2, h)) - 1)) print(possible) print(impossible) if res: print(res) else: res = [] for p in possible: v = p for ip in impossible: if not v: break v = difference(v, ip) if v: addRange(res, v) count = 0 for v in res: count += v[1] - v[0] + 1 if count == 1: print(res[0][0]) else: print("Data not sufficient!")
true
23483e674d518c890e571643ac48c6ddd3ca0f70
Python
ZwEin27/wedc-one-class-classification
/wedc/common/str.py
UTF-8
1,459
3.109375
3
[ "Apache-2.0" ]
permissive
# -*- coding: utf-8 -*- # @Author: ZwEin # @Date: 2016-08-09 13:52:35 # @Last Modified by: ZwEin # @Last Modified time: 2016-08-09 13:55:11 import re import string def hasNumbers(inputString): # return any(char.isdigit() for char in inputString) return bool(re.search(r'\d', inputString)) def hasUnicode(s): if isinstance(s, unicode): return True return False def hasSpecial(s): # unicode_char = u'aa\u2764\ufe0f\u0455\u03c9\u0454\u0454\u0442\u0454\u0455\u0442' # unicode_char = u'ss' encoded = s.encode('utf-8') reg = re.compile("^[A-Za-z"+string.punctuation+"]+$") if reg.search(encoded): return False return True def hasPunctuation(s): reg = re.compile("["+string.punctuation+"]+") if reg.search(s): return True return False def hasHTMLTag(s): reg = re.compile("<\w+>") if reg.search(s): return True return False def whatisthis(s): if isinstance(s, str): print "ordinary string" elif isinstance(s, unicode): print "unicode string" else: print "not a string" # print hasUnicode(u'\u2113') # print string.punctuation # s = '<p>Source: <a rel="nofollow" target="_blank" href="http://www.jobs2careers.com/click.php?id=1834227799.96&amp;job_loc=Santa+Maria%2CCA">http://www.jobs2careers.com/click.php?id=1834227799.96&amp;job_loc=Santa+Maria%2CCA</a></p>' # print hasHTMLTag(s) # print hasNumbers('live')
true
89ea8c5fd4225ed700d2926bfb75f3e21b8b2cf6
Python
jmstudyacc/python_practice
/POP1-Exam_Revision/repl_problems/session_4/matrix_max_index.py
UTF-8
1,063
3.96875
4
[]
no_license
# M = matrix of numbers, list of lists # m = number of rows in M # n = number of columns in M def matrix_max_index(M, m, n): # init the var to hold the current max int from matrix ele_max = 0 idx = 0 # iterate over the matrix for i in range(0, m): # if the value of ele_max is less than the max value of the current iteration (a list, i, in the matrix if ele_max < max(M[i]): # set ele_max to equal this value ele_max = max(M[i]) # record the index it happened at idx = i # calculate the position IN the list, i, to return idx_pos = M[idx].index(ele_max) # return a tuple containing the index and the list index of the max value of the matrix return idx, idx_pos M = [[0, 3, 2, 4], [2, 3, 5, 5], [5, 1, 2, 3]] print(matrix_max_index(M, 3, 4)) M2 = [[1]] print(matrix_max_index(M2, 1, 1)) M3 = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] print(matrix_max_index(M3, 3, 5)) M4 = [[1], [2], [3], [2], [1], [2]] print(matrix_max_index(M4, 6, 1))
true
bc6df96d75dd8988f9ba02619e85b6bd99254a17
Python
Panda3D-public-projects-archive/sfsu-multiplayer-game-dev-2011
/branches/johanbranch/clientTeam/src/net/ServerResponseTable.py
UTF-8
1,143
2.640625
3
[]
no_license
from common.Constants import Constants from net.response.ResponseLogin import ResponseLogin from net.response.ResponseRegister import ResponseRegister class ServerResponseTable: responseTable = {} @staticmethod def init(): """Initialize the response table.""" ServerResponseTable.add(Constants.SMSG_AUTH, 'ResponseLogin') ServerResponseTable.add(Constants.SMSG_REGISTER, 'ResponseRegister') @staticmethod def add(constant, name): """Map a numeric response code with the name of an existing response module.""" if name in globals(): ServerResponseTable.responseTable[constant] = name else: print 'Add Response Error: No module named ' + str(name) @staticmethod def get(responseCode): """Retrieve an instance of the corresponding response.""" serverResponse = None if responseCode in ServerResponseTable.responseTable: serverResponse = globals()[ServerResponseTable.responseTable[responseCode]]() else: print 'Bad Response Code: ' + str(responseCode) return serverResponse
true
b2072e435d9974fe95f9482d2aa04f09dd563208
Python
Breast-Cancer-Team/Final-Project
/Final-Project/logistic_regression.py
UTF-8
1,526
3.328125
3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
#!/usr/bin/env python # coding: utf-8 # In[1]: # Import cleaning and splitting functions from clean_split_data import clean_data from clean_split_data import split_data # Import pandas and plotting libraries import pandas as pd # Import Scikit-Learn library for the regression models and confusion matrix from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # ### Data data = pd.read_csv('data/data.csv') data = clean_data(data) X_train, X_test, y_train, y_test = split_data(data) # ### Classifier clf = LogisticRegression(solver="saga", max_iter=5000) clf.fit(X_train, y_train) # ### Optimized Logistic Regression Predictor def feature_names(): ''' Returns array of input features of best performing backwards stepwise selection test. ''' return ['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean'] # User input to predict diagnosis def predict(test_data): ''' Takes test data and uses classifier to predict boolean output. ''' X = data[feature_names()] y = data.diagnosis X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) logistic_reg = LogisticRegression(solver="saga", max_iter=5000) logistic_reg.fit(X_train, y_train) y_pred = logistic_reg.predict(test_data) return y_pred
true
6fada24729ca97253cf05cdd0aa3c34279a81ad7
Python
yerlantemir/HandwrittenLetterRecognition
/script.py
UTF-8
3,334
2.578125
3
[]
no_license
from keras.preprocessing.image import ImageDataGenerator import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg train_path = r'./train_set/' test_path = r'./test_set/' train_batches = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True).flow_from_directory(train_path,target_size=(28,28), classes='ә,і,ң,ғ,ү,ұ,қ,ө,һ'.split(',')) test_batches = ImageDataGenerator(rescale=1./255).flow_from_directory(test_path,target_size=(28,28), classes='ә,і,ң,ғ,ү,ұ,қ,ө,һ'.split(',')) def rgb2gray(rgb): return np.dot(rgb[...,:], [0.2989, 0.5870, 0.1140]) data_list_x = [] data_list_y = [] batch_index = 0 data_list_x_1 = [] data_list_y_1 = [] while batch_index <= test_batches.batch_index: x,y = test_batches.next() for i in range(len(x)): img_data = rgb2gray(x[i]) data_list_x_1.append(img_data) for k in range(y.shape[1]): if y[i][k] == 1: data_list_y_1.append(k) batch_index = batch_index + 1 batch_index = 0 while batch_index <= train_batches.batch_index: x,y = train_batches.next() for i in range(len(x)): img_data = rgb2gray(x[i]) data_list_x.append(img_data) for k in range(y.shape[1]): if y[i][k] == 1: data_list_y.append(k) batch_index = batch_index + 1 train_x = np.array(data_list_x).reshape(len(data_list_x),28,28,1).astype('float32') train_y = np.array(data_list_y).astype('int64') test_x = np.array(data_list_x_1).reshape(len(data_list_x_1),28,28,1).astype('float32') test_y = np.array(data_list_y_1).astype('int64') model = Sequential() input_shape = (28, 28,1) model.add(Conv2D(32, kernel_size=(5,5), input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(4,4))) model.add(Flatten()) # Flattening the 2D arrays for fully connected layers model.add(Dense(128, activation = tf.nn.relu)) model.add(Dropout(0.2)) model.add(Dense(9,activation=tf.nn.softmax)) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x=train_x,y=train_y, epochs=10) scores = model.evaluate(test_x, test_y) print(scores) print(model.metrics_names) #model.save('model.h5') #convolutional #model_json = model.to_json() #with open ('model2.json','w') as json_file: # json_file.write(model_json) #model.save_weights('model2.h5') #print('saved model to disk') # #def plots(ims,figsize=(8,6),rows = 1,interp = False , titles=None): # if type(ims[0]) is np.ndarray: # ims = np.array(ims).astype(np.uint8) # if(ims.shape[-1] != 3): # ims = ims.transpose(0,2,3,1) # f = plt.figure(figsize=figsize) # cols = len(ims)//rows if len(ims) % 2 == 0 else len(ims)//rows+1 # for i in range(len(ims)): # sp = f.add_subplot(rows,cols,i+1) # sp.axis('Off') # if titles is not None: # sp.set_title(titles[i],fontsize=16) # plt.imshow(ims[i],interpolation=None if interp else 'none')
true
c0258edd2eb883b3d849c2942862c7d80536412a
Python
1oglop1/rst2text
/src/rst2text/elements.py
UTF-8
11,927
3.265625
3
[ "MIT" ]
permissive
""" Extracted from sphinx.writers.text """ import math import re import textwrap from itertools import chain, groupby from typing import cast from docutils import writers from docutils.utils import column_width from rst2text import MAXWIDTH class Cell: """Represents a cell in a table. It can span on multiple columns or on multiple lines. """ def __init__(self, text="", rowspan=1, colspan=1): self.text = text self.wrapped = [] # type: List[str] self.rowspan = rowspan self.colspan = colspan self.col = None self.row = None def __repr__(self): return "<Cell {!r} {}v{}/{}>{}>".format( self.text, self.row, self.rowspan, self.col, self.colspan ) def __hash__(self): return hash((self.col, self.row)) def wrap(self, width): self.wrapped = my_wrap(self.text, width) class Table: """Represents a table, handling cells that can span on multiple lines or rows, like:: +-----------+-----+ | AAA | BBB | +-----+-----+ | | | XXX | | | +-----+-----+ | DDD | CCC | +-----+-----------+ This class can be used in two ways: - Either with absolute positions: call ``table[line, col] = Cell(...)``, this overwrite an existing cell if any. - Either with relative positions: call the ``add_row()`` and ``add_cell(Cell(...))