blob_id
stringlengths 40
40
| language
stringclasses 1
value | repo_name
stringlengths 5
133
| path
stringlengths 2
333
| src_encoding
stringclasses 30
values | length_bytes
int64 18
5.47M
| score
float64 2.52
5.81
| int_score
int64 3
5
| detected_licenses
listlengths 0
67
| license_type
stringclasses 2
values | text
stringlengths 12
5.47M
| download_success
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|
09cc7ceb217f14538db204560cbe039839aa967a
|
Python
|
enkiprobo/tugasAIAgkt2015
|
/Tugas 1/Pengumpulan/1301154553 RANESTARI SASTRIANI/SA/tubesSA.py
|
UTF-8
| 786 | 3.5625 | 4 |
[] |
no_license
|
import random
# definisi fungsi
def fungsi(a, b):
return ((4 - (2.1 * (a ** 2)) + ((a ** 4) / 3)) * (a ** 2)) + (a * b) + ((-4 + (4 * (b ** 2))) * (b ** 2))
def probabilitas(a, b, c):
return 2.71828183 ** ((a-b)/c)
# deklarasi variabel
temp = 10000
alpha = 0.999
r = random.uniform(0,1)
x1 = random.uniform(-10, 10)
x2 = random.uniform(-10, 10)
bestsofar = fungsi(x1, x2)
#algoritma SA
while (temp > 0.00001):
for x in range(30):
x1 = random.uniform(-10, 10)
x2 = random.uniform(-10, 10)
newstate = fungsi(x1, x2)
if (newstate>bestsofar):
if (probabilitas(bestsofar, newstate, temp) > r):
bestsofar = newstate
else:
bestsofar = newstate
temp=alpha*temp
print(bestsofar)
| true |
e01e3a527e9e42b65cd0be5f1d8a3106a7f19f9b
|
Python
|
po3rin/python_playground
|
/practical-recommender-systems/util/metric_calculator.py
|
UTF-8
| 2,211 | 3.015625 | 3 |
[] |
no_license
|
import numpy as np
from sklearn.metrics import mean_squared_error
from util.models import Metrics
from typing import Dict, List
class MetricCalculator:
def calc(
self,
true_rating: List[float],
pred_rating: List[float],
true_user2items: Dict[int, List[int]],
pred_user2items: Dict[int, List[int]],
k: int,
) -> Metrics:
rmse = self._calc_rmse(true_rating, pred_rating)
precision_at_k = self._calc_precision_at_k(true_user2items, pred_user2items, k)
recall_at_k = self._calc_recall_at_k(true_user2items, pred_user2items, k)
return Metrics(rmse, precision_at_k, recall_at_k)
def _precision_at_k(self, true_items: List[int], pred_items: List[int], k: int) -> float:
if k == 0:
return 0.0
p_at_k = (len(set(true_items) & set(pred_items[:k]))) / k
return p_at_k
def _recall_at_k(self, true_items: List[int], pred_items: List[int], k: int) -> float:
if len(true_items) == 0 or k == 0:
return 0.0
r_at_k = (len(set(true_items) & set(pred_items[:k]))) / len(true_items)
return r_at_k
def _calc_rmse(self, true_rating: List[float], pred_rating: List[float]) -> float:
return np.sqrt(mean_squared_error(true_rating, pred_rating))
def _calc_recall_at_k(
self, true_user2items: Dict[int, List[int]], pred_user2items: Dict[int, List[int]], k: int
) -> float:
scores = []
# テストデータに存在する各ユーザーのrecall@kを計算
for user_id in true_user2items.keys():
r_at_k = self._recall_at_k(true_user2items[user_id], pred_user2items[user_id], k)
scores.append(r_at_k)
return np.mean(scores)
def _calc_precision_at_k(
self, true_user2items: Dict[int, List[int]], pred_user2items: Dict[int, List[int]], k: int
) -> float:
scores = []
# テストデータに存在する各ユーザーのprecision@kを計算
for user_id in true_user2items.keys():
p_at_k = self._precision_at_k(true_user2items[user_id], pred_user2items[user_id], k)
scores.append(p_at_k)
return np.mean(scores)
| true |
9d9710be397361882655aa60786092b0d7602173
|
Python
|
sguttikon/sim-environment
|
/src/old_code_feb_12/pf_net/display.py
|
UTF-8
| 4,140 | 2.984375 | 3 |
[
"Apache-2.0"
] |
permissive
|
#!/usr/bin/env python3
import cv2
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.patches import Wedge
class Render(object):
def __init__(self, fig_shape=(7, 7)):
self.fig = plt.figure(figsize=fig_shape)
self.plt_ax = self.fig.add_subplot(111)
plt.ion()
plt.show()
self.plots = {
'map': None,
'gt_robot': {
'pose': None,
'heading': None,
},
'est_robot': {
'pose': None,
'heading': None,
'particles': None,
},
}
def update_figures(self, data):
gt_pose = data['gt_pose']
est_pose = data['est_pose']
particle_states = data['particle_states']
particle_weights = data['particle_weights']
self.plot_gt_robot(gt_pose, 'green')
self.plot_est_robot(est_pose, 'blue')
self.plot_particles(particle_states, particle_weights, 'coral')
self.plt_ax.legend([self.plots['gt_robot']['pose'], self.plots['est_robot']['pose']], \
["gt_robot", "est_robot"])
plt.draw()
plt.pause(0.00000000001)
def plot_map(self, floor_map, floor_map_res):
rows, cols = floor_map.shape
self.map_res = floor_map_res
self.map_rows = rows
extent = [-cols/2, cols/2, -rows/2, rows/2]
map_plt = self.plots['map']
if map_plt is None:
# floor_map = cv2.flip(floor_map, 0)
map_plt = self.plt_ax.imshow(floor_map, origin='upper', extent=extent)
self.plt_ax.grid()
self.plt_ax.set_xlabel('x coords')
self.plt_ax.set_ylabel('y coords')
else:
pass
self.plots['map'] = map_plt
def plot_gt_robot(self, gt_pose, clr):
pose_plt = self.plots['gt_robot']['pose']
heading_plt = self.plots['gt_robot']['heading']
pose_plt, heading_plt = self.plot_robot(gt_pose, pose_plt, heading_plt, clr)
self.plots['gt_robot']['pose'] = pose_plt
self.plots['gt_robot']['heading'] = heading_plt
def plot_est_robot(self, est_pose, clr):
pose_plt = self.plots['est_robot']['pose']
heading_plt = self.plots['est_robot']['heading']
pose_plt, heading_plt = self.plot_robot(est_pose, pose_plt, heading_plt, clr)
self.plots['est_robot']['pose'] = pose_plt
self.plots['est_robot']['heading'] = heading_plt
def plot_robot(self, robot_pose, pose_plt, heading_plt, clr):
x, y, theta = robot_pose
x = x * self.map_rows * self.map_res
y = y * self.map_rows * self.map_res
radius = 0.1 * self.map_rows * self.map_res
length = 0.1 * self.map_rows * self.map_res
xdata = [x, x + (radius + length) * np.cos(theta)]
ydata = [y, y + (radius + length) * np.sin(theta)]
if pose_plt is None:
pose_plt = Wedge((x, y), radius, 0, 360, color=clr, alpha=.75)
self.plt_ax.add_artist(pose_plt)
heading_plt, = self.plt_ax.plot(xdata, ydata, color=clr, alpha=.75)
else:
pose_plt.update({
'center': [x, y],
})
heading_plt.update({
'xdata': xdata,
'ydata': ydata,
})
return pose_plt, heading_plt
def plot_particles(self, particles, particle_weights, clr):
if particle_weights is None:
colors = clr
else:
colors = cm.rainbow(particle_weights)
positions = particles[:, 0:2] * self.map_rows * self.map_res
particles_plt = self.plots['est_robot']['particles']
if particles_plt is None:
particles_plt = plt.scatter(positions[:, 0], positions[:, 1], s=10, c=colors, alpha=.5)
else:
particles_plt.set_offsets(positions[:, 0:2])
particles_plt.set_color(colors)
self.plots['est_robot']['particles'] = particles_plt
def __del__(self):
# to prevent plot from automatic closing
plt.ioff()
plt.show()
| true |
7877ca63ef935218c5b23d0e40accdf9e47263b6
|
Python
|
Harshsa28/algs
|
/merge_sort.py
|
UTF-8
| 787 | 3.703125 | 4 |
[] |
no_license
|
import math #for floor
def merge_sort(lst):
if len(lst) < 2: #if len is 1, return the list
return lst
mid = math.floor(len(lst)/2)
lst1 = merge_sort(lst[0:mid]) #simple divide n conquer
lst2 = merge_sort(lst[mid:len(lst)]) #simple divide n conquer
return merge(lst1, lst2) #merge the 2 smaller sorted lists
def merge(lst1 , lst2):
len1 = len(lst1)
len2 = len(lst2)
lst3 = []
i = 0
j = 0
while (True):
if lst1[i] <= lst2[j]:
lst3.append(lst1[i])
i += 1
else:
lst3.append(lst2[j])
j += 1
if i == len1 or j == len2:
break
if i == len1:
while j != len2:
lst3.append(lst2[j])
j += 1
if j == len2:
while i != len1:
lst3.append(lst1[i])
i += 1
return lst3
lst = [2,4,1,4,6,2,5,7,8]
#lst = [2,5,7,8]
print(merge_sort(lst))
| true |
64bcacb358f43ff39b5f2ec8d1633538e6e46146
|
Python
|
hmcka/1511
|
/shape-calculations/circle.py
|
UTF-8
| 611 | 4.5 | 4 |
[] |
no_license
|
#This program provides functions that allow you to find the area and circumference of a circle.
#programmed by Hethur Aluma | 2/19/20
import math
def calc_circle_area():
"""Calculates the area of a circle"""
radius = float(input("What is the radius of your circle? "))
circle_area = math.pi * radius
print("The area of the circle is:", circle_area)
def calc_circle_circum():
"""Calculates the circumference of a circle."""
radius = float(input("What is the radius of your circle? "))
circle_circum = 2 * math.pi * radius
print("The circumference of the circle is:", circle_circum)
| true |
0787f62c2d4309448dc5b50cec0773417245a0fa
|
Python
|
michaelprummer/datascience
|
/clustering/data_preprocessing/remove_duplicates_cluster.py
|
UTF-8
| 1,441 | 2.703125 | 3 |
[] |
no_license
|
import codecs, os
if __name__ == '__main__':
input_path = "data/"
output_path = "out/"
files_in_folder = os.listdir(input_path + "/")
if not os.path.exists(input_path):
os.makedirs(input_path)
if not os.path.exists(output_path):
os.makedirs(output_path)
print("{0} Files found in {1}.".format(len(files_in_folder), input_path))
for file in files_in_folder:
out = codecs.open(output_path + file, "w", "utf-8")
file = codecs.open(input_path + file, encoding='utf-8')
fileList = []
fileNDF = []
fileLDA = []
fileKM = []
# out
outFile = []
for i, line in enumerate(file, 0):
fileList.append(line)
values = line.split("\t")
if values[1] != "-1":
fileNDF.append(values)
elif values[2] != "-1":
fileLDA.append(values)
elif values[3] != "-1":
fileKM.append(values)
else:
print("fail")
fileList = sorted(fileList, key=lambda x: x[0])
fileNDF = sorted(fileNDF, key=lambda x: x[0])
fileLDA = sorted(fileLDA, key=lambda x: x[0])
fileKM = sorted(fileKM, key=lambda x: x[0])
for k, lineA in enumerate(fileNDF, 0):
lineA[2] = fileLDA[k][2]
lineA[3] = fileKM[k][3]
out.write("\t".join(lineA))
exit("EZ")
| true |
2a6b70c3b1b05ea59843406bbb96ef4c3ae9c1cd
|
Python
|
adobrich/Pongy
|
/pongy/pongy.py
|
UTF-8
| 5,666 | 2.796875 | 3 |
[] |
no_license
|
#!/usr/bin/env python
import pyglet
from enum import Enum
import entity
class Game(pyglet.window.Window):
"""Initialise and run the Pongy game."""