`` as needed. Cell spanning on multiple rows or multiple columns (having a colspan or rowspan greater than one) are automatically referenced by all the table cells they covers. This is a usefull representation as we can simply check ``if self[x, y] is self[x, y+1]`` to recognize a rowspan. Colwidth is not automatically computed, it has to be given, either at construction time, either during the table construction. Example usage:: table = Table([6, 6]) table.add_cell(Cell("foo")) table.add_cell(Cell("bar")) table.set_separator() table.add_row() table.add_cell(Cell("FOO")) table.add_cell(Cell("BAR")) print(table) +--------+--------+ | foo | bar | |========|========| | FOO | BAR | +--------+--------+ """ def __init__(self, colwidth=None): self.lines = [] # type: List[List[Cell]] self.separator = 0 self.colwidth = colwidth if colwidth is not None else [] # type: List[int] self.current_line = 0 self.current_col = 0 def add_row(self): """Add a row to the table, to use with ``add_cell()``. It is not needed to call ``add_row()`` before the first ``add_cell()``. """ self.current_line += 1 self.current_col = 0 def set_separator(self): """Sets the separator below the current line. """ self.separator = len(self.lines) def add_cell(self, cell): """Add a cell to the current line, to use with ``add_row()``. To add a cell spanning on multiple lines or rows, simply set the ``cell.colspan`` or ``cell.rowspan`` BEFORE inserting it to the table. """ while self[self.current_line, self.current_col]: self.current_col += 1 self[self.current_line, self.current_col] = cell self.current_col += cell.colspan def __getitem__(self, pos): line, col = pos self._ensure_has_line(line + 1) self._ensure_has_column(col + 1) return self.lines[line][col] def __setitem__(self, pos, cell): line, col = pos self._ensure_has_line(line + cell.rowspan) self._ensure_has_column(col + cell.colspan) for dline in range(cell.rowspan): for dcol in range(cell.colspan): self.lines[line + dline][col + dcol] = cell cell.row = line cell.col = col def _ensure_has_line(self, line): while len(self.lines) < line: self.lines.append([]) def _ensure_has_column(self, col): for line in self.lines: while len(line) < col: line.append(None) def __repr__(self): return "\n".join(repr(line) for line in self.lines) def cell_width(self, cell, source): """Give the cell width, according to the given source (either ``self.colwidth`` or ``self.measured_widths``). This take into account cells spanning on multiple columns. """ width = 0 for i in range(self[cell.row, cell.col].colspan): width += source[cell.col + i] return width + (cell.colspan - 1) * 3 @property def cells(self): seen = set() # type: Set[Cell] for lineno, line in enumerate(self.lines): for colno, cell in enumerate(line): if cell and cell not in seen: yield cell seen.add(cell) def rewrap(self): """Call ``cell.wrap()`` on all cells, and measure each column width after wrapping (result written in ``self.measured_widths``). """ self.measured_widths = self.colwidth[:] for cell in self.cells: cell.wrap(width=self.cell_width(cell, self.colwidth)) if not cell.wrapped: continue width = math.ceil(max(column_width(x) for x in cell.wrapped) / cell.colspan) for col in range(cell.col, cell.col + cell.colspan): self.measured_widths[col] = max(self.measured_widths[col], width) def physical_lines_for_line(self, line): """From a given line, compute the number of physical lines it spans due to text wrapping. """ physical_lines = 1 for cell in line: physical_lines = max(physical_lines, len(cell.wrapped)) return physical_lines def __str__(self): out = [] self.rewrap() def writesep(char="-", lineno=None): # type: (str, Optional[int]) -> str """Called on the line *before* lineno. Called with no *lineno* for the last sep. """ out = [] # type: List[str] for colno, width in enumerate(self.measured_widths): if ( lineno is not None and lineno > 0 and self[lineno, colno] is self[lineno - 1, colno] ): out.append(" " * (width + 2)) else: out.append(char * (width + 2)) head = "+" if out[0][0] == "-" else "|" tail = "+" if out[-1][0] == "-" else "|" glue = [ "+" if left[0] == "-" or right[0] == "-" else "|" for left, right in zip(out, out[1:]) ] glue.append(tail) return head + "".join(chain(*zip(out, glue))) for lineno, line in enumerate(self.lines): if self.separator and lineno == self.separator: out.append(writesep("=", lineno)) else: out.append(writesep("-", lineno)) for physical_line in range(self.physical_lines_for_line(line)): linestr = ["|"] for colno, cell in enumerate(line): if cell.col != colno: continue if lineno != cell.row: physical_text = "" elif physical_line >= len(cell.wrapped): physical_text = "" else: physical_text = cell.wrapped[physical_line] adjust_len = len(physical_text) - column_width(physical_text) linestr.append( " " + physical_text.ljust( self.cell_width(cell, self.measured_widths) + 1 + adjust_len ) + "|" ) out.append("".join(linestr)) out.append(writesep("-")) return "\n".join(out) class TextWrapper(textwrap.TextWrapper): """Custom subclass that uses a different word separator regex.""" wordsep_re = re.compile( r"(\s+|" # any whitespace r"(?<=\s)(?::[a-z-]+:)?`\S+|" # interpreted text start r"[^\s\w]*\w+[a-zA-Z]-(?=\w+[a-zA-Z])|" # hyphenated words r"(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))" ) # em-dash def _wrap_chunks(self, chunks): # type: (List[str]) -> List[str] """_wrap_chunks(chunks : [string]) -> [string] The original _wrap_chunks uses len() to calculate width. This method respects wide/fullwidth characters for width adjustment. """ lines = [] # type: List[str] if self.width <= 0: raise ValueError("invalid width %r (must be > 0)" % self.width) chunks.reverse() while chunks: cur_line = [] cur_len = 0 if lines: indent = self.subsequent_indent else: indent = self.initial_indent width = self.width - column_width(indent) if self.drop_whitespace and chunks[-1].strip() == "" and lines: del chunks[-1] while chunks: l = column_width(chunks[-1]) if cur_len + l <= width: cur_line.append(chunks.pop()) cur_len += l else: break if chunks and column_width(chunks[-1]) > width: self._handle_long_word(chunks, cur_line, cur_len, width) if self.drop_whitespace and cur_line and cur_line[-1].strip() == "": del cur_line[-1] if cur_line: lines.append(indent + "".join(cur_line)) return lines def _break_word(self, word, space_left): # type: (str, int) -> Tuple[str, str] """_break_word(word : string, space_left : int) -> (string, string) Break line by unicode width instead of len(word). """ total = 0 for i, c in enumerate(word): total += column_width(c) if total > space_left: return word[: i - 1], word[i - 1 :] return word, "" def _split(self, text): # type: (str) -> List[str] """_split(text : string) -> [string] Override original method that only split by 'wordsep_re'. This '_split' split wide-characters into chunk by one character. """ def split(t): # type: (str) -> List[str] return super(TextWrapper, self)._split(t) chunks = [] # type: List[str] for chunk in split(text): for w, g in groupby(chunk, column_width): if w == 1: chunks.extend(split("".join(g))) else: chunks.extend(list(g)) return chunks def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width): # type: (List[str], List[str], int, int) -> None """_handle_long_word(chunks : [string], cur_line : [string], cur_len : int, width : int) Override original method for using self._break_word() instead of slice. """ space_left = max(width - cur_len, 1) if self.break_long_words: l, r = self._break_word(reversed_chunks[-1], space_left) cur_line.append(l) reversed_chunks[-1] = r elif not cur_line: cur_line.append(reversed_chunks.pop()) def my_wrap(text, width=MAXWIDTH, **kwargs): # type: (str, int, Any) -> List[str] w = TextWrapper(width=width, **kwargs) return w.wrap(text)
true
89fe4bb55154aa2fc662cbf574ae67cabda9bd42
Python
Noxy3301/AtCoder
/OtherContest/dp/dp_a.py
UTF-8
235
2.96875
3
[]
no_license
n = int(input()) h = tuple(map(int, input().split())) dp = [0] for i in range(1,n): if i == 1: dp.append(abs(h[i]-h[i-1])) else: dp.append(min(dp[-1]+abs(h[i]-h[i-1]), dp[-2]+abs(h[i]-h[i-2]))) print(dp[-1])
true
7b58820f730f011f4cb285dfb5c219b5982dcc69
Python
snaress/studio
/lib/system/seqList.py
UTF-8
2,791
2.96875
3
[]
no_license
import os class SeqLs(object): """ List given directory with a sequence compact view ex: ima_1.[001:005:1].txt ([start:stop:step]) :param dir: Directory to list :type dir: str """ def __init__(self, dir): if not os.path.exists(dir): raise IOError, "!!! ERROR: Directory not found: %s !!!" % dir self.dir = dir self.seqList = [] self.seqDict = {} self.dirList = os.listdir(self.dir) self._exec() def _exec(self): """ Launch listing commands """ self.parseDir() self.printResult() def parseDir(self): """ Parse given directory """ for item in self.dirList: #-- Item is folder --# if os.path.isdir(item): self.seqList.append(item.upper()) #-- Item is file --# elif os.path.isfile(item): #-- Seq type : name.index.ext --# if len(item.split('.')) == 3 and item.split('.')[1].isdigit(): name = item.split('.')[0] index = item.split('.')[1] ext = item.split('.')[2] label = '%s/%s' % (name, ext) if not label in self.seqDict.keys(): self.seqDict[label] = [index] else: self.seqDict[label].append(index) #-- Seq type : other --# else: self.seqList.append(item) def printResult(self): """ Print sequence listing """ lines = [] for k in sorted(self.seqDict.keys()): first = self.seqDict[k][0] last = self.seqDict[k][-1] if len(self.seqDict[k]) == ((int(last) - int(first)) + 1): step = 1 else: sec = self.seqDict[k][1] step = (int(sec) - int(first)) for n, ind in enumerate(self.seqDict[k]): if n > 0: prevInd = self.seqDict[k][n-1] if not (int(ind) - int(prevInd)) == step: step = None break if step is None: lines.append('%s.[%s...%s].%s' % (k.split('/')[0], self.seqDict[k][0], self.seqDict[k][-1], k.split('/')[-1])) else: lines.append('%s.[%s:%s:%s].%s' % (k.split('/')[0], self.seqDict[k][0], self.seqDict[k][-1], step, k.split('/')[-1])) self.seqList.extend(lines) for l in sorted(lines): print l if __name__ == '__main__': currentDir = os.getcwd() sls = SeqLs(currentDir)
true
09dca82f0d4b5de3d2ef41cc5384c37993d0e016
Python
rcburnet/PHYS-437A
/Assignment_6/Ryans_list/315_primaries_compare_to_274.py
UTF-8
1,834
3.21875
3
[]
no_license
import numpy as np from sklearn.neighbors import BallTree #This script will read my list of 315 primaries and compare it to Ryan's list # to make sure all of Ryan's primaries are in my list (which they are). # Identical to script in Assignment_3. #read files file_284_primary = open('CasJobs_315_primaries_in_SDSS.txt') list_284_primary = file_284_primary.readlines() file_284_primary.close() file_274_primary = open('Ryans_list_of_274_primaries.txt') list_274_primary = file_274_primary.readlines() file_274_primary.close() #organize lists for i in range(len(list_284_primary)): list_284_primary[i] = list_284_primary[i].split(',') for i in range(len(list_274_primary)): list_274_primary[i] = list_274_primary[i].split('\t') #find extras (find every entry in my list that isn't in Ryan's list) length = 0 for i in range(len(list_284_primary)): count = 0 for j in range(len(list_274_primary)): if list_284_primary[i][0] == list_274_primary[j][0]: count += 1 if count == 0: print list_284_primary[i] length += 1 print length #I get back 23 primaries that were in my list but not Ryan's. 23 extra, not 10. #Compare Ryan's list to mine. Which primaries are in Ryan's list, but not my list. for i in range(len(list_274_primary)): count = 0 for j in range(len(list_284_primary)): if list_274_primary[i][0] == list_284_primary[j][0]: count += 1 #if count == 0: # print list_274_primary[i] #I get back 13 primaries that were in Ryan's list but not mine. 13 primaries # I cut that Ryan did not. #This means I cut 13 that I shouldn't have cut, leaving me with 297 primaries, # not 284 primaries after applying the second cut, and 23 primaries extra which # are in badly masked regions or regions of incomplete coverage (297 - 23 = 274)
true
4b52c8cc5f884e0e931437bb55886b4edfedf835
Python
elimoss/broad_malaria
/snp_call_mods/util_cmd.py
UTF-8
6,149
2.703125
3
[]
no_license