def __init__(self, *args, **kwargs):
super(Game, self).__init__(*args, **kwargs)
self.table = entity.Table(self.width, self.height)
self.ball = entity.Ball(self.width / 2, self.height / 2, 8, 8)
self.score_one = entity.Score(self.width * 0.25, self.height)
self.score_two = entity.Score(self.width * 0.75, self.height)
self.game_over()
def game_over(self):
"""End game, and bounce the ball around the screen while waiting for
players to start a new game."""
self.game_in_progress = False
self.table.set_demo_mode()
self.ball.reset(self.width / 2, self.height / 2)
def new_game(self):
"""Reset score, player/ball positions and start a new game."""
self.game_in_progress = True
self.table.set_game_mode()
self.score_one.reset()
self.score_two.reset()
self.ball.reset(self.width / 2, self.height / 2)
self.paddle_one = entity.Paddle(self.table.gutter_width,
self.height / 2, 8, 50)
self.paddle_two = entity.Paddle(self.width - self.table.gutter_width,
self.height / 2, 8, 50)
def update(self, dt):
"""Update game objects and check for collisions."""
self.ball.move(dt)
# Check for ball / paddle collision
if self.game_in_progress:
# Check win condition
if self.score_one.score == 11 or self.score_two.score == 11:
self.game_over()
# Check lose condition
if self.has_collided(self.ball, self.table.right):
self.score_one.increment()
self.ball.reset(self.width / 2, self.height / 2)
elif self.has_collided(self.ball, self.table.left):
self.score_two.increment()
self.ball.reset(self.width / 2, self.height / 2)
# Update paddles
self.paddle_one.update(dt)
self.paddle_two.update(dt)
if (self.has_collided(self.paddle_one, self.ball) or
self.has_collided(self.paddle_two, self.ball)):
self.ball.paddle_bounce()
if self.has_collided(self.paddle_one, self.table.top):
self.paddle_one.stop()
self.paddle_one.max_y(self.height)
elif self.has_collided(self.paddle_one, self.table.bottom):
self.paddle_one.stop()
self.paddle_one.min_y()
if self.has_collided(self.paddle_two, self.table.top):
self.paddle_two.stop()
self.paddle_two.max_y(self.height)
elif self.has_collided(self.paddle_two, self.table.bottom):
self.paddle_two.stop()
self.paddle_two.min_y()
# Bounce of top and bottom of screen
if (self.has_collided(self.ball, self.table.top) or
self.has_collided(self.ball, self.table.bottom)):
self.ball.wall_bounce('y')
# Bounce ball of left and right walls if game is not in progress
if not self.game_in_progress:
if (self.has_collided(self.ball, self.table.left) or
self.has_collided(self.ball, self.table.right)):
self.ball.wall_bounce('x')
def on_key_press(self, symbol, modifiers):
"""Keyboard event handler for key press."""
if symbol == pyglet.window.key.ESCAPE:
exit(0)
elif symbol == pyglet.window.key.SPACE:
if not self.game_in_progress:
self.new_game()
if self.game_in_progress:
if symbol == pyglet.window.key.A:
self.paddle_one.move_up()
elif symbol == pyglet.window.key.Z:
self.paddle_one.move_down()
elif symbol == pyglet.window.key.UP:
self.paddle_two.move_up()
elif symbol == pyglet.window.key.DOWN:
self.paddle_two.move_down()
def on_key_release(self, symbol, modifiers):
"""Keyboard event handler for key release."""
if self.game_in_progress:
if symbol == pyglet.window.key.A:
self.paddle_one.stop()
elif symbol == pyglet.window.key.Z:
self.paddle_one.stop()
elif symbol == pyglet.window.key.UP:
self.paddle_two.stop()
elif symbol == pyglet.window.key.DOWN:
self.paddle_two.stop()
def on_draw(self):
"""Render game objects."""
self.clear()
self.table.draw()
self.score_one.draw()
self.score_two.draw()
self.ball.draw()
# Only draw paddles if game is in progress
if self.game_in_progress:
self.paddle_one.draw()
self.paddle_two.draw()
def has_collided(self, one, two):
"""Check for collision between two objects using AABB method."""
self.x_collision = (one.x + one.half_width >= two.x - two.half_width and
two.x + two.half_width >= one.x - one.half_width)
self.y_collision = (one.y + one.half_height >= two.y - two.half_height and
two.y + two.half_height >= one.y - one.half_height)
return self.x_collision and self.y_collision
if __name__ == '__main__':
game = Game(caption='Pongy', width=800, height=500, fullscreen=False)
pyglet.clock.schedule_interval(game.update, 1.0 / 60.0)
pyglet.app.run()
| true |
1ce41e4a6c7dc41c38e652e0230b0f7cb86dfe61
|
Python
|
cherylchoon/DojoAssignments
|
/pycode/Python_Fundamentals/new.py
|
UTF-8
| 100 | 2.9375 | 3 |
[] |
no_license
|
my_name = "Cheryl"
print my_name
my_name = "Choon"
print my_name
print 5+5
print my_name + str(5+5)
| true |
2856c182b426aae39b4f79765910183e48768d0f
|
Python
|
abhaysinh/Data-Camp
|
/Data Science for Everyone Track/19-Introduction to Shell/05- Creating new tools/03-How can I save commands to re-run later.py
|
UTF-8
| 1,132 | 3.71875 | 4 |
[] |
no_license
|
'''
How can I save commands to re-run later?
You have been using the shell interactively so far. But since the commands you type in are just text, you can store them in files for the shell to run over and over again. To start exploring this powerful capability, put the following command in a file called headers.sh:
head -n 1 seasonal/*.csv
This command selects the first row from each of the CSV files in the seasonal directory. Once you have created this file, you can run it by typing:
bash headers.sh
This tells the shell (which is just a program called bash) to run the commands contained in the file headers.sh, which produces the same output as running the commands directly.
Instructions
100 XP
1 Use nano dates.sh to create a file called dates.sh that contains this command:
cut -d , -f 1 seasonal/*.csv
to extract the first column from all of the CSV files in seasonal.
Solution :
# This solution uses `cp` instead of `nano`
# because our automated tests can't edit files interactively.
cp /solutions/dates.sh ~
2 Use bash to run the file dates.sh.
Solution:
bash dates.sh
'''
| true |
88175b290d15104f587489c27774cffb2894b278
|
Python
|
biswaspiyalCSERUET/ML_Pattern
|
/Perceptron/MultiClass-KERSEL/kesler.py
|
UTF-8
| 3,820 | 2.5625 | 3 |
[] |
no_license
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 18 12:56:26 2018
@author: yeaseen
"""
import numpy as np
def split(s, delim=[" ", '\n']):
words = []
word = []
for c in s:
if c not in delim:
word.append(c)
else:
if word:
words.append(''.join(word))
word = []
if word:
words.append(''.join(word))
return words
def loadfile(filename,checkTrain):
file = open(filename, "r")
first = checkTrain
rows = list()
for line in file:
if(first) == True:
dims = split(line)
first = False
else:
vals = split(line, [' ' ,'\t', '\n'])
#print(vals)
rows.append(vals)
if(checkTrain):
return dims, rows
else:
return rows
dims, rows = loadfile('Train.txt',True)
test = loadfile('Test.txt',False)
dims=np.array(dims)
dims = dims.astype(np.float)
rows=np.array(rows)
mat = rows.astype(np.float)
test=np.array(test)
test= test.astype(np.float)
#print(test)
#print(dims)
#print(mat)
'''
matrix=[[11.0306 , 9.0152 , 8.0199 , 7.62 , 1],
[11.4008 , 8.7768 , 6.7652 , 8.9 , 1],
[14.6263 , 1.8092 , 10.7134 , 6.7 , 2],
[15.4467 , 1.2589 , 12.6625 , 8.2 , 2],
[1.3346 , 5.8191 , 2.0320 , 7.5 , 3],
[0.7506 , 5.6132 , 0.9061 , 7.7 , 3]
]
matrixOutput=[11.0306 , 9.0152 , 8.0199 , 7.62 ]
'''
#matrixOutput=matrixOutput+ [1]
att=int(dims[0])
#print(att)
clss=int(dims[1])
#print(clss)
finalMat=np.empty((0,(att+1)*clss))
w =np.random.random_sample(((att+1)*clss,))
#print(w)
matrix=np.array(mat)
Y=matrix[:,-1].copy()
Y=np.array(Y)
Y=Y.astype(np.int)
Y=np.array(Y).tolist()
#print([Y])
matrix[:,-1]=np.ones((matrix.shape[0]))
targetOutput=test[:,-1].copy()
targetOutput=np.array(targetOutput)
targetOutput=targetOutput.astype(np.int)
targetOutput=np.array(targetOutput).tolist()
test[:,-1] = np.ones((test.shape[0]))
#print(test)
#print(matrix)
count=0
for i in matrix:
#print(i)
a=np.zeros(((att+1)*clss))
#print(Y[count])
#print(count)
classVal=int(Y[count])
#print(classVal)
a[(classVal-1)*(att+1) : classVal*(att+1)]=i
#print([a])
for j in range(clss):
if( (j+1) != classVal):
x=a.copy()
x[j*(att+1) : (j+1)*(att+1)] = -i
finalMat = np.vstack([finalMat, x])
#print(x)
count+=1
#print(finalMat)
counter=0
maxCounter=finalMat.shape[0]
constantTerm= 0.5
discriminant= True
while(discriminant):
for i in finalMat:
product=np.dot(i,w)
counter+=1
if(product < 0):
w=w+(i*constantTerm)
#print(w)
counter = 0
#print(product)
if(counter == maxCounter):
discriminant = False
#print(w)
predictedOutput=[]
for eachrow in test:
val=0
classed=0
for k in range(clss):
a=np.zeros(((att+1)*clss))
a[k*(att+1) : (k+1)*(att+1)] = eachrow
got=np.dot(a,w)
if(val<got):
val=got
classed=k+1
predictedOutput.append(classed)
#print(classed)
#print(predictedOutput)
from sklearn.metrics import classification_report
target_names = []
for i in range(clss):
target_names.append('class'+str(i))
print(classification_report(targetOutput, predictedOutput, target_names=target_names))
from sklearn.metrics import accuracy_score
print("Accuracy is: "+str(accuracy_score(targetOutput, predictedOutput)))
'''
print(matrixOutput)
matrixOutput = np.array(matrixOutput)
for k in range(clss):
a=np.zeros(((att+1)*clss))
a[k*(att+1) : (k+1)*(att+1)] = matrixOutput
#print(a)
print(np.dot(a,w))
'''
| true |
855feacb21f328da839cd9cb16357de024774b35
|
Python
|
BadoinoMatteo/ES_PYTHON_quarta
|
/PHYTON/thread/es4.py
|
UTF-8
| 1,057 | 2.796875 | 3 |
[] |
no_license
|
import threading
import logging
import random
totalebiglietti=100
def cassa(tID):
s1.acquire()
print("cassa 1")
numeroBiglietti=[0,1,2,3,4,5,6,7,8,9,10]
biglietti=(int)(random.choice(numeroBiglietti))
global totalebiglietti
print(totalebiglietti)
if totalebiglietti==0: #biglietti esauriti
print("biglietti esauriti")
elif totalebiglietti>0 and biglietti<=totalebiglietti:
print(f"biglietti acquistati {biglietti}" )
totalebiglietti=totalebiglietti-biglietti
elif 0 < totalebiglietti < biglietti:
print(f"biglietti acquistati {totalebiglietti}")
totalebiglietti=0
s1.release()
if __name__ == '__main__':
format = "%(asctime)s: %(message)s"
logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S")
t = []
s1 = threading.Lock()
for i in range(10):
t.append(threading.Thread(target=cassa, args=(int(i+1), )))
t[i].start()
for i,t in enumerate(t):
t.join()
| true |
b0294ac9e94ca69d1c7fe79be9695f18bab82de4
|
Python
|
joshbenner/mudsling
|
/src/mudsling/utils/locks.py
|
UTF-8
| 4,637 | 3.265625 | 3 |
[] |
no_license
|
"""
Implements a generic pyparsing lock parser grammar.
Syntax for a lock: [NOT] func1(args) [AND|OR] [NOT] func2() [...]
Lock syntax involves functions, operators, and parentheses.
* Functions take the form of: <funcName>([<arg1>[, ...]])
* Binary (two-side) operators: and, or
* Unary (one-side) operators: not
* Parentheses can be used to logically group operations.
Examples:
foo()
foo() and bar(1)
(foo() and bar(1)) or baz(a, b)
Syntax based on Evennia's lock system.
"""
from pyparsing import Suppress, Literal, CaselessLiteral, Word, Group,\
ZeroOrMore, alphanums, alphas, delimitedList, operatorPrecedence, opAssoc
# Can be imported from this module by other modules, do not remove.
from pyparsing import ParseException
from mudsling.storage import PersistentSlots
# Alias symbols to their built-in functions. Used in LockParser().
opMap = {
'!': 'not',
'&': 'and',
'|': 'or'
}
class LockFunc(PersistentSlots):
"""
Generic form of a lock function. A child class using the specified function
map will be dynamically created when a new L{LockParser} is created.
"""
__slots__ = ('fname', 'args')
def eval(self, *args):
"""
Evaluate the lock and return the result. The position args will be
passed to the lock function (and on to any functions it contains) at
the front of parameter list.
@param args: Position arguments to prepend to argument lists.
@type args: C{tuple}
@return: The result of evaluating the LockFunc.
@rtype: bool
"""
return False
# Mimics class naming since it is essentially a dynamic class instantiation.
def LockParser(funcMap):
"""
Generate a lock parsing expression tree.
@param funcMap: Dictionary of in-script function names to their Python
functions.
@rtype funcMap: C{dict}
@return: An expression tree which can be evaluated.
@rtype: L{pyparsing.ParserElement}
"""
funcs = {
'not': lambda _, __, x: not x,
'or': lambda _, __, l, r: l or r,
'and': lambda _, __, l, r: l and r
}
funcs.update(funcMap)
class _lockFunc(LockFunc):
def __init__(self, tok):
self.fname, self.args = tok
if self.fname in opMap:
self.fname = opMap[self.fname]
def __repr__(self):
return '%s(%s)' % (self.fname, str(self.args)[1:-1])
def eval(self, *args):
if self.fname in funcs:
myArgs = list(args)
for a in self.args:
if isinstance(a, _lockFunc):
myArgs.append(a.eval(*args))
else:
myArgs.append(a)
return funcs[self.fname](*myArgs)
else:
raise NameError("Invalid lock function: %s" % self.fname)
def unary_op(tok):
op, rhs = tok[0]
return _lockFunc((op, [rhs]))
def binary_op(tok):
lhs, op, rhs = tok[0]
return _lockFunc((op, [lhs, rhs]))
opAnd = CaselessLiteral('and') | Literal('&')
opOr = CaselessLiteral('or') | Literal('|')
opNot = CaselessLiteral('not') | Literal('!')
arg = Word(alphanums + r' #$%&*+-./:<=>?@[\]^_`{|}~')
args = Group(ZeroOrMore(delimitedList(arg)))
fname = Word(alphas, alphanums + '_')
func = fname + Suppress('(') + args + Suppress(')')
func.setParseAction(_lockFunc)
# noinspection PyUnresolvedReferences
expr = operatorPrecedence(
func,
[
(opNot, 1, opAssoc.RIGHT, unary_op),
(opOr, 2, opAssoc.LEFT, binary_op),
(opAnd, 2, opAssoc.LEFT, binary_op),
]
)
return expr
if __name__ == '__main__':
import time
test = [
'very_strong()',
'id(42)',
'not dead()',
'id(42) and not dead()',
'has_perm(use things) or is_superuser()',
'invalid_func()'
]
funcMap = {
'very_strong': lambda: True,
'id': lambda id: int(id) == 42,
'dead': lambda: False,
'has_perm': lambda p: p in ['do stuff'],
'is_superuser': lambda: True,
}
_grammar = LockParser(funcMap)
for t in test:
print t
start = time.clock()
try:
r = _grammar.parseString(t)[0]
except ParseException as e:
r = e
duration = time.clock() - start
print "parsed: ", r
print "time: ", duration * 1000
try:
v = r.eval()
except Exception as e:
v = repr(e)
print ' val = ', v, '\n'
| true |
ae1f58e7fc6b4f507ae4b3fdd10c63f23f0968ec
|
Python
|
FanciestW/AdventOfCode2020
|
/Day_11/main.py
|
UTF-8
| 3,238 | 3.234375 | 3 |
[] |
no_license
|
import os
from typing import List, Tuple
import itertools
import copy
import numpy as np
def read_file(file_name: str) -> List[List[str]]:
try:
data = list()
read_file = open(file_name, 'r')
while True:
line = read_file.readline().strip()
if not line:
break
data.append(list(line))
return data
except Exception as e:
print(str(e))
return []
def pretty_print(data: list):
for row in data:
if type(row[0]) is str:
print(''.join(row))
else:
print(row)
def part_1(data: List[List[str]]) -> int:
seating = data
did_change = True
while did_change:
seating, did_change = seat_move(seating)
return [c for row in seating for c in row].count('#')
def seat_move(data: List[List[str]]) -> Tuple[List[List[str]], bool]:
new_seat_map = copy.deepcopy(data)
did_not_change = True
for i, row in enumerate(data):
for j, c in enumerate(row):
if c not in ['L', '#']:
new_seat_map[i][j] = '.'
continue
row_i = [i + n for n in range (-1, 2) if i + n >= 0 and i + n < len(data)]
col_i = [j + n for n in range (-1, 2) if j + n >= 0 and j + n < len(row)]
coord = [(x, y) for x, y in list(itertools.product(row_i, col_i)) if not (x == i and y == j)]
neighbors_count = [data[x][y] for x, y in coord].count('#')
if neighbors_count >= 4:
new_seat_map[i][j] = 'L'
elif neighbors_count == 0 and c == 'L':
new_seat_map[i][j] = '#'
else:
new_seat_map[i][j] = c
if data[i][j] != new_seat_map[i][j]:
did_not_change &= False
return new_seat_map, not did_not_change
def seat_move_v2(data: np.ndarray) -> Tuple[np.ndarray, bool]:
new_seat_map = np.copy(data)
did_not_change = True
for x, row in enumerate(data):
for y, c in enumerate(row):
if c not in ['L', '#']:
new_seat_map[x][y] = '.'
continue
top = data[:x, y]
bottom = data[x+1:, y]
left = data[x, :y]
right = data[x, y+1:]
top_left_diag = np.diagonal(data[:x,:y], offset=1 if y % 2 == 1 else 0)
top_right_diag = np.diagonal(np.fliplr(data[:x,y+1:]), offset=1 if (len(row) - y - 1) % 2 == 1 else 0)
bottom_left_diag = np.diagonal(np.flipud(data[x+1:,:y]))
bottom_right_diag = np.diagonal(data[x+1:,y+1:])
if (x > 3 and y > 3):
print(data[:x,y+1:])
print(top_left_diag)
print(top_right_diag)
print(bottom_left_diag)
print(bottom_right_diag)
continue
def part_2(data: List[List[int]]):
seating = np.array(data)
did_change = True
while did_change:
seating, did_change = seat_move_v2(seating)
return [c for row in seating for c in row].count('#')
if __name__ == '__main__':
data = read_file(os.path.join(os.path.dirname(__file__), 'test_input.txt'))
# print(part_1(data))
# > 2270
part_2(data)
| true |
40773a05b155e7507118b5d0d55989d93227666b
|
Python
|
WEICHENGIT/Sentiment-Analysis-PRIM
|
/sentiment_discovery/model/serialize.py
|
UTF-8
| 1,047 | 2.828125 | 3 |
[] |
no_license
|
import torch
def save(model, savepath, save_dict=None, keep_vars=True):
"""save model weights and other metadata"""
if save_dict is not None:
#if save_dict is provided save that instead of model state_dict
torch.save(state_dict_cpu_copy(save_dict), savepath)
else:
torch.save(state_dict_cpu_copy(model.state_dict(keep_vars=keep_vars)), savepath)
def state_dict_cpu_copy(chkpt):
"""save cpu copy of model state, so it can be reloaded by any device"""
#if chkpt has things other than state_dict get the state_dict
if 'state_dict' in chkpt:
state_dict = chkpt['state_dict']
else:
state_dict = chkpt
for n, p in state_dict.items():
state_dict[n] = p.cpu()
return chkpt
def restore(model, load_path):
"""restore saved model and handle dictionary format and application/removal of weight norm"""
chkpt = torch.load(load_path)
#check if checkpoints has only save_dict or more information
if 'state_dict' in chkpt:
state_dict = chkpt['state_dict']
else:
state_dict = chkpt
model.load_state_dict(state_dict)
return chkpt
| true |
eb27fe649c41c39f52e7614d3ea31e8d738e330e
|
Python
|
wavefly1972/Python-learning
|
/SVM_SklearnExample.py
|
UTF-8
| 467 | 3.171875 | 3 |
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 13 09:57:15 2017
@author: 100419
"""
from sklearn import svm
x=[[2,0],[1,1],[2,3]]
y=[0,0,1] #Class label
clf=svm.SVC(kernel='linear') #分类器
clf.fit(x,y) #带入预测值
print(clf)
##get support vectors
print(clf.support_vectors_)
#a=clf.support_vectors_
#print(a)
#get indices of support vectors
print(clf.support_)
#get number of support vectors for each class
print(clf.n_support_)
| true |
f7ef29e5032183a0b62d3b6d2695f970dceeab21
|
Python
|
jayelm/nldissect-fork
|
/script/save_cub_np.py
|
UTF-8
| 1,525 | 2.921875 | 3 |
[] |
no_license
|
"""
For each class, load images and save as numpy arrays.
"""
import numpy as np
import os
from PIL import Image
from tqdm import tqdm
import multiprocessing as mp
def npify(args):
img_dir, bird_class = args
bird_imgs_np = {}
class_dir = os.path.join(img_dir, bird_class)
bird_imgs = sorted([x for x in os.listdir(class_dir) if x != "img.npz"])
for bird_img in bird_imgs:
bird_img_fname = os.path.join(class_dir, bird_img)
img = Image.open(bird_img_fname).convert("RGB")
img_np = np.asarray(img)
bird_imgs_np[os.path.join(bird_class, bird_img)] = img_np
np_fname = os.path.join(class_dir, "img.npz")
np.savez_compressed(np_fname, **bird_imgs_np)
if __name__ == "__main__":
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(
description="Save numpy", formatter_class=ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--cub_dir", default="dataset/CUB_200_2011", help="Directory to load/cache"
)
parser.add_argument(
"--workers", default=4, type=int, help="Number of multiprocessing workers"
)
args = parser.parse_args()
img_dir = os.path.join(args.cub_dir, "images")
bird_classes = os.listdir(img_dir)
mp_args = [(img_dir, bc) for bc in bird_classes]
with mp.Pool(args.workers) as pool:
with tqdm(total=len(mp_args), desc="Classes") as pbar:
for _ in pool.imap_unordered(npify, mp_args):
pbar.update()
| true |
da2d5a7182194073c902be437f049efa5e61004f
|
Python
|
calvin-and-smit/ds-interview-qs
|
/python/max_profit.py
|
UTF-8
| 933 | 4.3125 | 4 |
[] |
no_license
|
'''
Sell, sell, sell!
Suppose we are given an array of n integers which represent the value of some stock over time.
Assuming you are allowed to buy the stock exactly once and sell the stock once, what is the maximum
profit you can make? Can you write an algorithm that takes in an array of values and returns the maximum profit?