# util_cmd.py - This gives a main() function that serves as a nice wrapper # around other commands and presents the ability to serve up multiple # command-line functions from a single python script. # # requires python >= 2.5 # # dpark@broadinstitute.org # $Id: util_cmd.py 7351 2013-01-22 22:53:06Z dpark $ import os, tempfile, sys, shutil, optparse, logging log = logging.getLogger() tmpDir = None def setup_logger(log_level): loglevel = getattr(logging, log_level.upper(), None) assert loglevel, "unrecognized log level: %s" % log_level log.setLevel(loglevel) h = logging.StreamHandler() h.setFormatter(logging.Formatter("%(asctime)s - %(module)s:%(lineno)d:%(funcName)s - %(levelname)s - %(message)s")) log.addHandler(h) def script_name(): return sys.argv[0].split('/')[-1].rsplit('.',1)[0] def common_opts(parser, optlist=['tmpDir', 'loglevel']): for opt in optlist: if opt=='loglevel': parser.add_option("--loglevel", dest="loglevel", type='choice', help="Verboseness of output. [default: %default]", default='DEBUG', choices=['DEBUG','INFO','WARNING','ERROR','CRITICAL','EXCEPTION']) elif opt=='tmpDir': parser.add_option("--tmpDir", dest="tmpDir", type='string', help="Directory for temp files. [default: %default]", default=tmpDir) elif opt=='tmpDirKeep': parser.add_option("--tmpDirKeep", action="store_true", dest="tmpDirKeep", help="If set, do not delete the tmpDir if an exception occurs while running.", default=False) else: raise Exception("unrecognized option %s" % opt) return parser def main(commands, version, tool_paths, description=''): ''' commands: a list of 4-tuples containing the following: 1. name of command (string, no whitespace) 2. method to call that takes two arguments, args (a list of required arguments) and options (an optparse construct), and returns the desired exit code 3. method to call that returns an optparse parser. we provide the name of the command and a version string for convenience. 4. the number of required arguments for this command. If None, we allow any number. If commands contains exactly one member and the name of the only command is None, then we get rid of the whole multi-command thing and just present the options for that one function. version: the version string to provide to the parser methods of each command tool_paths: a dict. we will set the 'tmpDir' value so that your commands will have access to a suggested temp directory description: a long string to present as a description of your script as a whole if the script is run with no arguments log_level: the logging log level to set the log instance to ''' tool_paths['tmpDir'] = find_tmpDir() tmpDir = tool_paths['tmpDir'] cmdlist = [x[0] for x in commands] commands = dict([(x[0],x[1:]) for x in commands]) if len(cmdlist)==1 and cmdlist[0]==None: # only one (nameless) command in this script, simplify command = None parser = commands[command][1]('', version) (options, args) = parser.parse_args() else: # multiple commands available if len(sys.argv) <= 1: print "Usage: python %s commandname options" % sys.argv[0] if description.strip(): print description print "\ncommands:" for cmd in cmdlist: print "\t%s" % cmd print "\nRun a command with no options for help on that command." return command = sys.argv[1] assert command in commands, "command '%s' not recognized" % command parser = commands[command][1](command, version) (options, args) = parser.parse_args(sys.argv[2:]) if len(args)==0: parser.print_help() return assert commands[command][2]==None or len(args)==commands[command][2], "%d required arguments, got %d." % (commands[command][2], len(args)) setup_logger(not hasattr(options, 'loglevel') and 'DEBUG' or options.loglevel) log.info("version: " + parser.get_version()) log.debug("command line parameters (including implicit defaults): %s %s" % ( ' '.join(args), ' '.join( ["%s=%s" % (o.get_opt_string(), vars(options)[o.dest]) for o in parser.option_list if o.dest!=None]))) ## this is so that ajb073 can run R and see emma (assuming we're not on local) #RLibs = '/home/unix/dpark/.RLibs' -- eh, we don't run this much from calhoun anymore anyway #if os.access(RLibs, os.F_OK): # os.environ['R_LIBS'] = RLibs if hasattr(options, 'tmpDir'): ''' If this command has a tmpDir option, use that as a base directory and create a subdirectory within it which we will then destroy at the end of execution. ''' proposed_dir = 'tmp-%s-%s' % (script_name(),command!=None and command or '') if 'LSB_JOBID' in os.environ: proposed_dir = 'tmp-%s-%s-%s-%s' % (script_name(),command,os.environ['LSB_JOBID'],os.environ['LSB_JOBINDEX']) tempfile.tempdir = tempfile.mkdtemp(prefix='%s-'%proposed_dir, dir=options.tmpDir) log.debug("using tempDir: %s" % tempfile.tempdir) os.environ['TMPDIR'] = tempfile.tempdir # this is for running R try: ret = commands[command][0](args, options) except: if hasattr(options, 'tmpDirKeep') and options.tmpDirKeep and not (tempfile.tempdir.startswith('/tmp') or tempfile.tempdir.startswith('/local')): log.exception("Exception occurred while running %s, saving tmpDir at %s" % (command, tempfile.tempdir)) else: shutil.rmtree(tempfile.tempdir) raise else: shutil.rmtree(tempfile.tempdir) return ret else: # otherwise just run the command return commands[command][0](args, options) def find_tmpDir(): ''' This provides a suggested base directory for a temp dir for use in your optparse-based tmpDir option. ''' tmpdir = '/tmp' if os.access('/local/scratch', os.X_OK | os.W_OK | os.R_OK): tmpdir = '/local/scratch' if 'LSB_JOBID' in os.environ: # this directory often exists for LSF jobs, but not always. # for example, if the job is part of a job array, this directory is called # something unpredictable and unfindable, so just use /local/scratch proposed_dir = '/local/scratch/%s.tmpdir' % os.environ['LSB_JOBID'] if os.access(proposed_dir, os.X_OK | os.W_OK | os.R_OK): tmpdir = proposed_dir return tmpdir
true
a028b2814142246d733143a223d8f9770a76dfcc
Python
secreter/QA
/offline/answerTheQuestion.py
UTF-8
986
2.515625
3
[]
no_license
# 进行图匹配找到答案 from getRelFromN import getTriple import json import requests # 根据谓词短语查询到patternid fRelT=open('./txt/dist/my/relT.txt','r',encoding='utf-8') relT=json.load(fRelT) # 根据patternid查询谓词路径path fPaths=open('./txt/dist/my/paths_tf-idf.txt','r',encoding='utf-8') paths=json.load(fPaths) # sents="where does Aaron Kemps come from?" sents="what is Hurricane Joe?" tu=getTriple(sents) if tu ==None: print("tu is none!") exit() sub,rel,obj=tu print(rel) print(relT[rel]) # 多个数组合并 pathArr=[] for pid in relT[rel]: if pid in paths: pathArr+=paths[pid] if len(pathArr)>3: # 排序并取top-3 pathArr=sorted(pathArr,key=(lambda x:x[1]), reverse=True)[:3] else: pathArr=sorted(pathArr,key=(lambda x:x[1]), reverse=True) print(pathArr) url='http://localhost:5003/rdf?v='+sub+'&e='+pathArr[0][0] req = requests.get(url) data=json.loads(req.text) answer=data['pointTo'].replace('resource/','') print(sents) print(answer)
true
49118b0ce721fb878cb7e853391710aaccf21e72
Python
abdibogor/Thenewboston
/03_Software Engineering/004_Python Reverse Shell/011_Selecting a Target/server.py
UTF-8
2,894
2.90625
3
[]
no_license
import socket import threading import sys from queue import Queue NUMBER_OF_THREADS = 2 JOB_NUMBER = [1, 2] queue = Queue() all_connections = [] all_addresses = [] # create socket (allows two computers to connect) def socket_create(): try: global host global port global s host = '' port = 9999 s = socket.socket() except socket.error as msg: print("Socket creation error: " + str(msg)) #2_Binding the socket and listening for Connections # Bind socket to port and wait for connection from client def socket_bind(): try: global host global port global s print("Binding socket to port: " + str(port)) s.bind((host, port)) s.listen(5) except socket.error as msg: print("Socket binding error: " + str(msg)) time.sleep(5) socket_bind() # Accept connect from multiple clients and save to list def accept_connections(): for c in all_connections: c.close() del all_connections[:] del all_addresses[:] while 1: try: conn, address = s.accept() conn.setblocking(1) all_connections.append(conn) all_addresses.append(address) print("\nConnection has been esthablished: " + address[0]) except: print("Error accepting connections") #9_Creating a custom Interactive Shell # Interactive prompt for sending commands remotely def start_turtle(): while True: cmd = input('turle> ') if == 'list': list_connections() elif 'select' in cmd: conn = get_target(cmd) if conn is not None: send_target_commands(conn) else: print("Command not recognized") #10_Displaying All Current Connections # Displays all current connections def list_connections(self): results = '' for i, conn in enumerate(self.all_connections): try: conn.send(str.encode(' ')) conn.recv(20480) except: del self.all_connections[i] del self.all_addresses[i] continue results += str(i) + ' ' + str(self.all_addresses[i][0]) + ' ' + str( self.all_addresses[i][1]) + ' ' + str(self.all_addresses[i][2]) + '\n' print('----- Clients -----' + '\n' + results) return #11_Selecting a Target #Select a target client """... Select target client :param cmd: """ def get_target(self, cmd): target = cmd.split(' ')[-1] try: target = int(target) except: print('Client index should be an integer') return None, None try: conn = self.all_connections[target] except IndexError: print('Not a valid selection') return None, None
true
d9d0ddca41cb7fda6786175790dadd6534c6a57f
Python
okomeshino/python-practice
/applications/class_method.py
UTF-8
848
3.765625
4
[]
no_license
# encoding:utf-8 import datetime class TestClass: def __init__(self, year, month, day): self.year = year self.month = month self.day = day # クラスメソッド @classmethod def sample_class_method(cls, date_diff=0): today = datetime.date.today() d = today + datetime.timedelta(date_diff) return cls(d.year, d.month, d.day) # インスタンス化しないで呼び出し test_class_1 = TestClass.sample_class_method() print(test_class_1.year, test_class_1.month, test_class_1.day) # インスタンス化しないで呼び出し test_class_2 = TestClass.sample_class_method(-10) print(test_class_2.year, test_class_2.month, test_class_2.day) # 通常のインスタンス test_class_3 = TestClass(2000, 1, 1) print(test_class_3.year, test_class_3.month, test_class_3.day)
true
5da744fc1c2da4557980f9b55dc650b9208390ec
Python
N2BBrasil/text-processing
/text_processing/pos_processing/test_correct_text.py
UTF-8
322
2.75
3
[ "MIT" ]
permissive
from .correct_text import CorrectText def test_texts(texts): for incorrect, correct in texts: print(incorrect, correct) assert CorrectText().transform(incorrect)==correct def test_sent_tokenizer(): assert 'Olá Como Vai' == CorrectText().captalize( 'olá como vai', lambda _: _.split(' ') )
true
42b86c19ac74b3f8557b248a721031bb5a5d5783
Python
JahouNyan/learningpython
/wikipediaextract.py
UTF-8
933
3.71875
4
[]
no_license