For example, if you are given the following array:
[2, 7, 1, 8, 2, 8, 14, 25, 14, 0, 4, 5]
The maximum profit you can make is 24 because you would buy the stock when its price is 1 and
sell when it's 25. Note that we cannot make 25, because the stock is priced at 0 after it is priced at 25
(e.g you can't sell before you buy).
'''
stock_values = [2, 7, 1, 8, 2, 8, 14, 25, 14, 0, 4, 5]
profit = 0
days = len(stock_values)
for i in range(0, days):
for j in range(i+1, days):
if stock_values[j] - stock_values[i] > profit:
profit = stock_values[j] - stock_values[i]
profit
| true |
97b182504612c03ba9efdb5666cee96e4e39b13a
|
Python
|
Coolbust/SidGotBots-TwitterApiTest
|
/WebScrapeExample2SCSBOA.py
|
UTF-8
| 1,470 | 2.625 | 3 |
[] |
no_license
|
import requests
import tweepy
from bs4 import BeautifulSoup
r= requests.get("https://www.scsboa.org/field-recaps/)")
c = r.content
parse = BeautifulSoup(c, "html.parser")
x = 10
i = 0
while i < x:
object = "table_55_row_" + str(i)
id = "id" + str(i)
pdfs = parse.find("tr",{"id":object})
if i == 0:
aDict = {id: pdfs}
else:
aDict.update({id : pdfs})
i=i + 1
#print(pdfs)
#print(object)
#nPfds = str(pdfs)
#print('\n')
#print(aDict)
addressString = aDict.__getitem__("id0")
nAddressString = str(addressString)
index = nAddressString.find('href')
endIndex = nAddressString.find('.pdf"')
#print(nAddressString)
#print(type(nAddressString))
startPoint = index
endPoint = endIndex
finAddressString = ''
finAddressString = (nAddressString[startPoint+6 : endPoint+4])
#print(startPoint)
#print(endPoint)
print(finAddressString)
# Code to Authenticate to Twiiter
auth = tweepy.OAuthHandler("Your Handler Key",
"Your secret Key")
auth.set_access_token("Access Token",
"Secret Access Token")
# Create API object
api = tweepy.API(auth)
# Create a tweet
try:
api.verify_credentials()
print("Auth OK")
except:
print("Error during auth")
try:
api.update_status("Test Results: " + finAddressString)
print("Update succesful")
#print("test")
#Print my followers
# print(api.followers(api.me()))
except:
print("Update fail")
| true |
8e478bad7a9f62e7a2374582a83d9af9f6532722
|
Python
|
rook88/poincare
|
/walkthroughLabels.py
|
UTF-8
| 7,057 | 2.8125 | 3 |
[] |
no_license
|
import numpy as np
import cv2
import poincare
import random
import copy
import imageio
theta = 1.5 - np.sqrt(5) * 0.5
class gonClass():
def __init__(self, p, q, r, path):
self.path = path
label = "-".join([str(d) for d in reversed(path)])
self.label = label
if label == "":
self.gon = poincare.polygon(poincare.origin, verticeCount = p, radius = r)
else:
if label in gons:
self.gon = copy.copy(gons[label]).gon
else:
gonIter = gonClass(p, q, r, path[1:])
self.gon = gonIter.gon.getMirror(int(path[0]))
self.color = colorFromZ(self.gon.center.z, self.path)
if path:
d = path[0]
else:
d = 1
self.direction = np.imag(np.log(self.gon.center.z ** p))
# self.direction = np.imag(np.log(self.gon.center.z - np.exp(1j ** d) * 0.001))
# self.direction = np.imag(np.log(self.gon.center.z ** p * np.exp(np.pi * theta * 1j)))
def __str__(self):
ret = "Gon, label = {}, polygon = {}, direction = {}".format(self.label, self.gon, self.direction)
return ret
def getGon(p, q, r, label):
if label == []:
return poincare.polygon(poincare.origin, verticeCount = p, radius = r)
else:
iter = getGon(p, q, r, label[1:])
return iter.getMirror(int(label[0]))
def colorFromLabel(label):
hue = int(len(label) * theta * 180) % 180
return (hue, 255, 255)
def colorFromPath2(path):
hue = 0.0
delta = 1.0 / (p + 1)
for direction in path:
hue += direction * delta * 180
delta *= theta
hue = int(hue) % 180
return (hue, 255, 255)
def colorFromPath3(z, path, weightRaw):
weight = np.sqrt(weightRaw)
(hue1, saturation1, value1) = colorFromZ(z, path)
value2 = 128
saturation = int(weight * saturation1)
value = int(weight * value1 + (1 - weight) * value2)
hue = hue1
return (hue, saturation, value)
def colorFromPath2(z, path, weightRaw):
weight = np.sqrt(weightRaw)
(hue1, saturation1, value1) = colorFromZ(z, path)
value2 = 1 + ((len(path) + 1) % 2) * 254
saturation = int(weight * saturation1)
value = int(weight * value1 + (1 - weight) * value2)
hue = hue1
return (hue, saturation, value)
def colorFromPath(path):
hue = 0.0
delta = 1.0 / p
for direction in list(reversed(path)):
hue += (direction - 2) * delta * 180
delta /= p
hue = int(hue) % 180
if path:
value = int(255 * (3.0 / (2.0 + len(path))))
saturation = 255
else:
value = 255
saturation = 0
return (hue, saturation, value)
def colorFromZ(z, path):
hue = int(np.imag(np.log(z)) / np.pi * 90) % 180
# print z, hue
if path:
# value = int(255 * (3.0 / (2.0 + len(path))))
value = 255
saturation = 255
else:
value = 255
saturation = 0
return (hue, saturation, value)
centers = []
def isNewGon(gNew):
if abs(gNew.gon.center.z) > 0.9999:
return False
for label in gons:
if label <> gNew.label:
gOld = gons[label]
if abs(gNew.gon.center.z - gOld.gon.center.z) < 0.001:
return False
return True
def iterLabels(n):
generation = [gons[l] for l in gons if len(gons[l].path) == n]
generation.sort(key = lambda x: x.direction)
for zerolabel in zerolabels:
for gOld in generation:
if gOld.path:
nextLabelItem = (zerolabel + gOld.path[-1] - 1) % p + 1
# nextLabelItem = zerolabel
else:
nextLabelItem = zerolabel
newPath = gOld.path + [nextLabelItem]
temp = gonClass(p, q, gonRadius, newPath)
if isNewGon(temp):
gons[temp.label] = temp
def showImg(pImg, f = 1.0):
img = getImg(pImg, f = f)
cv2.imshow('myImg', img)
cv2.imwrite("lastPolygon.jpg", img)
cv2.waitKey(0)
def getImg(pImg, color = "rgb", f = 1.0):
multiplier = pImg.multiplier
img = pImg.getImg(multiplier = multiplier)
if color == "rgb":
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
if color == "bgr":
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
img[np.where((img == [0,0,0]).all(axis = 2))] = [255,255,255]
img = cv2.blur(img, (4, 4))
img = cv2.resize(img, dsize = (800, 800))
return img
def iterImg(multiplier = 1.0, reverse = False, radiusFactor = 1.0):
radius = int(900 * radiusFactor)
pImg = poincare.poincareImg(radius = radius, pointRadius = 5, size = [2000, 2000], backgroundIsWhite = True)
pImg.multiplier = multiplier
if reverse:
tempTable = reversed(gonsTable)
else:
tempTable = gonsTable
for gon in tempTable:
gonNew = getGon(p, q, gonRadius / multiplier, gon.path)
if multiplier < 1:
w = 1.0
else:
w = 1.0 / multiplier / multiplier
color = colorFromPath3(gon.gon.center.z, gon.path, w)
# print gon, gonNew, gon.color, color
pImg.drawPolygon(gonNew, color = color, offset = multiplier)
return pImg
p = poincare.p
q = poincare.q
zerolabels = [i + 1 for i in range(p)]
t1 = 1 - np.tan(np.pi / p) * np.tan(np.pi / q)
t2 = 1 + np.tan(np.pi / p) * np.tan(np.pi / q)
gonRadius = np.sqrt(t1 / t2)
gonFundamental = poincare.polygon(poincare.origin, verticeCount = 5, radius = gonRadius)
gons = {}
gons[""] = gonClass(p, q, gonRadius, [])
depth = poincare.depth
for i in range(depth):
iterLabels(i)
print [label for label in gons]
gonsTable = [gons[l] for l in gons]
gonsTable.sort(key = lambda x: x.direction)
print [g.label for g in gonsTable]
ims = []
ims2 = []
frameCount = poincare.frameCount
zoomFactor = poincare.zoom
mpInit = 10.0 ** (1.0 / frameCount)
ts = np.linspace(0.0, 1.0, frameCount)
tsRaw = [(1.0 + n) / frameCount for n in range(frameCount)]
ts = [t - t * np.exp(-t * 8) for t in tsRaw]
print zip(ts, tsRaw)
#exit(0)
if poincare.multiplier:
mps = [poincare.multiplier]
zooms = [poincare.zoom]
else:
mps = [(1.0 / t) ** 0.6 for t in ts]
zooms = [zoomFactor + (1 - zoomFactor) * t for t in ts]
print mps
print zooms
#exit(0)
frameN = 0
for mp, zoom in zip(mps, zooms):
frameN += 1
print "frame {}".format(frameN)
pImg = iterImg(mp, reverse = False, radiusFactor = zoom)
pImg2 = iterImg(mp, reverse = True, radiusFactor = zoom)
if poincare.testMode:
# showImg(pImg, f = zoomFactor)
showImg(pImg)
showImg(pImg2)
if poincare.outputFile:
# ims.append(getImg(pImg, color = "bgr"), f = zoomFactor)
ims.append(getImg(pImg, color = "bgr"))
ims2.append(getImg(pImg2, color = "bgr"))
if poincare.outputFile:
ims += list(reversed(ims2))
if 'mp4' in poincare.outputFile:
imageio.mimwrite(uri = poincare.outputFile, ims = ims, macro_block_size = None, fps = 24)
else:
imageio.mimwrite(uri = poincare.outputFile, ims = ims, fps = 24)
| true |
e9d20098c201eda09bf8530a9d486075e22dbb9e
|
Python
|
gadhiar/SmartMirror
|
/bin/hand_recognition.py
|
UTF-8
| 7,068 | 3.40625 | 3 |
[] |
no_license
|
from tkinter import *
from math import sqrt
import cv2
import time
from threading import *
from datetime import datetime
# ML Classifier to define hands
hand_cascade = cv2.CascadeClassifier('insert path of Gest.xml here')
# set array if tuples that hold x and y values of the location of the hand and time
posx = []
posy = []
time_array = []
# rate at which to check if gesture is done
refresh = 0
# how long btwn gestures determines if we're done swiping (ms)
sleep = 1500 # 1.5 seconds
# create variables to track which screen is currently open and which we are going to open
prev_locationX = None
prev_locationY = None
screenX = 0
screenY = 0
# instantiate the roots of all windows for access to open later
main_root = None
right_root = None
left_root = None
top_root = None
bot_root = None
class perpetualTimer():
def __init__(self, t, hFunction):
self.t = t
self.hFunction = hFunction
self.thread = Timer(self.t, self.handle_function)
def handle_function(self):
self.hFunction()
self.thread = Timer(self.t, self.handle_function)
self.thread.start()
def start(self):
self.thread.start()
def cancel(self):
self.thread.cancel()
# returns the elapsed milliseconds
def millis(past_time):
dt = datetime.now() - past_time
ms = (dt.days * 24 * 60 * 60 + dt.seconds) * 1000 + dt.microseconds / 1000.0
return ms
def increment_rate():
global refresh
if refresh >= 3:
refresh = 0
refresh += 1
print(refresh)
def standard_deviation(lst):
"""Calculates the standard deviation for a list of numbers."""
num_items = len(lst)
mean = sum(lst) / num_items
differences = [x - mean for x in lst]
sq_differences = [d ** 2 for d in differences]
ssd = sum(sq_differences)
variance = ssd / num_items
return sqrt(variance)
def check_gesture(x, y, array_time, sleep1, refresh_rate):
""" runs periodically, at time refresh_rate, to check the position arrays to see if a gesture was performed. """
# refresh is the rate at which we want to check it
# sleep - time between gestures to determine if we stopped
global main_root
global prev_locationX
global prev_locationY
global screenX
global screenY
rate = refresh_rate
locx = x
locy = y
time_array1 = array_time
length = len(time_array1)
sd_x = standard_deviation(x)
sd_y = standard_deviation(y)
rangex = locx[length - 1] - locx[0]
rangey = locy[length - 1] - locy[0]
prev_locationX = screenX
prev_locationY = screenY
"""
STORE THE OLD VALUES OF X/Y AND CHECK FOR CHANGE, IF CHANGE THEN CREATE APPROPRIATE SCREEN
"""
# every 2 seconds, check the arrays
if rate == 2:
last_time = time_array1[length - 1]
elapsed_time = millis(last_time)
# if the time between the last gesture movement is too great, analyze the gesture b/c gesture is done
if elapsed_time >= sleep1:
# check if the y standard deviation is large, if not, it's horizontal movement
if sd_y <= 80 <= sd_x:
if rangex > 0:
print("you're swiping right")
if screenX < 1:
screenX += 1
else:
print("you're swiping left")
if screenY > -1:
screenX -= 1
else:
if rangey > 0:
print("you're swiping up")
if screenY < 1:
screenY += 1
else:
print("you're swiping down")
if screenY > -1:
screenY -= 1
# changing to main FROM right
if screenX == 0 and screenY == 0 and prev_locationX == 1 and prev_locationY == 0:
main_root.deiconify()
right_root.withdraw()
# changing to main FROM left
if screenX == 0 and screenY == 0 and prev_locationX == -1 and prev_locationY == 0:
main_root.deiconify()
left_root.withdraw()
# changing to main FROM top
if screenX == 0 and screenY == 0 and prev_locationX == 0 and prev_locationY == 1:
main_root.deiconify()
top_root.withdraw()
# changing to main FROM bottom
if screenX == 0 and screenY == 0 and prev_locationX == 0 and prev_locationY == -1:
main_root.deiconify()
bot_root.withdraw()
# switching to right
if screenX == 1 and screenY == 0:
main_root.withdraw()
right_root.deiconify()
# switching to left
if screenX == -1 and screenY == 0:
main_root.withdraw()
left_root.deiconify()
# switching to top
if screenX == 0 and screenY == 1:
main_root.withdraw()
top_root.deiconify()
# switching to bot
if screenX == 0 and screenY == -1:
main_root.withdraw()
bot_root.deiconify()
posx.clear()
posy.clear()
time_array.clear()
def motion():
global main_root
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hands = hand_cascade.detectMultiScale(gray, 1.3, 5)
# track right hand by using original image
for (x, y, w, h) in hands:
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
centerx = x + int(w / 2)
centery = y + int(h / 2)
current_millis = datetime.now()
cv2.circle(img, (centerx, centery), int(h / 2), (0, 255, 0), 2)
cv2.circle(img, (centerx, centery), 5, (0, 255, 0), -1)
posx.append(centerx)
posy.append(centery)
time_array.append(current_millis)
# Check if arrays have values otherwise, things stop working
if len(posx) != 0:
check_gesture(posx, posy, time_array, sleep, refresh_rate=refresh)
cv2.imshow('img', img)
# press escape to stop tracking and end program
k = cv2.waitKey(30) & 0xff
if k == 27:
cap.release()
cv2.destroyAllWindows()
break
time.sleep(50 / 1000.0)
def start(ms, rs, ls, ts, bs):
global main_root
global right_root
global left_root
global top_root
global bot_root
right_root = rs.top
main_root = ms.root
left_root = ls.top
top_root = ts.top
bot_root = bs.top
thread1 = Thread(target=motion)
thread1.start()
t = perpetualTimer(1, increment_rate)
t.start()
| true |
f9dd8b218ee6d2810c99a2f5051ce117e10b1ca7
|
Python
|
forgi86/gym-control
|
/examples/example_experiment_design.py
|
UTF-8
| 2,356 | 2.625 | 3 |
[] |
no_license
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 14 10:06:01 2019
@author: marco
"""
import gym
import gym_control # contains the first order system environment
import matplotlib.pyplot as plt
import numpy as np
OBS = []
REW = []
ACT = []
I = []
if __name__ == '__main__':
env_arx = gym.make("ExperimentDesign-v0", leaky='NO')
env = env_arx
total_reward = 0.0
total_steps = 0
obs_0 = env.reset() # s0
reward_0 = 0.0
OBS.append(obs_0) # s0
REW.append(reward_0) #
I.append(env.I)
while True:
#action = env.action_space.sample()
action = 2.0 * np.random.rand(1) - 1
#action = np.array([1.0]) #
obs, reward, done, _ = env.step(action)
ACT.append(action) # Ai
OBS.append(obs) # Si+1
REW.append(reward) # Ri+1
I.append(env.I)
total_reward += reward
total_steps += 1
if done:
break
ACT.append(np.nan)
G = np.cumsum(REW, axis=0)
# In[1]
OBS = np.vstack(OBS)
REW = np.vstack(REW)
ACT = np.vstack(ACT)
I = np.stack(I)
#I = np.vstack(I)
t = np.arange(0, len(OBS))
fig, ax = plt.subplots(4, 1)
ax[0].plot(t, OBS[:, 0])
ax[0].set_xlabel("Time index (-)")
ax[0].set_ylabel("State (-)")
ax[0].grid(True)
ax[1].plot(t, ACT)
ax[1].set_xlabel("Time index (-)")
ax[1].set_ylabel("Action (-)")
ax[1].grid(True)
ax[2].plot(t, REW)
ax[2].set_xlabel("Time index (-)")
ax[2].set_ylabel("Reward (-)")
ax[2].grid(True)
ax[3].plot(t, G)
ax[3].set_xlabel("Time index (-)")
ax[3].set_ylabel("Return (-)")
ax[3].grid(True)
OBS = np.vstack(OBS)
REW = np.vstack(REW)
ACT = np.vstack(ACT)
I = np.stack(I)
#I = np.vstack(I)
t = np.arange(0, len(OBS))
fig, ax = plt.subplots(4, 1)
ax[0].plot(t, I[:, 0, 0])
ax[0].set_xlabel("Time index (-)")
ax[0].set_ylabel("$I_{11}$")
ax[0].grid(True)
ax[1].plot(t, I[:, 0, 1])
ax[1].set_xlabel("Time index (-)")
ax[1].set_ylabel("$I_{12}$")
ax[1].grid(True)
ax[2].plot(t, I[:, 1, 0])
ax[2].set_xlabel("Time index (-)")
ax[2].set_ylabel("$I_{21}$")
ax[2].grid(True)
ax[3].plot(t, I[:, 1,1])
ax[3].set_xlabel("Time index (-)")
ax[3].set_ylabel("$I_{22}$")
ax[3].grid(True)
| true |
38966986f2cb04c1e287c0d38ddb635ed933d5e7
|
Python
|
AndrewSLowe/DS-Unit-3-Sprint-2-SQL-and-Databases
|
/module1-introduction-to-sql/buddymove.py
|
UTF-8
| 793 | 3.03125 | 3 |
[
"MIT"
] |
permissive
|
import pandas as pd
import sqlite3
import os
# remove the sqlite3 file if it already exists
os.system("rm buddymove_holidayiq.sqlite3")
# Create dataframe from csv. Open connection to sqlite3, save output sqlite3
infile = "buddymove_holidayiq.csv"
df = pd.read_csv(infile)
conn = sqlite3.connect("buddymove_holidayiq.sqlite3")
df.to_sql("buddymove_holidayiq.sqlite3", con=conn, index=False)
# perform and display SQL quereies
curs = conn.cursor()
print("\nNumber of rows:")
query = "select count(*) from 'buddymove_holidayiq.sqlite3'";
print(curs.execute(query).fetchall()[0])
print("\nNumber of people who viewed > 100 Nature and Shopping:")
query = 'SELECT COUNT(*) FROM "buddymove_holidayiq.sqlite3" WHERE Nature > 100 and Shopping >100;'
print(curs.execute(query).fetchall()[0][0])
| true |
df65f0f1c7fb8a98be9326e5c876b444b7d143fb
|
Python
|
listenzcc/learning_tensorflow
|
/Regression_solution_example.py
|
UTF-8
| 2,591 | 3.453125 | 3 |
[] |
no_license
|
# %%
import tensorflow as tf
import numpy as np
# %%
# Ground truth session
# Parameters, ground-truth of W and b
W_true = np.array([1, 2, 3, 4, 5, 6]).reshape(3, 2).astype(np.float32)
b_true = np.array([7, 8, 9]).reshape(3, 1).astype(np.float32)
# y = W * x + b
def linear_forward(x, W=None, b=None, forward=False, W_true=W_true, b_true=b_true):
# Fast forward for ground-truth
if forward:
return tf.matmul(tf.Variable(W_true), x) + tf.Variable(b_true)
# Compute regression with input x and current W and b
return tf.matmul(W, x) + b
# Datas
NUM_EXAMPLES = 2000
x_data = np.random.normal(size=(2, NUM_EXAMPLES)).astype(np.float32)
# Random fetch method
def random_fetch(x_data=x_data, batchsize=10):
# Shuffle on column dimension
np.random.shuffle(np.transpose(x_data))
# Cut data with batchsize
x = x_data[:, :batchsize]
# Generate noise
noise = np.random.normal(size=(3, batchsize)).astype(np.float32)
# Return x and y
return x, linear_forward(x, forward=True) + noise
# %%
random_fetch()
# %%
# Module building session
# LinearModule building
class LinearModel(tf.keras.Model):
# Cross init
def __init__(self):
super(LinearModel, self).__init__()
# Variables that are trainable
self.W = tf.Variable(tf.random.uniform((3, 2)), name='weight')
self.b = tf.Variable(tf.random.uniform((3, 1)), name='bias')
# 'call method' of LinearModel
def call(self, inputs):
return linear_forward(inputs, self.W, self.b)
# Computation of loss function to be optimized
def loss(model, inputs, targets):
error = model(inputs) - targets
return tf.reduce_mean(tf.square(error))
# Computation of gradient
def grad(model, inputs, targets):
with tf.GradientTape() as tape:
loss_value = loss(model, inputs, targets)
# Return current loss_value and gradient
return loss_value, tape.gradient(loss_value, [model.W, model.b])
# %%
# Training session
# Init LinearModuel as model
model = LinearModel()
# Init optimizer
optimizer = tf.optimizers.Adam(0.1)
# optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
# Training 1000 times
for i in range(1000):
# Random fetch x and y
x, y = random_fetch(batchsize=100)
# Compute loss_value and grads
loss_value, grads = grad(model, x, y)
# Apply gradients
optimizer.apply_gradients(zip(grads, [model.W, model.b]))
# Print loss each 100 steps
if i % 100 == 0:
print("Loss at step {:03d}: {:.3f}".format(i, loss_value))
# Print trained W and b
print(model.W, model.b)
# %%
| true |
16eef158495c1e6f86016f5703c00f504010be3d
|
Python
|
jakeelwes/mjpeg-wishes
|
/mjpegviewer.py
|
UTF-8
| 4,165 | 2.578125 | 3 |
[] |
no_license
|
import time
import sys
import os
import httplib
import base64
import StringIO
import Image
import pygame
from pygame.locals import *
import getopt
class mjpegviewer:
path = 'stream/'
filename = 'snap'
extension = 'jpg'
number = 0
request = '/axis-cgi/mjpg/video.cgi'
nowindow = False
def __init__(self, ip, username='admin', password='admin', request = '/axis-cgi/mjpg/video.cgi', path=0, nowindow=False):
self.ip = ip
self.username = username
self.password = password
self.base64string = base64.encodestring('%s:%s' % (username, password))[:-1]
self.number = 0
self.path = path
self.request = request
self.nowindow = nowindow
if not os.path.exists(self.path):
os.makedirs(self.path)
def connect(self):
h = httplib.HTTP(self.ip)
h.putrequest('GET',self.request)
h.putheader('Authorization', 'Basic %s' % self.base64string)
h.endheaders()
errcode, errmsg, headers = h.getreply()
self.file = h.getfile()
def update(self, window, size, offset):
data = self.file.readline()
if data[0:15] == 'Content-Length:':
count = int(data[16:])
s = self.file.read(count)
while s[0] != chr(0xff):
s = s[1:]
if self.path != 0:
p = StringIO.StringIO(s)
im = Image.open(p)
try:
im.load()
except KeyboardInterrupt:
self.close()
except Exception, x:
pass
fullpath = self.path + self.filename + ("%04d" % self.number) + '.' + self.extension
im.save(fullpath)
self.number += 1
if not self.nowindow:
try:
p = StringIO.StringIO(s)
campanel = pygame.image.load(p).convert()
#pygame.image.save(campanel,fullpath)
campanel = pygame.transform.scale(campanel, size)
window.blit(campanel, offset)
except KeyboardInterrupt:
self.close()
except Exception, x:
print x
p.close()
def close(self):
sys.exit()
def main(argv):