#Import the requests and json libraries import requests import json #Ask the user for an article and strip it and replaces the spaces with underscores (_) article = input("What wikipedia article do you want? ") article = article.strip().replace(" ", "_") #Format the API endpoint with the article url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{article}" print(article) #Use requests.get() to get the data r = requests.get(url) print(r) #Check if we got a 200 status code, otherwise abort the program if r.status_code is 200: print("ok") else: print ("error") exit() #Display the title of the article, description and extract lines = r.text lines = json.loads(lines) title = lines["title"] print(title) if "description" not in lines: print ("No Description") else: print(f"The description on wikipedia is: {'description'}") extract = lines["extract"] print(f"The extract is: {extract}")
true
b4814c270ee40d26f08ed7824c142ff402bd13ce
Python
mikecasey93/CSSI-Lucky7
/main.py
UTF-8
5,937
2.671875
3
[]
no_license
import webapp2 import os import random import jinja2 import datetime from database import seed_data from app_models import Lottery jinja_current_dir = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], autoescape=True) class DisplayHandler(webapp2.RequestHandler): def get(self): start_template = jinja_current_dir.get_template("templates/WelcomePage.html") self.response.write(start_template.render()) #Verifies the user's age def post(self): user_age = self.request.get('Users-age') if user_age < 18: self.response.write("Sorry you cannot use our site") else: self.response.write("Welcome to our site we hope you enjoy") class NumberInputHandler(webapp2.RequestHandler): def get(self): start_template = jinja_current_dir.get_template("templates/select.html") self.response.write(start_template.render()) def post(self): number_template = jinja_current_dir.get_template("templates/displaynumbers.html") n1 = self.request.get('n1') n2 = self.request.get('n2') n3 = self.request.get('n3') n4 = self.request.get('n4') n5 = self.request.get('n5') n6 = self.request.get('n6') numDict = {"n1":n1, "n2":n2, "n3":n3, "n4":n4, "n5":n5, "n6":n6} userList = [] userList.append(n1) userList.append(n2) userList.append(n3) userList.append(n4) userList.append(n5) userList.append(n6) self.response.write(number_template.render(numDict)) class OptionHandler(webapp2.RequestHandler): def get(self): start_template = jinja_current_dir.get_template("templates/option.html") self.response.write(start_template.render()) class LoadPage(webapp2.RequestHandler): def get(self): seed_data() #t = the_jinja_env.get_template('/templates/loader.html') self.response.write("done") #def post(self): class RandomHandler(webapp2.RequestHandler): def get(self): start_template = jinja_current_dir.get_template("templates/random.html") self.response.write(start_template.render()) def post(self): winningNumber = [] newList = [] userList = [] for i in range(1,60): winningNumber.append(i) for j in range(1,7): index = random.randint(0,len(winningNumber)-1) newList.append(winningNumber[index]) winningNumber.pop(index) winNumDict = {"wn1":newList[0], "wn2":newList[1], "wn3":newList[2], "wn4":newList[3], "wn5":newList[4], "wn6":newList[5]} start_template = jinja_current_dir.get_template("templates/randomdisplay.html") n1 = self.request.get('n1') n2 = self.request.get('n2') n3 = self.request.get('n3') n4 = self.request.get('n4') n5 = self.request.get('n5') n6 = self.request.get('n6') numDict = {"n1":n1, "n2":n2, "n3":n3, "n4":n4, "n5":n5, "n6":n6} userList.append(int(n1)) userList.append(int(n2)) userList.append(int(n3)) userList.append(int(n4)) userList.append(int(n5)) userList.append(int(n6)) for l in range(len(userList)): print userList[l], " ",userList[l] in winNumDict.values(),winNumDict.values() print type(userList[l]), type(winNumDict.values()[0]) if userList[l] in winNumDict.values(): userList[l] = (int(userList[l]),"cl","match") else: userList[l] = (int(userList[l]),"cl","NoMatch") self.response.write(start_template.render(winNumDict, userList=userList)) class ChooseDateHandler(webapp2.RequestHandler): def get(self): start_template = jinja_current_dir.get_template("templates/chooseDate.html") self.response.write(start_template.render()) def post(self): date = self.request.get('Date') wn = Lottery.query().filter(Lottery.date >= date).get() #wn = Lottery.query(Lottery.date >= date).order(Lottery.date).get() win={"n1":wn.n1, "n2":wn.n2, "n3":wn.n3, "n4":wn.n4, "n5":wn.n5, "n6":wn.n6,"date": wn.date} start_template = jinja_current_dir.get_template("templates/winningnumber.html") n1 = int(self.request.get('n1')) n2 = int(self.request.get('n2')) n3 = int(self.request.get('n3')) n4 = int(self.request.get('n4')) n5 = int(self.request.get('n5')) n6 = int(self.request.get('n6')) numDict = {"n1":n1, "n2":n2, "n3":n3, "n4":n4, "n5":n5, "n6":n6} for i in numDict: if numDict[i] in win.values(): numDict[i] = (numDict[i],"cl","match") else: numDict[i] = (numDict[i],"cl","NoMatch") d = {"win":win, "numDict":numDict} if n1 != "" and\ n2 != "" and\ n3 != "" and\ n4 != "" and\ n5 != "" and\ n6 != "": wm = Lottery(n1 = int(n1), n2 = int(n2), n3 = int(n3), n4 = int(n4), n5 = int(n5), n6 = int(n6), date = date) self.response.write(start_template.render(d)) #for key in numDict: #self.response.write(numDict[key]) #start_template = jinja_current_dir.get_template("templates/error.html") #self.response.write(start_template.render()) app = webapp2.WSGIApplication([ ('/', DisplayHandler), # age ('/load',LoadPage), ('/numberInput', NumberInputHandler), # manual entry for 6 numbers and a date ('/random', RandomHandler), # radom gate with manual entry for 6 num ('/chooseDate', ChooseDateHandler), ('/option', OptionHandler) ], debug=True)
true
2f5259450d59c94e82cbcf6712a8b04d3409576f
Python
ipinak/naftis
/test/tools.py
UTF-8
1,244
2.71875
3
[ "MIT" ]
permissive
#!/bin/env python # -*- coding:utf-8 -*- import sys import os import HTMLTestRunner import time from unittest import makeSuite, TestSuite __author__ = 'ipinak' def run_tests(test_cases, location='', title=None, description=None): suite = TestSuite() [suite.addTest(makeSuite(tc)) for tc in test_cases] timestamp = time.strftime('%Y_%m_%d__%H_%M_%S') filepath = os.getcwd() + "/" + location if not os.path.exists(filepath): os.mkdir(filepath) buffer = file(filepath + '/TestReport_' + timestamp + '.html', 'wb') runner = HTMLTestRunner.HTMLTestRunner(stream=buffer, title=title, description=description) runner.run(suite) def include_path(*directories): """ Include in the python path one or more directories :param directories """ for dir in directories: print("> including in python path: " + dir + "\n") sys.path.append(dir) def exclude_path(*directories): """ Exclude from the python path one or more directories :param directories """ for dir in directories: print("> excluding from python path: " + dir + "\n") sys.path.remove(dir)
true
c489568e2e0ba9741b7fbb6d050438b192730631
Python
sidparasnis/client-server
/UDP_Client.py
UTF-8
894
2.84375
3
[]
no_license
# UDP_Client from socket import * serverName = '127.0.0.1' serverPort = 50069 clientSocket = socket(AF_INET, SOCK_DGRAM) again = "Y" while True: message = input("\nInput int,int,operation or 'quit' to quit: ") if message == 'quit': break print ("\n ") print ("-->> Sending: " + message) d = 0.1 while d<2: try: clientSocket.settimeout(d) clientSocket.sendto(message.encode(), (serverName, serverPort)) modifiedMessage, serverAddress = clientSocket.recvfrom(2048) print ("<<-- At Client message received: " + modifiedMessage.decode() + "\n") clientSocket.settimeout(None) break; except: print ('Resending...') d *= 2 print (" ") print ("++++ Client Program Ends ++++") print (" ") clientSocket.close()
true
ed0ff468239cdb5edd9a7afea962c6b310c7e09d
Python
DaHuO/Supergraph
/codes/CodeJamCrawler/CJ/16_1_2_ManojPammi_2.py
UTF-8
508
2.609375
3
[]
no_license
f=open("B-large.in",'r') g=int(f.readline()) for d in range(g): a=int(f.readline()[:-1]) g={} for i in range(2*a-1): m=f.readline()[:-1] t=m.split() for l in t: if l in g: g[l]=g[l]+1 else: g[l]=1 c=[] for h in g: if (g[h]%2)!=0: c.append(int(h)) rt=sorted(c) y=[] for v in rt: y.append(str(v)) print "Case #"+str(d+1)+": "+" ".join(y)
true
5379cb328d150bda28397e4356438732db738082
Python
nxexox/python-rest-framework
/tests/test_fields.py
UTF-8
54,382
2.5625
3
[ "Apache-2.0" ]
permissive
""" Fields testing """ import datetime from unittest import TestCase import six from rest_framework.exceptions import SkipError from rest_framework.serializers.exceptions import ValidationError from rest_framework.serializers.fields import ( Field, CharField, IntegerField, FloatField, BooleanField, BooleanNullField, ListField, TimeField, DateField, DateTimeField, JsonField, DictField, SerializerMethodField, get_attribute ) from rest_framework.serializers.validators import ( RequiredValidator, MaxValueValidator, MinValueValidator, MinLengthValidator, MaxLengthValidator ) from tests.serializers_for_tests import SerializerMethodFieldDefault, SerializerMethodFieldSingle class BaseFieldTestCase(TestCase): """ Testing base field class. """ field_class = Field abstract_methods = { 'to_internal_value': {'data': None}, 'to_representation': {'value': None}, } # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. to_representation_cases = ( # data - arguments, return - return, params - arguments __init__, exceptions - expected errors # {'data': {}, 'return': None, 'params': {}, 'exceptions': []} {}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( # data - arguments, return - return, params - arguments __init__, exceptions - expected errors # {'data': {}, 'return': None, 'params': {}, 'exceptions': []} {}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( # data - arguments, return - return, params - arguments __init__, exceptions - expected errors # {'data': {}, 'return': None, 'params': {}, 'exceptions': []} {}, ) # Cases, to test the performance of `.run_validation()`. field_error_messages = {} # Custom field error key list. _fields_vals = { 'required': True, 'default': None, 'label': None, 'validators': [], 'error_messages': {}, 'default_error_messages': {}, 'default_validators': [] } __error_messages = {'required': None, 'null': None} # Default list of errors. # Class for testing for empty. class Empty: pass @classmethod def setUpClass(cls): """ We supplement the data for each field separately. """ cls.__error_messages.update(cls.field_error_messages) def assert_base_fields(self, field, **additional_fields): """ Checks on all base fields and extras. :param rest_framework.serializers.fields.Field field: Field object. :param additional_fields: Dict additional attributes to check. """ copy_fields = self._fields_vals.copy() copy_fields.update(additional_fields) msg = 'Invalid value in %s for field: {}. Expected: {}, Reality: {}.' % field.__class__.