nowindow = False
host = '216.123.238.207'
path = 'stream/'
request = '/axis-cgi/mjpg/video.cgi'
screen = ''
try:
opts, args = getopt.getopt(argv,"hni:p:r:",["nowindow", "ip=", "path=", "request="])
except getopt.GetoptError:
print 'mjpegviewer.py -h to get help'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'run "mjpegviewer.py --nowindow" for a x-less run'
print 'run "mjpegviewer.py --ip 127.0.0.1" to specify your camera\'s IP'
print 'run "mjpegviewer.py --path myfolder" to specify a path to save images to'
print 'run "mjpegviewer.py --ip 127.0.0.1 --request /axis-cgi/mjpg/video.cgi" to specify a custom request'
sys.exit()
elif opt in ("-n", "--nowindow"):
nowindow = True
elif opt in ("-i", "--ip"):
host = arg
elif opt in ("-p", "--path"):
path = arg + '/'
elif opt in ("-r", "--request"):
request = arg
pygame.init()
if not nowindow:
screen = pygame.display.set_mode((660,500), 0, 32)
pygame.display.set_caption('mjpegviewer.py')
background = pygame.Surface((660,500))
background.fill(pygame.Color('#E8E8E8'))
screen.blit(background, (0,0))
camera = mjpegviewer(host, '', '', request, path, nowindow)
camera.connect()
while True:
try:
camera.update(screen, (640,480), (10,10))
pygame.display.update()
for event in pygame.event.get():
if event.type == QUIT:
sys.exit(0)
time.sleep(.01)
except KeyboardInterrupt:
camera.close()
if __name__ == '__main__':
main(sys.argv[1:])
| true |
822c05509a4ca0f196f906527998e84c053b976e
|
Python
|
groove-x/pura
|
/tests/test_keyboard_key.py
|
UTF-8
| 352 | 2.609375 | 3 |
[
"MIT"
] |
permissive
|
from pura import KeyboardKey
def test_key():
a = KeyboardKey('a')
a2 = KeyboardKey('a')
a_alt = KeyboardKey('a', alt_modifier=True)
b = KeyboardKey('b')
assert a == a2
assert a == 'a'
assert not a != 'a' # pylint: disable=unneeded-not
assert str(a) == 'a'
assert a != a_alt
assert a < b
assert a < 'b'
| true |
895b831cf08ecdca6eb3936b7cf975d3b5dc7641
|
Python
|
sangnv3007/tailieuhoctapTLU
|
/Năm 2/Lập trình khoa học dữ liệu/Python/TH/TH buoi 2/VD2.py
|
UTF-8
| 414 | 3.5 | 4 |
[] |
no_license
|
a=int(input("Nhap a:"))
b=int(input("Nhap b:"))
temp1 = a;
temp2 = b;
while (temp1 != temp2):
if (temp1 > temp2):
temp1 -= temp2;
else:
temp2 -= temp1;
uscln = temp1;
bscnn =(a*b)/uscln;
#tính USCLN của a và b
print("Ước số chung lớn nhất của", a, "và", b, "là:", uscln);
#tính BSCNN của a và b
print("Bội số chung nhỏ nhất của", a, "và", b, "là:", bscnn);
| true |
89a0f8c57303ac2d965f68678b1638e622a17013
|
Python
|
oliveross/MachineLearning
|
/DeepLearning/SingleLayerNetwork.py
|
UTF-8
| 2,600 | 3.953125 | 4 |
[] |
no_license
|
from numpy import exp, array, random, dot
class NeuralNetwork():
def __init__(self):
# seed the random number generator, so it generates the same numbers
# every time the program is ran
random.seed(1)
# we model a single neuron, with 3 input connections and 1 output connection
# we assign random weights to a 3x1 matrix, with values in the range -1 to 1
# and a mean of 0
self.synaptic_weights = 2 * random.random((3, 1)) - 1
# the signmoid function, which describes an s shaped curve
# we pass the weighted sum of the inputs through this function
# to normalize them between 0 and 1
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
# gradient of sigmoid curve
def __sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
# pass the training set through our neural net
output = self.predict(training_set_inputs)
# calculate the error
error = training_set_outputs - output
# multiply the error by the input and again by the gradient of the
# sigmoid curve
adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
# adjust the weights
self.synaptic_weights += adjustment
def predict(self, inputs):
# pass inputs through our neural network (our single neuron)
print('i: ', inputs.shape, inputs)
print('s: ', self.synaptic_weights.shape, self.synaptic_weights)
dot_result = dot(inputs, self.synaptic_weights)
return self.__sigmoid(dot_result)
# if __name__ = '__main__':
# initialize a single neuron neural network
neural_network = NeuralNetwork()
print('Random starting synaptic weights:')
print(neural_network.synaptic_weights)
# the training set. We have 4 examples, each consisting of 3 input values
# and 1 output value
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
# train the neural network using a training set.
# Do it 10000 times and make small adjustments each time
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print('New synaptic weights after training: ')
print(neural_network.synaptic_weights)
# test the neural network with a new situation
print('Considering new sitatuion [1, 0, 0] -> ?: ')
print(neural_network.predict(array([1, 0, 0])))
| true |
8de5fa60b343ff799a8ad9478c10a71ddc9b2e04
|
Python
|
bjkim777/project
|
/euler/problem20.py
|
UTF-8
| 122 | 3.765625 | 4 |
[] |
no_license
|
sum=1
for a in range(1,100):
sum*=a
sum2=0
for index in range(len(str(sum))):
sum2+=int(str(sum)[index])
print(sum2)
| true |
8065e5e7c46c866312927b047c6da08e012cd6ac
|
Python
|
Jedi18/ScanPartitionPython
|
/compareVaryingChunk.py
|
UTF-8
| 3,880 | 2.609375 | 3 |
[] |
no_license
|
import csv
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from os import listdir
import os
def readCsv():
labelToCol = {
'seq' : 'red',
'par' : 'green',
'old' : 'blue'
}
chunkFolders = ['int_default_chunk_size', 'int_chunk_size_by_24', 'int_chunk_size_by_48', 'int_chunk_size_by_96']
chunkColorsPar = {
'int_default_chunk_size' : "#FFB300",
'int_chunk_size_by_24' : "#803E75",
'int_chunk_size_by_48' : "#FF6800",
'int_chunk_size_by_96' : "#A6BDD7"
}
chunkColorsOld = {
'int_default_chunk_size' : "#CEA262",
'int_chunk_size_by_24' : "#817066",
'int_chunk_size_by_48' : "#007D34",
'int_chunk_size_by_96' : "#F6768E"
}
scan_files = listdir('C:\\Users\\targe\\Pictures\\scan_benchmarks\\24cores\\int_default_chunk_size\\csv_files')
output_folder = 'C:\\Users\\targe\\Pictures\\scan_benchmarks\\varying_chunk_size\\24cores'
for scan_file in scan_files:
fig, ax = plt.subplots()
for folder_name in chunkFolders:
inputSizes = []
seqTime = []
parTime = []
oldTime = []
parRelative = []
oldRelative = []
with open('C:\\Users\\targe\\Pictures\\scan_benchmarks\\24cores\\' + folder_name + '\\csv_files\\' + scan_file) as csvfile:
valueReader = csv.reader(csvfile)
first = True
c = 5
for row in valueReader:
N = float(row[0])
seq = float(row[1])
par = float(row[2])
old = float(row[3])
inputSizes.append(c)
c += 1
seqTime.append(seq)
parTime.append(par)
oldTime.append(old)
parRelative.append(seq/par)
oldRelative.append(seq/old)
ax.set_xticks(range(5, 32, 1))
ax.plot(inputSizes, parRelative, color=chunkColorsPar[folder_name])
ax.plot(inputSizes, oldRelative, color=chunkColorsOld[folder_name])
ax.plot([5, 30], [1, 1], color=labelToCol['seq'])
ax.set_xlabel('i where the input size is 2^i')
ax.set_ylabel('Relative speedup to sequential')
handles = []
handles.append(mpatches.Patch(color=labelToCol['seq'], label="seq"))
handles.append(mpatches.Patch(color=chunkColorsPar['int_default_chunk_size'], label="par - default"))
handles.append(mpatches.Patch(color=chunkColorsPar['int_chunk_size_by_24'], label="par - chunk size by 24"))
handles.append(mpatches.Patch(color=chunkColorsPar['int_chunk_size_by_48'], label="par - chunk size by 48"))
handles.append(mpatches.Patch(color=chunkColorsPar['int_chunk_size_by_96'], label="par - chunk size by 96"))
handles.append(mpatches.Patch(color=chunkColorsOld['int_default_chunk_size'], label="old - default"))
handles.append(mpatches.Patch(color=chunkColorsOld['int_chunk_size_by_24'], label="old - chunk size by 24"))
handles.append(mpatches.Patch(color=chunkColorsOld['int_chunk_size_by_48'], label="old - chunk size by 48"))
handles.append(mpatches.Patch(color=chunkColorsOld['int_chunk_size_by_96'], label="old - chunk size by 96"))
handles.append(mpatches.Patch(color='white', label=""))
handles.append(mpatches.Patch(color='white', label="L1 Cache - 32 KiB"))
handles.append(mpatches.Patch(color='white', label="L2 Cache - 512 KiB"))
handles.append(mpatches.Patch(color='white', label="L3 Cache - 16 MiB"))
plt.legend(loc="upper left", handles=handles)
plt.savefig(output_folder + '\\' + os.path.splitext(scan_file)[0] + '.png')
if __name__ == "__main__":
readCsv()
| true |
716ef3d9d4f7b00d31c25bf1b2ca39fb9c6e1bf8
|
Python
|
kezhengzhu/buildcg
|
/functions.py
|
UTF-8
| 14,039 | 2.84375 | 3 |
[] |
no_license
|
#!/usr/bin/env python
import re
import os
import copy
import math
import numpy as np
def checkerr(cond, message):
if not (cond):
raise Exception(message)
return
def atype_calc(sig, epsi, lr, la):
'''
Takes in sigma (nm), epsilon (kJ/mol), lr, la
returns C, A or V(c6), W(c12)
'''
c_mie = lr/(lr-la) * pow(lr/la, la/(lr-la))
A = c_mie * epsi * pow(sig,lr) # repulsion coefficient
C = c_mie * epsi * pow(sig,la)
return (C,A)
def get_atomtype(name, atnum, mass, charge, ptype, C, A):
'''
Write a single line of atom type in ffnonbonded
by default: ptype should be 'A'
'''
strcheck = [isinstance(s, str) for s in [name, atnum, ptype]]
floatcheck = [isinstance(f, float) for f in [mass, charge, C, A]]
checkerr(all(strcheck), "Name, at. num or ptype not of type str")
checkerr(all(floatcheck), "Mass, charge, C or A not of type float")
return " {:<6}{:<11}{:<11.3f}{:<9.3f}{:<11}{:<13.5e}{:<11.5e}\n".format(name, atnum, mass, charge, ptype, C, A)
def get_atomnbp(name1, name2, C, A):
'''
Write the cross interaction between two different atom type in ffnonbonded
'''
strcheck = [isinstance(s, str) for s in [name1, name2]]
floatcheck = [isinstance(f, float) for f in [C, A]]
checkerr(all(strcheck), "Names not of type str")
checkerr(all(floatcheck), "C or A not of type float")
return " {:<5}{:<6}{:<6}{:<15.5e}{:<15.5e}\n".format(name1,name2,"1",C,A)
def write_atomtype(template, atypes, nbp=None):
'''
Takes in template, search for $ATOM_TYPES and write in given str
'''
checkerr(isinstance(atypes, str), "Input atom_types info not of type str")
f = open(template, 'r')
content = f.read()
f.close()
ffnb = re.sub("[$]ATOM_TYPES", atypes, content)
if nbp is None:
ffnb = re.sub("[$]NBP_START[\s\S]+[$]NBP_STOP", "", ffnb)
else:
checkerr(isinstance(nbp, str), "Non-bonded params should be given in type str for input")
ffnb = re.sub("[$]NBP_START", "", ffnb)
ffnb = re.sub("[$]NBP_STOP", "", ffnb)
ffnb = re.sub("[$]NONBOND_PARAMS", nbp, ffnb)
return ffnb
def write_molecule(template, molecule_name, molecule_type, atoms, bonds=None):
'''
Takes in template, search for $MOLECULE_NAME, $MOLECULE_TYPE, $ATOMS and $BONDS
And writes in the relevant info
'''
strcheck = [isinstance(s, str) for s in [molecule_name, molecule_type, atoms]]
checkerr(all(strcheck), "Input information not all of type str")
f = open(template, "r")
content = f.read()
f.close()
molfile = re.sub("[$]MOLECULE_NAME", molecule_name, content)
molfile = re.sub("[$]MOLECULE_TYPE", molecule_type, molfile)
molfile = re.sub("[$]ATOMS", atoms, molfile)
if bonds is None:
molfile = re.sub("[$]BONDS_START[\s\S]+[$]BONDS_STOP", "", molfile)
else:
checkerr(isinstance(bonds, str), "Bonds should be of type str for input")
molfile = re.sub("[$]BONDS_START", "", molfile)
molfile = re.sub("[$]BONDS_STOP", "", molfile)
molfile = re.sub("[$]BONDS", bonds, molfile)
return molfile
def get_rings(edges, curr=None, found=None):
'''
Identifying the rings in the molecule. Make sure that the rings are created in order
and triple connected rings doesn't work as of now.
'''
# initializing for zeroth layer
if found is None: found = []
if curr is None: curr = [0]
# print("{:40s}\n{:10s} -- {:20s}".format(repr(edges),repr(curr),repr(found)))
# Get current node
current = curr[-1]
# Check if ring is formed by tracking if this node has been visited
if current in curr[:-1]:
# remove traversed nodes and the ring, flip the ring, and return
id = curr.index(current)
f = curr[id:]
addback = []
for n in f[:-1]:
if len(edges[n]) > 0:
addback.append(n)
curr[id:] = addback
found.append(tuple(f))
return found
while len(edges[current])>0:
# next in line is smallest in the current set that is left
L = edges[current]
next = min(L)
# remove traversed
L.remove(next)
edges[next].remove(current)
# successful ring would have removed current
if len(curr) == 0 or curr[-1] != current: curr.append(current)
curr.append(next)
old = len(found)
found = get_rings(edges, curr, found)
if len(found) == old:
curr.pop(-1)
return found
def protate(x, n, a):
# vector, normal of plane, angle to rotate by
checkerr(isinstance(x, np.ndarray) and isinstance(n, np.ndarray), "Use numpy array for vectors")
result = math.cos(a) * x + math.sin(a) * np.cross(n,x)
return result
def norm_scale(x, m=1):
# m is magnitude, reduce vector into unit vector then scale by magnitude
checkerr(isinstance(x, np.ndarray), "Use numpy array for vectors")
result = x / np.linalg.norm(x)
if isinstance(m, (int,float)):
result = result * m
elif isinstance(m, np.ndarray):
result = result * np.linalg.norm(m)
else:
raise Exception("Use numpy array or int/float for magnitude")
return result
def make_zeroes(x):
result = x * 1. # make duplicate
result[np.abs(result) < 1e-5] = 0.
return result
def get_bond_position(total_bonds, connected_pos):
checkerr(isinstance(total_bonds, int), "No. of bonds specified not int")
checkerr(total_bonds > 1 and total_bonds <= 4, "Total bonds should be between 2 to 4 to use this function")
checkerr(isinstance(connected_pos, (list,tuple,np.ndarray)), "Connected positions should be an iterable")
n_connected = len(connected_pos)
checkerr(n_connected < total_bonds and n_connected > 0, "No. of connected bonds should be less than total bonds and more than 1")
result = []
if n_connected == 3:
u1 = norm_scale(np.cross(connected_pos[0], connected_pos[1]))
result = [u1]
elif n_connected == 2:
uimean_vec = norm_scale(-np.mean(connected_pos, axis=0))
if total_bonds - n_connected == 1:
result = [uimean_vec]
else: # case total-connected == 2
angle = math.acos(-1/3) # 109.47
pn1 = norm_scale(np.cross(*connected_pos)) # normal vector to connected plane, which is on rotating plane
pn2 = np.cross(uimean_vec, pn1) # rotating plane
c1 = protate(uimean_vec, pn2, angle/2)
c2 = protate(uimean_vec, pn2, -angle/2)
result = [c1, c2]
elif n_connected == 1:
adding = total_bonds - n_connected
if adding == 1:
uimean_vec = norm_scale(-connected_pos[0])
result = [uimean_vec]
else:
a = connected_pos[0]
seed = np.array([1.,0,0])
if np.linalg.norm(np.cross(a,seed)) < 1e-4:
seed += np.array([0.,0.,1.])
pn1 = norm_scale(np.cross(a, seed))
if adding == 2:
t = 2*math.pi/3
uc1 = norm_scale(protate(a, pn1, t))
uc2 = protate(uc1, pn1, t)
result = [uc1, uc2]
elif adding == 3:
t = math.acos(-1/3)
# rotate once by 109.47 on random plane to generate one bond
ua = norm_scale(a)
uc1 = protate(ua, pn1, t)
# mean vec + norm vec = orthogonal plane against a,c1 plane
uimean_vec = -np.mean([ua,uc1], axis=0)
pn2 = norm_scale(np.cross(pn1, uimean_vec))
# rotate mean vec up and down
uc2 = protate(uimean_vec, pn2, t/2)
uc3 = protate(uimean_vec, pn2, -t/2)
result = [uc1, uc2, uc3]
return result
def parse_mdp(mdpfile):
f = open(mdpfile, "r")
content = f.read()
f.close()
content = re.sub('[;][^\n]+', '', content)
content = re.sub('[ ]{2,}', ' ', content)
content = re.sub('[\n]{2,}', '\n', content)
content = content.strip()
listing = content.split("\n")
mapping = dict()
for item in listing:
s = item.split("=")
val = s[1].strip()
if re.match('^[-+]?\d+$', val) != None:
val = int(val)
elif re.match('^[-+]?((\d+\.\d*)|(\.\d+)|(\d+))([eE][-+]?((\d+\.\d*)|(\.\d+)|(\d+)))?$', val) != None:
val = float(val)
mapping[s[0].strip()] = val
return mapping
def write_mdp(output_file, mapping, title=None):
if title is None: title = "Auto generated .mdp file for Gromacs MD simulation with BuildCG"
s = "; {:s}\n".format(title)
for key, val in mapping.items():
if val is None: continue
if isinstance(val, float):
val = "{:0.4f}".format(val) if val > 1e-3 else "{:0.4e}".format(val)
elif not isinstance(val, str):
val = str(val)
if "_" in key:
key = key.replace("_", "-")
s += "{:<30s} = {:s}\n".format(key, val)
fout = open(output_file, "w")
fout.write(s)
fout.close
return output_file
def print_dict(dictionary):
# Just prints dictionaries in the way that u can copy into python
# Assuming that both sides are strings
text = "{\n"
for key, val in dictionary.items():
if isinstance(val, str): val = '"' + val + '"'
text += ' {:<30s}: {},\n'.format('"'+key+'"', val)
text += "}"
print(text)
return text
def write_topol(template, ff, sysname, molinfo):
'''
Takes in template, search for $FORCEFIELD, $SYSNAME and $N_MOLECULES
And writes in the relevant info
'''
strcheck = [isinstance(s, str) for s in [ff, sysname, molinfo]]
checkerr(all(strcheck), "Input information not all of type str")
f = open(template, "r")
content = f.read()
f.close()
topol = re.sub("[$]FORCEFIELD", ff, content)
topol = re.sub("[$]SYSNAME", sysname, topol)
topol = re.sub("[$]N_MOLECULES", molinfo, topol)
return topol
def write_ff(template, ffnb, molecules):
f = open(template, "r")
content = f.read()
f.close()
ff = re.sub("[$]FF_NONBONDED", f'#include "{ffnb:s}"', content)
if isinstance(molecules, (list, tuple)):
mols = [f'#include "{molecules[i]:s}"' for i in range(len(molecules))]
molinfo = "\n".join(mols)
else:
molinfo = f'#include "{molecules:s}"'
ff = re.sub("[$]MOLECULES", molinfo, ff)
return ff
def main():
# print(parse_mdp("em.mdp"))
d1 = parse_mdp("eql.mdp")
d2 = parse_mdp("npt.mdp")
missing = {"eql": [x for x in d1 if x not in d2], "npt": [x for x in d2 if x not in d1]}
shared_diff = {k: [d1[k], d2[k]] for k in d1 if k in d2 and d1[k] != d2[k]}
shared_same = {k: d1[k] for k in d1 if k in d2 and d1[k] == d2[k]}
print_dict(missing)
print_dict(shared_diff)
print(shared_same.keys())
d1 = parse_mdp("nvt.mdp")
d2 = parse_mdp("nvt_eq.mdp")
missing = {"nvt": [x for x in d1 if x not in d2], "nvt_eq": [x for x in d2 if x not in d1]}
shared_diff = {k: [d1[k], d2[k]] for k in d1 if k in d2 and d1[k] != d2[k]}
shared_same = {k: d1[k] for k in d1 if k in d2 and d1[k] == d2[k]}
print_dict(missing)
print_dict(shared_diff)
print(shared_same.keys())
print(write_ff("template/forcefield_template.itp", "ffnonbonded.itp", ["cgmolecule-eth.itp","cgmolecule-tmh.itp","cgmolecule-tm6.itp",]))
#
# print_dict(parse_mdp("npt.mdp"))
# print_dict(parse_mdp("nvt.mdp"))
# '^[-+]?((\d+\.\d*)|(\.\d+)|(\d+))([eE][-+]?((\d+\.\d*)|(\.\d+)|(\d+)))?$'
# print(parse_mdp("nvt_eq.mdp"))
# print(parse_mdp("nvt.mdp"))
# print(write_mdp("nvttest1.mdp", parse_mdp("nvt.mdp"), title="Testing a NVT mdp file"))
# angle = math.acos(-1/3)
# a = np.array([4,1,2])
# seed = np.array([1,1,1])
# n1 = norm_scale(np.cross(a, seed))
# c1 = protate(a, n1, angle)
# m_inv = norm_scale(-np.mean([a,c1], axis=0), a)
# p2 = norm_scale(np.cross(a, c1))
# n2 = norm_scale(np.cross(m_inv, p2))
# c2 = protate(m_inv, n2, angle/2)
# c3 = protate(m_inv, n2, -angle/2)
# a1 = protate(a, n1, 2*math.pi/3)
# a2 = protate(a1, n1, 2*math.pi/3)
# c34 = get_bond_position(3,[a])
# c1 = c34[0] * np.linalg.norm(a)
# c2 = c34[1] * np.linalg.norm(a)
# c3 = c34[2] * np.linalg.norm(a)
# print(c1, c2)
#
# print(n1)
# print(a,c1,c2)
# rot = [a,c1,c2]
# for i in rot:
# print(i, end=" ---- ")
# print(np.linalg.norm(i))
#
# for i in range(3):
# for j in range(i+1,3):
# print(i, j, math.acos(np.dot(rot[i],rot[j])/np.linalg.norm(rot[i])/np.linalg.norm(rot[j]))*180/math.pi)
# f = open("ffnonbonded_template.itp", "r")
# t = f.read()
# f.close()
# vars = re.sub("[$][A-Z0-9_]{1}[A-Z0-9_]+", write_atomtype("OCT", "10", 10.0, 0.0, "A", 12.3e-3, 2.13e-4), t)
# print(write_atomtype("ffnonbonded_template.itp", get_atomtype("OCT", "10", 10.0, 0.0, "A", 12.3e-3, 2.13e-4)))
# edges = [{1},{0,2,3},{1,3},{1,2,4,7},{3,5},{4,6},{5,7}, {3,6}]
# print(get_rings(edges))
#
# edges = [{1},{0,2,3,5},{1,3},{1,2,4},{3,5},{1,4}]
# print(get_rings(edges))
#
# edges = [{1,3},{0,2},{1,3},{0,2,4},{3,5},{4,6,7},{5,7},{5,6}]
# print(get_rings(edges))
#
# edges = [{1,5},{0,2},{1,3},{2,4},{3,5},{0,4}]
# print(get_rings(edges))
#
# edges = [{1,5},{0,2,8},{1,3},{2,4},{3,5},{0,4,6},{5,7},{6,8},{1,7}]
# print(get_rings(edges))
#
# edges = [{1,10},{0,2,5},{1,3},{2,4},{3,5,6},{1,4,8},{4,7},{6,8},{5,7,9},{8,10},{0,9}]
# print(get_rings(edges))
#
# edges = [{3},{3,9},{3,5},{0,1,2},{5,7,8},{2,4,9},{7},{4,6},{4},{1,5}]
# print(get_rings(edges))
#
# edges = [{1},{0,2,5},{1,3},{2,4},{3,5,6},{1,4},{4}]
# print(get_rings(edges))
#
# edges = [{1},{0,2,6},{1,3},{2,4},{3,5,6},{4},{1,4}]
# print(get_rings(edges))
return