__name__ for key, val in six.iteritems(copy_fields): field_val = getattr(field, key, self.Empty()) # We try to check in three ways, depending on the type. if isinstance(val, (bool, type(None))): # First single types. assert val is field_val, msg.format(key, val, field_val) elif isinstance(val, (six.string_types + six.integer_types + (float,))): # Now primitives. assert val == field_val, msg.format(key, val, field_val) else: # If the object is complex. assert isinstance(val, type(field_val)), msg.format(key, val, type(field_val)) def create_params(self, **params): """ Creating parameters to create a field object. :return: Parameters for creating a field. :rtype: dict """ r_params = self.requirement_arguments_for_field.copy() r_params.update(params) return r_params def assert_bind(self, field, field_name=None, parent=None, label=None): """ Checks the effects of the bind method. :param rest_framework.serializers.fields.Field field: Object for check. :param str field_name: Field name. :param object parent: Parent field. :param str label: Label field. """ assert field.label == label, '`.label` expected {}, reality {}.'.format(label, field.label) assert field.parent == parent, '`.parent` expected {}, reality {}.'.format(parent, field.parent) assert field.field_name == field_name, \ '`.field_name` expected {}, reality {}.'.format(field_name, field.field_name) def create_method_for_get_attribute(self, field_name=None, call_bind=True, default=None, required=None, attr=None, set_self=True, **kwargs): """ Creating an attribute on an object to test `field.get_attribute ()` :param str field_name: Field name. :param bool call_bind: Do I need to call the bind method in a field? :param object default: Default value. :param bool required: Is required field? :param object attr: The attribute itself that we put. :param bool set_self: Do I need to set the link to the class parent?. :return: Created and ready for testing Field. :rtype: rest_framework.serializers.fields.Field """ field = self.field_class(**self.create_params(required=required, default=default, **kwargs)) if call_bind: field.bind(field_name, self) if set_self: setattr(self, field_name, attr) return field def __test_method_cases(self, method_name): """ Testing methods by cases. :param str method_name: Method name for testing by cases. """ # Check all cases for case in getattr(self, '%s_cases' % method_name, []): # Skip case. if not case: continue try: # Get the data. data, result = case.get('data', {}), case.get('return', None) params, exceptions = case.get('params', {}), case.get('exceptions', {}) data = data or {} # Transform None into dict. # Building a field and looking for a method to test.. field = self.field_class(**self.create_params(**params)) method = getattr(field, method_name, self.Empty()) if isinstance(method, self.Empty): self.fail('Testing by cases failed. Method not found `{}` have class `{}`.'.format( method_name, field.__class__.__name__ )) # If errors are expected. if exceptions: try: res = method(**data) self.fail('In method `{}.{}()` case `{}` not raise error. Method return: `{}`.'.format( field.__class__.__name__, method_name, case, res )) except tuple(exceptions): pass else: # If no errors are expected. res = method(**data) assert res == result, \ 'In method `{}.{}()` case {} return incorrect result `{}`'.format( field.__class__.__name__, method_name, case, res ) except Exception as e: self.fail('During the inspection of the case `{}` for method `{}.{}` an unexpected error occurred: `{}: {}`'.format( case, self.field_class.__class__.__name__, method_name, e.__class__.__name__, e )) def test_default_create(self): """ Testing creation with default settings. """ self.assert_base_fields(self.field_class(**self.create_params())) # First make default. # Now create with settings. params = self.create_params(required=False) self.assert_base_fields(self.field_class(**params), **params) # See how default affects required.. params = self.create_params(default='') self.assert_base_fields(self.field_class(**params), required=False, **params) # See how required affects validators.. field = self.field_class(**self.create_params(required=True)) assert isinstance(field.validators, list), \ '`.validators` must be list, reality {}'.format(type(field.validators)) assert len(field.validators) == 1, \ 'In `.validators` must be 1 validator, reality {}'.format(len(field.validators)) assert isinstance(field.validators[0], RequiredValidator), \ 'In `.validators` must be `RequiredValidator`. Reality: `{}`'.format(type(field.validators[0])) # Now we check that there is no validator. field = self.field_class(**self.create_params(required=False)) assert isinstance(field.validators, list), \ '`.validators` must be list, reality {}'.format(type(field.validators)) assert len(field.validators) == 0, \ 'In `.validators` there should be no validators, reality `{}`'.format(len(field.validators)) # Check for error messages. field, messages_keys = self.field_class(**self.create_params()), self.__error_messages for key in field.error_messages: assert key in messages_keys, 'In `.error_messages` must be key `{}`.'.format(key) # We update the dictionary of errors, and we try with a custom error. new_error_message = self.__error_messages.copy() new_error_message['test'] = None field = self.field_class(**self.create_params(error_messages={'test': 'test'})) messages_keys = new_error_message for key in field.error_messages: assert key in messages_keys, 'In `.error_messages` must be key `{}`.'.format(key) def test_bind(self): """ Testing bind method. """ # First default. field = self.field_class(**self.create_params()) field.bind('test_label', self) self.assert_bind(field, 'test_label', self, 'Test label') # Now change label. field = self.field_class(**self.create_params(label='test_label')) field.bind('test_label', self) self.assert_bind(field, 'test_label', self, 'test_label') def test_fail_field_validation(self): """ Testing fail_field_validation method. """ # We test without our errors. field = self.field_class(**self.create_params()) try: field.fail_field_validation('required') self.fail('`.fail_field_validation()` must throw as exception `ValidationError`.') except ValidationError: pass try: field.fail_field_validation('test') self.fail('`.fail_field_validation()` must throw as exception `AssertionError`.') except AssertionError: pass # Now add custom error message field = self.field_class(**self.create_params(error_messages={'test': '{test}-test'})) try: field.fail_field_validation('test', test='test') self.fail('`.fail_field_validation()` must throw as exception `ValidationError`.') except ValidationError as e: assert e.detail == 'test-test', 'The error message should be `{}`, reality `{}`.'.format( 'test-test', e.detail ) def test_fail_validate(self): """ Testing fail method. """ field = self.field_class(**self.create_params()) detail = {'error': 'test'} try: field.fail_validate(detail=detail) self.fail('`.fail()` must throw as exception `ValidationError`.') except ValidationError as e: self.assertEqual( e.detail, detail, 'ValidationError.detail not equal source error. ' 'Should be: `{}`, reality: `{}`.'.format(detail, e.detail) ) self.assertEqual( e.status, 400, 'ValidationError.status = `{}`. This is not 400.'.format(e.status) ) status = 404 try: field.fail_validate(detail=detail, status=status) self.fail('`.fail()` must throw as exception `ValidationError`.') except ValidationError as e: self.assertEqual( e.status, status, 'ValidationError.status not equal source status. ' 'Should be: `{}`, reality: `{}`.'.format(status, e.status) ) def test_abstract_methods(self): """ Testing abstract methods. """ field = self.field_class(**self.create_params()) for method_name, method_params in six.iteritems(self.abstract_methods): try: getattr(field, method_name, lambda: None)(**method_params) self.fail('Method `.{}` must throw as exception `NotImplementedError`.'.format(method_name)) except NotImplementedError: pass def test_to_internal_value(self): """ A test for converting data to a valid python object. """ if 'to_internal_value' not in self.abstract_methods: self.__test_method_cases('to_internal_value') def test_to_representation(self): """ Test data conversion to a valid JSON object. """ if 'to_representation' not in self.abstract_methods: self.__test_method_cases('to_representation') def test_get_default(self): """ Testing the get_default method. """ field = self.field_class(**self.create_params()) res = field.get_default() assert res is None, '`.get_default()` must return None, reality: {}.'.format(res) field = self.field_class(**self.create_params(default=1)) res = field.get_default() assert res == 1, '`.get_default()` must return 1, reality: {}.'.format(res) field = self.field_class(**self.create_params(default=lambda: 100)) res = field.get_default() assert res == 100, '`.get_default()` must return 100, reality: {}.'.format(res) def test_get_attribute(self): """ Testing get_attribute method. """ params = dict( field_name='test_get_attribute_field', call_bind=True, required=False, default=None, attr=self.test_get_attribute, set_self=True ) # First normal work. res = self.create_method_for_get_attribute(**params).get_attribute(self) assert res == self.test_get_attribute, \ '`.get_attribute()` must return {}, reality {}.'.format(self.test_get_attribute, res) # Now we try non-existent to look for and return default. params.update(default=100, call_bind=False, attr=None, set_self=False) res = self.create_method_for_get_attribute(**params).get_attribute(self) assert res == 100, '`.get_attribute()` must return 100, reality {}.'.format(res) # We see that if the field is mandatory and there is no default, it throws the exception `SkipError`. params.update(required=True, default=None) try: self.create_method_for_get_attribute(**params).get_attribute(self) self.fail('`.get_attribute()` must throw as exception `SkipError`.') except SkipError: pass # Now we try to get the original exception. params.update(field_name=None, required=False, call_bind=True) try: res = self.create_method_for_get_attribute(label='test', **params).get_attribute(self) self.fail('`.get_attribute()` must throw as exception `TypeError`, return `{}`.'.format(res)) except TypeError: pass except Exception as e: self.fail('`.get_attribute()` must throw as exception `TypeError`, reality {}.'.format(type(e))) def test_validate_empty_values(self): """ Testing validation on an empty type. """ # First default settings. field = self.field_class(**self.create_params(required=False)) is_empty, data = field.validate_empty_values(None) assert is_empty is True, '`.validate_empty_values()` must return True.' assert data is None, '`.validate_empty_values()` must return None.' # Now we check the response to the binding. field = self.field_class(**self.create_params(required=True)) try: field.validate_empty_values(None) self.fail('`.validate_empty_values()` must throw as exception `ValidationError`.') except ValidationError: pass # Now we check for normal data field = self.field_class(**self.create_params(required=True)) is_empty, data = field.validate_empty_values(123) assert is_empty is False, '`.validate_empty_values()` must return False.' assert data == 123, '`.validate_empty_values()` must return 123.' def test_run_validation(self): """ Testing run_validation method """ self.__test_method_cases('run_validation') def test_run_validation_base_field(self): """ Testing start validation for base field. """ to_internal_value = lambda x: x # We do a mock for internal function. # Check on default settings. field = self.field_class(**self.create_params()) setattr(field, 'to_internal_value', to_internal_value) res = field.run_validation(123) assert res == 123, '`.run_validation()` must return 123.' # Check when the field is required. field = self.field_class(**self.create_params(required=True)) setattr(field, 'to_internal_value', to_internal_value) res = field.run_validation(123) assert res == 123, '`.run_validation()` must return 123.' # Now we try to make validator work. try: field.run_validation(None) self.fail('`.run_validation()` must throw as exception `ValidationError`.') except ValidationError: pass def test_run_validators(self): """ Testing work validators """ # Check without validators. field = self.field_class(**self.create_params(required=False, validators=[])) field.run_validators(123) # Check with default validators. field = self.field_class(**self.create_params(required=True, validators=[])) field.run_validators(123) try: field.run_validators(None) self.fail('`.run_validators()` must throw as exception `ValidationError`.') except ValidationError: pass # Check with custom validators. def test_validator(value): if value == 1: raise ValidationError(1) field = self.field_class(**self.create_params(required=True, validators=[test_validator])) field.run_validators(10) try: field.run_validators(1) self.fail('`.run_validators()` must throw as exception `ValidationError`.') except ValidationError: pass class CharFieldTest(BaseFieldTestCase): """ Testing CharField. """ field_class = CharField abstract_methods = {} # Custom abstract methods. field_error_messages = { 'invalid': None, 'blank': None, 'min_length': None, 'max_length': None } # Custom errors list. to_representation_cases = ( {'data': {'value': '123'}, 'return': '123'}, {'data': {'value': 123}, 'return': '123'}, {'data': {'value': 'qwe'}, 'return': 'qwe'}, {'data': {'value': None}, 'return': None}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': '123'}, 'return': '123'}, {'data': {'data': True}, 'exceptions': (ValidationError,)}, {'data': {'data': BaseFieldTestCase.Empty()}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)} ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': '123'}, 'return': '123'}, {'data': {'data': 123}, 'return': '123'}, {'data': {'data': 'qwe'}, 'return': 'qwe'}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': ''}, 'params': {'allow_blank': False}, 'exceptions': (ValidationError,)}, {'data': {'data': ''}, 'params': {'allow_blank': True}, 'return': ''}, {'data': {'data': ' '}, 'params': {'allow_blank': True, 'trim_whitespace': True}, 'return': ''}, {'data': {'data': ' '}, 'params': {'allow_blank': False, 'trim_whitespace': True}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.run_validation()`. def test_init(self): """ Testing create. """ params = dict(max_length=10, min_length=20, trim_whitespace=False, allow_blank=True, required=True) field = self.field_class(**params) # Look at validators. assert len(field.validators) == 3, '`.validators` must have length 3, reality {}'.format(len(field.validators)) for v in field.validators: assert isinstance(v, (RequiredValidator, MaxLengthValidator, MinLengthValidator)), \ 'Validator must be `RequiredValidator, MaxLengthValidator, MinLengthValidator`, reality `{}`'.format( type(v) ) # Look that without them too it is possible. params.update(max_length=None, min_length=None) field = self.field_class(**params) assert len(field.validators) == 1, '`.validators` must have length 1, reality {}'.format(len(field.validators)) for v in field.validators: assert isinstance(v, RequiredValidator), 'Validator must be `RequiredValidator`, reality `{}`'.format(type(v)) class TestIntegerField(BaseFieldTestCase): """ Testing IntegerField. """ field_class = IntegerField abstract_methods = {} # Custom abstract methods. field_error_messages = { 'invalid': None, 'min_value': None, 'max_value': None, 'max_string_length': None } # Custom errors list. to_representation_cases = ( {'data': {'value': 123}, 'return': 123}, {'data': {'value': '123'}, 'return': 123}, {'data': {'value': 'qwe'}, 'exceptions': (ValueError,)}, {'data': {'value': None}, 'return': None}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': 123}, 'return': 123}, {'data': {'data': '123'}, 'return': 123}, {'data': {'data': '123.0'}, 'return': 123}, {'data': {'data': '123.1'}, 'exceptions': (ValidationError,)}, {'data': {'data': 'qwe'}, 'exceptions': (ValidationError,)}, {'data': {'data': False}, 'exceptions': (ValidationError,)}, {'data': {'data': '11' * IntegerField.MAX_STRING_LENGTH}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': 123}, 'return': 123}, {'data': {'data': '123'}, 'return': 123}, {'data': {'data': '123.0'}, 'return': 123}, {'data': {'data': '123.1'}, 'exceptions': (ValidationError,)}, {'data': {'data': 'qwe'}, 'exceptions': (ValidationError,)}, {'data': {'data': False}, 'exceptions': (ValidationError,)}, {'data': {'data': '11' * IntegerField.MAX_STRING_LENGTH}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'min_value': 5}, 'return': 10}, {'data': {'data': 10}, 'params': {'min_value': 10}, 'return': 10}, {'data': {'data': 10}, 'params': {'min_value': 11}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'max_value': 11}, 'return': 10}, {'data': {'data': 10}, 'params': {'max_value': 10}, 'return': 10}, {'data': {'data': 10}, 'params': {'max_value': 5}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'max_value': 11, 'min_value': 5}, 'return': 10}, {'data': {'data': 10}, 'params': {'max_value': 10, 'min_value': 10}, 'return': 10}, {'data': {'data': 10}, 'params': {'max_value': 5, 'min_value': 5}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.run_validation()`. class TestFloatField(BaseFieldTestCase): """ Testing FloatField. """ field_class = FloatField abstract_methods = {} # Custom abstract methods. field_error_messages = { 'invalid': None, 'min_value': None, 'max_value': None, 'max_string_length': None } # Custom errors list. to_representation_cases = ( {'data': {'value': 123}, 'return': 123.0}, {'data': {'value': '123'}, 'return': 123.0}, {'data': {'value': 'qwe'}, 'exceptions': (ValueError,)}, {'data': {'value': None}, 'return': None}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': 123}, 'return': 123.0}, {'data': {'data': '123'}, 'return': 123.0}, {'data': {'data': '123.0'}, 'return': 123.0}, {'data': {'data': '123.1'}, 'return': 123.1}, {'data': {'data': 'qwe'}, 'exceptions': (ValidationError,)}, {'data': {'data': False}, 'return': 0.0}, {'data': {'data': '11' * IntegerField.MAX_STRING_LENGTH}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': 123}, 'return': 123.0}, {'data': {'data': '123'}, 'return': 123.0}, {'data': {'data': '123.0'}, 'return': 123.0}, {'data': {'data': '123.1'}, 'return': 123.1}, {'data': {'data': 'qwe'}, 'exceptions': (ValidationError,)}, {'data': {'data': False}, 'return': 0.0}, {'data': {'data': '11' * IntegerField.MAX_STRING_LENGTH}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'min_value': 5}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'min_value': 10}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'min_value': 11}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'max_value': 11}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'max_value': 10}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'max_value': 5}, 'exceptions': (ValidationError,)}, {'data': {'data': 10}, 'params': {'max_value': 11, 'min_value': 5}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'max_value': 10, 'min_value': 10}, 'return': 10.0}, {'data': {'data': 10}, 'params': {'max_value': 5, 'min_value': 5}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.run_validation()`. class TestBooleanField(BaseFieldTestCase): """ Testing BooleanField. """ field_class = BooleanField abstract_methods = {} # Custom abstract methods. field_error_messages = {'invalid': None} to_representation_cases = ( {'data': {'value': True}, 'return': True}, {'data': {'value': False}, 'return': False}, {'data': {'value': None}, 'return': False}, {'data': {'value': 'Yes'}, 'return': True}, {'data': {'value': 1}, 'return': True}, {'data': {'value': 'No'}, 'return': False}, {'data': {'value': 0}, 'return': False}, {'data': {'value': 'null'}, 'return': True}, {'data': {'value': ''}, 'return': False}, {'data': {'value': '100'}, 'return': True} ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': True}, 'return': True}, {'data': {'data': False}, 'return': False}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': 'Yes'}, 'return': True}, {'data': {'data': 1}, 'return': True}, {'data': {'data': 'No'}, 'return': False}, {'data': {'data': 0}, 'return': False}, {'data': {'data': 'null'}, 'exceptions': (ValidationError,)}, {'data': {'data': ''}, 'exceptions': (ValidationError,)}, {'data': {'data': '100'}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': True}, 'return': True}, {'data': {'data': False}, 'return': False}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': 'Yes'}, 'return': True}, {'data': {'data': 1}, 'return': True}, {'data': {'data': 'No'}, 'return': False}, {'data': {'data': 0}, 'return': False}, {'data': {'data': 'null'}, 'params': {'required': False}, 'exceptions': (ValidationError,)}, {'data': {'data': ''}, 'params': {'required': False}, 'exceptions': (ValidationError,)}, {'data': {'data': '100'}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.run_validation()`. class TestBooleanNullField(BaseFieldTestCase): """ Testing BooleanNullField. """ field_class = BooleanNullField abstract_methods = {} # Custom abstract methods. field_error_messages = {'invalid': None} to_representation_cases = ( {'data': {'value': True}, 'return': True}, {'data': {'value': False}, 'return': False}, {'data': {'value': None}, 'return': None}, {'data': {'value': 'Yes'}, 'return': True}, {'data': {'value': 1}, 'return': True}, {'data': {'value': 'No'}, 'return': False}, {'data': {'value': 0}, 'return': False}, {'data': {'value': 'null'}, 'return': None}, {'data': {'value': ''}, 'return': None}, {'data': {'value': '100'}, 'return': True} ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': True}, 'return': True}, {'data': {'data': False}, 'return': False}, {'data': {'data': None}, 'return': None}, {'data': {'data': 'Yes'}, 'return': True}, {'data': {'data': 1}, 'return': True}, {'data': {'data': 'No'}, 'return': False}, {'data': {'data': 0}, 'return': False}, {'data': {'data': 'null'}, 'return': None}, {'data': {'data': ''}, 'return': None}, {'data': {'data': '100'}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': True}, 'return': True}, {'data': {'data': False}, 'return': False}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': 'Yes'}, 'return': True}, {'data': {'data': 1}, 'return': True}, {'data': {'data': 'No'}, 'return': False}, {'data': {'data': 0}, 'return': False}, {'data': {'data': 'null'}, 'params': {'required': False}, 'return': None}, {'data': {'data': ''}, 'params': {'required': False}, 'return': None}, {'data': {'data': '100'}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.run_validation()`. class TestListField(BaseFieldTestCase): """ Testing ListField. """ field_class = ListField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = { 'child': CharField(required=False) } # Required arguments for creating a field. field_error_messages = { 'not_a_list': None, 'empty': None, 'min_length': None, 'max_length': None } _fields_vals = { 'required': True, 'default': None, 'label': None, 'validators': [], 'error_messages': {}, 'default_error_messages': {}, 'default_validators': [], 'child': CharField() } to_representation_cases = ( {'data': {'value': ['123', '123', '123']}, 'return': ['123', '123', '123']}, {'data': {'value': [123, 123, 123]}, 'return': ['123', '123', '123']}, {'data': {'value': [True, True, True]}, 'return': ['True', 'True', 'True']}, {'data': {'value': ['123', 123, True, None]}, 'return': ['123', '123', 'True', None]}, {'data': {'value': None}, 'return': []}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': ''}, 'exceptions': (ValidationError,)}, {'data': {'data': {}}, 'exceptions': (ValidationError,)}, {'data': {'data': BaseFieldTestCase.Empty()}, 'exceptions': (ValidationError,)}, {'data': {'data': []}, 'params': {'allow_empty': True}, 'return': []}, {'data': {'data': []}, 'params': {'allow_empty': False}, 'exceptions': (ValidationError,)}, {'data': {'data': ['123', '123', '123']}, 'return': ['123', '123', '123']}, {'data': {'data': [123, 123, 123]}, 'return': ['123', '123', '123']}, # Errors will be here, because CharField does not get True False No as a string. {'data': {'data': [True, True, True]}, 'exceptions': (ValidationError,)}, {'data': {'data': ['123', 123, True, None]}, 'exceptions': (ValidationError,)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': ''}, 'exceptions': (ValidationError,)}, {'data': {'data': {}}, 'exceptions': (ValidationError,)}, {'data': {'data': BaseFieldTestCase.Empty()}, 'exceptions': (ValidationError,)}, {'data': {'data': []}, 'params': {'allow_empty': True}, 'return': []}, {'data': {'data': []}, 'params': {'allow_empty': False}, 'exceptions': (ValidationError,)}, {'data': {'data': ['123', '123', '123']}, 'return': ['123', '123', '123']}, {'data': {'data': [123, 123, 123]}, 'return': ['123', '123', '123']}, # Errors will be here, because CharField does not get True False No as a string. {'data': {'data': [True, True, True]}, 'exceptions': (ValidationError,)}, {'data': {'data': ['123', 123, True, None]}, 'exceptions': (ValidationError,)}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 2, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 3, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 5}, 'exceptions': (ValidationError,)}, {'data': {'data': [1, 1, 1]}, 'params': {'max_length': 5, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'max_length': 3, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'max_length': 2}, 'exceptions': (ValidationError,)}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 5, 'max_length': 10}, 'exceptions': (ValidationError,)}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 3, 'max_length': 5, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 1, 'max_length': 5, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 1, 'max_length': 3, 'child': IntegerField()}, 'return': [1, 1, 1]}, {'data': {'data': [1, 1, 1]}, 'params': {'min_length': 1, 'max_length': 2}, 'exceptions': (ValidationError,)}, {'data': {'data': [1, True, '1']}, 'params': {'child': None}, 'return': [1, True, '1']} # Check empty child field. ) # Cases, to test the performance of `.run_validation()`. class TestTimeField(BaseFieldTestCase): """ Testing TimeField. """ field_class = TimeField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. field_error_messages = { 'invalid': None, 'time': None } to_representation_cases = ( {'data': {'value': datetime.time()}, 'return': '00:00:00'}, {'data': {'value': datetime.time(10, 10)}, 'return': '10:10:00'}, {'data': {'value': '10:10:10'}, 'return': '10:10:10'}, {'data': {'value': 'test'}, 'return': 'test'}, # TODO: fix {'data': {'value': None}, 'return': None}, {"data": {'value': type('object', (object,), {})}, 'exceptions': (AttributeError,)}, # Not valid object. ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': '00:00:00'}, 'return': datetime.time(0, 0, 0)}, {'data': {'data': '10:10:10'}, 'return': datetime.time(10, 10, 10)}, {'data': {'data': '10:10'}, 'exceptions': (ValidationError,)}, {'data': {'data': datetime.time()}, 'return': datetime.time()}, {'data': {'data': datetime.time(10, 10)}, 'return': datetime.time(10, 10)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': '00:00:00'}, 'return': datetime.time(0, 0, 0)}, {'data': {'data': '10:10:10'}, 'return': datetime.time(10, 10, 10)}, {'data': {'data': '10:10'}, 'exceptions': (ValidationError,)}, {'data': {'data': datetime.time()}, 'return': datetime.time()}, {'data': {'data': datetime.time(10, 10)}, 'return': datetime.time(10, 10)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': None}, 'params': {'default': datetime.time()}, 'return': datetime.time()}, ) # Cases, to test the performance of `.run_validation()`. class TestDateField(BaseFieldTestCase): """ Testing DateField. """ field_class = DateField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. field_error_messages = { 'invalid': None, 'datetime': None } to_representation_cases = ( {'data': {'value': datetime.date(2018, 1, 1)}, 'return': '2018-01-01'}, {'data': {'value': datetime.date(2018, 10, 10)}, 'return': '2018-10-10'}, {'data': {'value': datetime.date(2018, 10, 10)}, 'params': {'format': '%d.%m.%Y'}, 'return': '10.10.2018'}, {'data': {'value': datetime.datetime.now()}, 'exceptions': (AssertionError,)}, {'data': {'value': 'test'}, 'return': 'test'}, # TODO: fix {'data': {'value': None}, 'return': None}, {"data": {'value': type('object', (object,), {})}, 'exceptions': (AttributeError,)}, # Not valid object. ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': '2018-01-01'}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': datetime.date(2018, 1, 1)}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': '2018-10'}, 'exceptions': (ValidationError,)}, {'data': {'data': '1.1.2018'}, 'params': {'input_format': '%d.%m.%Y'}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': datetime.datetime.now()}, 'exceptions': (ValidationError,)}, {'data': {'data': '2018-10'}, 'params': {'input_format': '%Y-%m'}, 'return': datetime.date(2018, 10, 1)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': '2018-01-01'}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': datetime.date(2018, 1, 1)}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': '2018-10'}, 'exceptions': (ValidationError,)}, {'data': {'data': '1.1.2018'}, 'params': {'input_format': '%d.%m.%Y'}, 'return': datetime.date(2018, 1, 1)}, {'data': {'data': datetime.datetime.now()}, 'exceptions': (ValidationError,)}, {'data': {'data': '2018-10'}, 'params': {'input_format': '%Y-%m'}, 'return': datetime.date(2018, 10, 1)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': None}, 'params': {'default': datetime.date(2018, 1, 1)}, 'return': datetime.date(2018, 1, 1)}, ) # Cases, to test the performance of `.run_validation()`. class TestDateTimeField(BaseFieldTestCase): """ Testing DateTimeField. """ field_class = DateTimeField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. field_error_messages = { 'invalid': None, 'date': None, } __now = datetime.datetime.now() __now_for_test = datetime.datetime(__now.year, __now.month, __now.day, __now.hour, __now.minute, __now.second) to_representation_cases = ( {'data': {'value': datetime.datetime(2018, 1, 1)}, 'return': '2018-01-01 00:00:00'}, {'data': {'value': datetime.datetime(2018, 10, 10)}, 'return': '2018-10-10 00:00:00'}, {'data': {'value': datetime.datetime(2018, 10, 10)}, 'params': {'format': '%d.%m.%Y'}, 'return': '10.10.2018'}, {'data': {'value': datetime.datetime(2018, 1, 1, 1, 1, 1)}, 'return': '2018-01-01 01:01:01'}, {'data': {'value': datetime.datetime(2018, 1, 1, 1, 1, 1)}, 'params': {'format': '%d.%m.%Y %H-%M-%S'}, 'return': '01.01.2018 01-01-01'}, {'data': {'value': 'test'}, 'return': 'test'}, # TODO: fix {'data': {'value': None}, 'return': None}, {"data": {'value': type('object', (object,), {})}, 'exceptions': (AttributeError,)}, # Not valid object. ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': '2018-01-01 00:00:00'}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': datetime.datetime(2018, 1, 1)}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': '2018-10'}, 'exceptions': (ValidationError,)}, {'data': {'data': '1.1.2018'}, 'params': {'input_format': '%d.%m.%Y'}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': __now_for_test.strftime(DateTimeField.input_format)}, 'return': __now_for_test}, {'data': {'data': '2018-10'}, 'params': {'input_format': '%Y-%m'}, 'return': datetime.datetime(2018, 10, 1)}, ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': '2018-01-01 00:00:00'}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': datetime.datetime(2018, 1, 1)}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': '2018-10'}, 'exceptions': (ValidationError,)}, {'data': {'data': '1.1.2018'}, 'params': {'input_format': '%d.%m.%Y'}, 'return': datetime.datetime(2018, 1, 1)}, {'data': {'data': __now_for_test.strftime(DateTimeField.input_format)}, 'return': __now_for_test}, {'data': {'data': '2018-10'}, 'params': {'input_format': '%Y-%m'}, 'return': datetime.datetime(2018, 10, 1)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, {'data': {'data': None}, 'params': {'default': datetime.datetime(2018, 1, 1)}, 'return': datetime.datetime(2018, 1, 1)}, ) # Cases, to test the performance of `.run_validation()`. class TestJsonField(BaseFieldTestCase): """ Testing JsonField. """ field_class = JsonField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. field_error_messages = { 'invalid': None, } to_representation_cases = ( {'data': {'value': '123'}, 'return': '"123"'}, {'data': {'value': 123}, 'return': '123'}, {'data': {'value': {}}, 'return': '{}'}, {'data': {'value': []}, 'return': '[]'}, {'data': {'value': {'123': 123}}, 'return': '{"123": 123}'}, {'data': {'value': {'123': [123, '123']}}, 'return': '{"123": [123, "123"]}'}, {'data': {'value': lambda: None}, 'exceptions': (ValidationError,)}, {'data': {'value': {123: 123}}, 'return': '{"123": 123}'}, {'data': {'value': None}, 'return': 'null'}, ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': {}}, 'return': {}}, {'data': {'data': []}, 'return': []}, {'data': {'data': {123: 123}}, 'return': {123: 123}}, {'data': {'data': [123]}, 'return': [123]}, {'data': {'data': {123: [123]}}, 'return': {123: [123]}}, {'data': {'data': [{123: 123}]}, 'return': [{123: 123}]}, {'data': {'data': '123'}, 'return': 123}, {'data': {'data': 'asd'}, 'exceptions': (ValidationError,)}, {'data': {'data': 123}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)} ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': {}}, 'return': {}}, {'data': {'data': []}, 'return': []}, {'data': {'data': {123: 123}}, 'return': {123: 123}}, {'data': {'data': [123]}, 'return': [123]}, {'data': {'data': {123: [123]}}, 'return': {123: [123]}}, {'data': {'data': [{123: 123}]}, 'return': [{123: 123}]}, {'data': {'data': '123'}, 'return': 123}, {'data': {'data': 'asd'}, 'exceptions': (ValidationError,)}, {'data': {'data': 123}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, # TODO: FIXME ) # Cases, to test the performance of `.run_validation()`. class TestDictField(BaseFieldTestCase): """ Testing DictField. """ field_class = DictField abstract_methods = {} # Custom abstract methods. requirement_arguments_for_field = {} # Required arguments for creating a field. field_error_messages = { 'not_a_dict': None, } to_representation_cases = ( {'data': {'value': {}}, 'return': {}}, {'data': {'value': {'123': 123}}, 'return': {'123': 123}}, {'data': {'value': {'123': [123, '123']}}, 'return': {'123': [123, '123']}}, {'data': {'value': '123'}, 'exceptions': (AttributeError,)}, {'data': {'value': 123}, 'exceptions': (AttributeError,)}, {'data': {'value': lambda: None}, 'exceptions': (AttributeError,)}, {'data': {'value': {123: 123}}, 'return': {'123': 123}}, {'data': {'value': None}, 'return': None}, {'data': {'value': {123: [123]}}, 'params': {'child': IntegerField()}, 'exceptions': (TypeError,)} ) # Cases, to test the performance of `.to_representation()`. to_internal_value_cases = ( {'data': {'data': {}}, 'return': {}}, {'data': {'data': {123: 123}}, 'return': {'123': 123}}, {'data': {'data': {123: [123]}}, 'return': {'123': [123]}}, {'data': {'data': '123'}, 'exceptions': (ValidationError,)}, {'data': {'data': 'asd'}, 'exceptions': (ValidationError,)}, {'data': {'data': 123}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': {123: [123]}}, 'params': {'child': IntegerField()}, 'exceptions': (ValidationError,)} ) # Cases, to test the performance of `.to_internal_value()`. run_validation_cases = ( {'data': {'data': {}}, 'return': {}}, {'data': {'data': {123: 123}}, 'return': {'123': 123}}, {'data': {'data': {123: [123]}}, 'return': {'123': [123]}}, {'data': {'data': '123'}, 'exceptions': (ValidationError,)}, {'data': {'data': 'asd'}, 'exceptions': (ValidationError,)}, {'data': {'data': 123}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'exceptions': (ValidationError,)}, {'data': {'data': None}, 'params': {'required': False}, 'return': None}, # TODO: FIXME {'data': {'data': {123: [123]}}, 'params': {'child': IntegerField()}, 'exceptions': (ValidationError,)} ) # Cases, to test the performance of `.run_validation()`. class TestSerializerMethodField(TestCase): """ Testing SerializerMethodField. """ def test_default_validation(self): """ Testing default methods. """ ser = SerializerMethodFieldDefault(data={'test': 'test'}) ser.is_valid() assert ser.validated_data['test'] == 'test', 'Expected `test`. Reality: `{}`.'.format(ser.validated_data['test']) ser = SerializerMethodFieldDefault(data={'test': 'test'}) setattr(ser, 'pop_test', lambda *args: None) ser.is_valid() assert ser.validated_data['test'] is None, 'Expected `None`. Reality: `{}`.'.format(ser.validated_data['test']) ser = SerializerMethodFieldDefault(data={'test': 'test'}) setattr(ser, 'pop_test', lambda *args: 123) ser.is_valid() assert ser.validated_data['test'] == 123, 'Expected `123`. Reality: `{}`.'.format(ser.validated_data['test']) def test_default_serializing(self): """ Testing serializing object. """ # Standard value. obj = type('Object', (object,), {'test': 'test'}) ser = SerializerMethodFieldDefault(instance=obj) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] == obj, 'Expected value `test`. Reality: `{}`.'.format(ser.data['test']) ser = SerializerMethodFieldDefault(instance=obj) setattr(ser, 'get_test', lambda *args: None) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] is None, 'Expected value `None`. Reality: `{}`.'.format(ser.data['test']) ser = SerializerMethodFieldDefault(instance=obj) setattr(ser, 'get_test', lambda *args: 123) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] == 123, 'Expected value `123`. Reality: `{}`.'.format(ser.data['test']) def test_single_method_validation(self): """ Testing single method. """ ser = SerializerMethodFieldSingle(data={'test': 'test'}) ser.is_valid() assert ser.validated_data['test'] == 'test', 'Expected `test`. Reality: `{}`.'.format(ser.validated_data['test']) ser = SerializerMethodFieldSingle(data={'test': 'test'}) setattr(ser, 'test_test', lambda *args: None) ser.is_valid() assert ser.validated_data['test'] is None, 'Expected `None`. Reality: `{}`.'.format(ser.validated_data['test']) ser = SerializerMethodFieldSingle(data={'test': 'test'}) setattr(ser, 'test_test', lambda *args: 123) ser.is_valid() assert ser.validated_data['test'] == 123, 'Expected `123`. Reality: `{}`.'.format(ser.validated_data['test']) ser = SerializerMethodFieldSingle(data={'test': 'test'}) setattr(ser, 'pop_test', lambda *args: 123) ser.is_valid() assert ser.validated_data['test'] == 'test', 'Expected `test`. Reality: `{}`.'.format(ser.validated_data['test']) def test_single_method_serializing(self): """ Testing serializing object. """ # Standard value. obj = type('Object', (object,), {'test': 'test'}) ser = SerializerMethodFieldSingle(instance=obj) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] == obj, 'Expected value `test`. Reality: `{}`.'.format(ser.data['test']) ser = SerializerMethodFieldSingle(instance=obj) setattr(ser, 'test_test', lambda *args: None) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] is None, 'Expected value `None`. Reality: `{}`.'.format(ser.data['test']) ser = SerializerMethodFieldSingle(instance=obj) setattr(ser, 'test_test', lambda *args: 123) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] == 123, 'Expected value `123`. Reality: `{}`.'.format(ser.data['test']) ser = SerializerMethodFieldSingle(instance=obj) setattr(ser, 'get_test', lambda *args: 123) assert isinstance(ser.data, dict), 'Expected type: `dict`. Reality: `{}`.'.format(type(ser.data)) assert len(ser.data) == 1, 'Expected single value in data. Reality: `{}`.'.format(ser.data) assert ser.data['test'] == obj, 'Expected value `test`. Reality: `{}`.'.format(ser.data['test'])
true
603ba9dda00da362b46b5d4f37471b84f918c8c4
Python
luispuentesvega/util-scripts-py
/get_directory_size.py
UTF-8
300
2.96875
3
[]
no_license
import os total_size = 0 start_path = 'This PC\Luis Puentes (Galaxy A5)\Card' # To get size of current directory for path, dirs, files in os.walk(start_path): for f in files: fp = os.path.join(path, f) total_size += os.path.getsize(fp) print("Directory size: " + str(total_size))
true
d2a5c5093d93c845ca4e5a8b2445ff524c29dbde
Python
anishpdm/SNIT-IEDC-PYTHON-PGM
/add.py
UTF-8
36
2.96875
3
[]
no_license
a=10 b=33 c=a+b print("Result is",c)
true
41d6026f11457df61e4592a92e6e35bbeb31b1a9
Python
ColdMatter/PhotonBEC
/learning/daq-board-fast-read/daq-read-individual.py
UTF-8
763
2.75
3
[ "MIT" ]
permissive
#read data from the daq board with lots of individual calls #written around 11/4/2017 import sys sys.path.append("D:\\Control\\PythonPackages\\") import time, datetime import SingleChannelAI import numpy as np import matplotlib import matplotlib.pyplot as plt reading_count = 200 Npts = 1000 rate = 1e4 interval = 0.05 points = [] for i in range(reading_count): print('[' + str(datetime.datetime.now()) + '] reading') data = SingleChannelAI.SingleChannelAI(Npts=Npts, rate=rate, device="Dev1", channel="ai0", minval=0, maxval=5) points.append(np.mean(data)) time.sleep(interval) fig = plt.figure(1) plt.clf() plt.plot(points, '-x', markersize=2) plt.grid() plt.ylabel('Volts / V') plt.xlabel('Point') plt.title('Data from DAQ board') plt.show()
true
e588cb7284af979df1d9e6b2814ae4b8552f86a1
Python
yassinhc/Building_digital
/test/CoridorTest.py
UTF-8
1,406
2.546875
3
[]
no_license
import unittest import sys sys.path.append('..') import src.coridor as Corridor import src.Wall as Wall import src.coordinate as Coordinate from test.areaTest import AreaTest class Test_Coridor(AreaTest,unittest.TestCase): global List_Walls def createArea(self): global List_Walls c1 = Coordinate.Coordinate(0,0) c2 = Coordinate.Coordinate(10,0) c3 = Coordinate.Coordinate(10,5) c4 = Coordinate.Coordinate(0,5) w1 = Wall.Wall((c1,c2)) w2 = Wall.Wall((c3,c4)) List_Walls=(w1,w2) area = Corridor.Corridor((w1,w2)) return area def test_getSurface(self): pass def test_surface_square(self): surface = self.area.getSurface() self.assertEqual(surface, 50) def test_surface_parallelogram(self): c1 = Coordinate.Coordinate(1,0) c2 = Coordinate.Coordinate(1,8) c3 = Coordinate.Coordinate(5,0) c4 = Coordinate.Coordinate(5,8) w1 = Wall.Wall((c1,c2)) w2 = Wall.Wall((c3,c4)) area = Corridor.Corridor((w1,w2)) surface = area.getSurface() self.assertEqual(surface,32) def test_getListWalls(self): self.assertEqual(self.area.getListWalls(),List_Walls) if __name__ == '__main__': unittest.main()
true
a65fed5c478757d78926a9958b962f0b47106bd6
Python
vikulovm5/Homeworks
/Урок 2. Практическое задание/task_4.py
UTF-8
1,114
4.09375
4
[]
no_license
""" 4. Найти сумму n элементов следующего ряда чисел: 1 -0.5 0.25 -0.125 ... Количество элементов (n) вводится с клавиатуры. Пример: Введите количество элементов: 3 Количество элементов: 3, их сумма: 0.75 Подсказка: Каждый очередной элемент в 2 раза меньше предыдущего и имеет противоположный знак Решите через рекурсию. Решение через цикл не принимается. Для оценки Отлично в этом блоке необходимо выполнить 5 заданий из 7 """ def rec(a, num, count, sum): if a == count: print(f'Элементов: {count}, Сумма: {sum}') elif a < count: return rec(a + 1, num / 2 * -1, count, sum+num) try: n = int(input('Количество элементов: ')) rec(0, 1, n, 0) except ValueError: print('Введенные данные некорректны.')
true
76d511ada20317db568944c7820f62db9fa63778
Python
janmarkuslanger/clean-flask
/app/user/models.py
UTF-8
587
2.640625
3
[]
no_license
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- from passlib.apps import custom_app_context as pwd_context from app import db class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String) username = db.Column(db.String, unique=True, nullable=False) password_hash = db.Column(db.String, nullable=False) def hash_password(self, password): self.password_hash = pwd_context.encrypt(password) def verify_password(self, password): return pwd_context.verify(password, self.password_hash)
true