if __name__ == '__main__':
main()
| true |
f792da43c8a84c478b256d83723d50200e9b9373
|
Python
|
jtemplon/cbb_data_parsing
|
/SeasonSim/multiseasonsim.py
|
UTF-8
| 1,410 | 3.328125 | 3 |
[] |
no_license
|
from seasonsim import seasonsim, standingscounter, seasonreset
class SeasonStats():
tied_seasons = 0
two_team_tie = 0
three_team_tie = 0
multi_team_tie = 0
most_wins = {}
def multiseasonsim(team_dict, bool):
season_counter = 1
balanced = bool
seasonstats = SeasonStats()
#while season_counter < 10001:
while season_counter < 10001:
seasonreset(team_dict)
seasonsim(team_dict, balanced)
standingscounter(team_dict, seasonstats)
season_counter = season_counter + 1
print "Name - Season Wins - Season Ties - Undefeated Seasons - Winless Seasons - Best Season - Worst Season - Total Win Margin"
for k in team_dict.keys():
print "%s - %s - %s - %s - %s - %s - %s - %s - %s" %(team_dict[k].name, team_dict[k].season_wins, team_dict[k].season_ties, team_dict[k].undefeated_seasons, team_dict[k].winless_seasons, team_dict[k].best_season, team_dict[k].worst_season, team_dict[k].win_margin, team_dict[k].total_wins)
print "Tie Stats: %s ties, %s two-team, %s three-team, %s more than three" %(seasonstats.tied_seasons, seasonstats.two_team_tie, seasonstats.three_team_tie, seasonstats.multi_team_tie)
print seasonstats.most_wins
for k in team_dict.keys():
print team_dict[k].name
print team_dict[k].places
print team_dict[k].place_ties
print team_dict[k].win_distribution
| true |
53f1ba359d907d79b7923a2f054f0483c8521fce
|
Python
|
Mercurius-0227/Baekjoon
|
/find_rest.py
|
UTF-8
| 425 | 3.109375 | 3 |
[] |
no_license
|
#1978
#소수 찾기
#2020.07.17 완성!
import sys
input=sys.stdin.readline
N=int(input())
list_A=input().split()
list_A=list(map(int,list_A))
count=0
i=0
j=0
mark=1
for i in range(N):
for j in range(2,list_A[i]):
rest=list_A[i]%j
if list_A[i]==1:
mark=1
if rest==0:
mark=1
else:
mark=0
if mark==0:
count+=1
print(count)
| true |
7dab3b954b7359b0cd4491c1c5b24f8ed2758617
|
Python
|
MatthewTsan/Leetcode
|
/python/q287/q287.py
|
UTF-8
| 274 | 2.640625 | 3 |
[
"Apache-2.0"
] |
permissive
|
from typing import List
class Solution:
def findDuplicate(self, nums: List[int]) -> int:
busket = [False for item in nums]
for item in nums:
if busket[item]:
return item
else:
busket[item] = True
| true |
61ac7d6832302d5b178b70772648ed8b36f49d15
|
Python
|
Fapfood/nlp
|
/lab9/task2.py
|
UTF-8
| 1,322 | 3.046875 | 3 |
[] |
no_license
|
import numpy as np
from matplotlib import pyplot as plt
def histogram(data):
word, frequency = zip(*data)
indices = np.arange(len(data))
plt.bar(indices, frequency, color='r')
plt.xticks(indices, word, rotation='vertical')
plt.tight_layout()
plt.show()
with open('tmp_dict', encoding='utf8') as f:
content = f.read()
dct = eval(content)
dct1 = {}
for d in dct:
v = sum(dct[d].values())
dct1[d] = v
res1 = sorted(dct1.items(), key=lambda x: x[1], reverse=True)
for d in res1:
print(d)
histogram(res1)
print()
dct2 = {}
for d in dct:
k = d[0:7]
dct2[k] = dct2.get(k, 0) + dct1[d]
res2 = sorted(dct2.items(), key=lambda x: x[1], reverse=True)
for d in res2:
print(d)
histogram(res2)
print()
dct3 = {}
for d in dct:
for c in dct[d]:
k = (c, d)
dct3[k] = dct[d][c]
res3 = sorted(dct3.items(), key=lambda x: x[1], reverse=True)[:50]
for d in res3:
print(d)
print()
dct4 = {}
for d in dct:
k = d[0:7]
dct4[k] = dct4.get(k, {})
dct4[k][d] = dct[d]
for z in dct4:
dct5 = {}
for d in dct4[z]:
for c in dct4[z][d]:
k = (c, d)
dct5[k] = dct4[z][d][c]
res5 = sorted(dct5.items(), key=lambda x: x[1], reverse=True)[:10]
print(z)
for d in res5:
print(d)
print()
| true |
188a710860c4fca33ef38562ea8a31b3203918c0
|
Python
|
basfl/advance_python
|
/mongodb/db_util/db_crud.py
|
UTF-8
| 2,158 | 2.90625 | 3 |
[] |
no_license
|
from pymongo import MongoClient
class CRUD:
"""
find only one record
from the collection
"""
@staticmethod
def find_one(collection_name):
print(f'{collection_name.find_one()}')
"""
post only one record
to the collection
"""
@staticmethod
def post_one(collection_name, post):
collection_name.insert_one(post)
"""
insert many records
to the collection
"""
@staticmethod
def insert_many_records(collection_name, *posts):
posts_list = []
print(posts)
for post in posts:
posts_list.append(dict(post))
# collection_name.insert_one(post)
expanded_list = [dict(i) for i in posts_list]
# print(f"***********{l}")
collection_name.insert_many(expanded_list)
"""
find specific value
inside the collection docuemnt
by passing key and value
"""
@staticmethod
def find_value(collection_name, key, value):
try:
result = collection_name.find_one({key: value})
print(f"result is {result['name']}")
except:
print("Database Error Occoured")
"""
delete only one specific record
from collection
"""
@staticmethod
def delete_one(collection_name, key, value):
collection_name.delete_one({key: value})
"""
perform specific query and delete record
base on the result of query
"""
@staticmethod
def delete_all_except(collection_name, key, value):
query = {key: {"$ne": value}}
# print(query)
try:
collection_name.delete_many(query)
except:
print("Database Error Occoured")
"""
update value in collection and
add new value to the collection
"""
@staticmethod
def update_record(collection_name, key, value, update_key, update_value):
myquery = {key: value}
newvalues = {"$set": {update_key: update_value}}
collection_name.update_many(myquery, newvalues)
collection_name.update_many({update_key: update_value}, {
"$set": {"updated": True}})
| true |
a2a0d06a35f9b9d0b8b08b3418efeeeddc521cce
|
Python
|
peacock0803sz/pyconjpbot
|
/pyconjpbot/plugins/plusplus.py
|
UTF-8
| 5,783 | 2.953125 | 3 |
[
"MIT"
] |
permissive
|
import random
from slackbot.bot import respond_to, listen_to
from slackbot import settings
import slacker
from .plusplus_model import Plusplus
from ..botmessage import botsend, botwebapi
PLUS_MESSAGE = (
'leveled up!',
'レベルが上がりました!',
'やったね',
'(☝՞ਊ ՞)☝ウェーイ',
)
MINUS_MESSAGE = (
'leveled down.',
'レベルが下がりました',
'ドンマイ!',
'(´・ω・`)',
)
def _get_user_name(user_id):
"""
指定された Slack の user_id に対応する username を返す
Slacker で users.list API を呼び出す
- https://github.com/os/slacker
- https://api.slack.com/methods/users.info
"""
webapi = slacker.Slacker(settings.API_TOKEN)
response = webapi.users.info(user_id)
if response.body['ok']:
return response.body['user']['name']
else:
return ''
def _update_count(message, target, plusplus):
"""
指定ユーザーのカウンターを更新する
"""
target = target.lower()
plus, created = Plusplus.get_or_create(name=target, defaults={'counter': 0})
if plusplus == '++':
plus.counter += 1
msg = random.choice(PLUS_MESSAGE)
else:
plus.counter -= 1
msg = random.choice(MINUS_MESSAGE)
plus.save()
botsend(message, '{} {} (通算: {})'.format(target, msg, plus.counter))
@listen_to(r'^<@(.+)>:?\s*(\++|-+)')
def mention_plusplus(message, user_id, plusplus):
"""
mentionされたユーザーに対して ++ または -- する
"""
if len(plusplus) != 2:
return
target = _get_user_name(user_id)
_update_count(message, target, plusplus)
@listen_to(r'^(\w\S*[^\s:+-]):?\s*(\++|-+)')
def plusplus(message, target, plusplus):
"""
指定された名前に対して ++ または -- する
takanory++
takanory:++
takanory: ++
日本語++
takanory++ コメント
takanory ++
"""
if len(plusplus) != 2:
return
_update_count(message, target, plusplus)
@respond_to(r'^plusplus\s+(del|delete)\s+(\S+)')
def plusplus_delete(message, subcommand, name):
"""
指定された名前を削除する
カウントが10未満のもののみ削除する
"""
try:
plus = Plusplus.get(name=name)
except Plusplus.DoesNotExist:
message.send('`{}` という名前は登録されていません'.format(name))
return
if abs(plus.counter) > 10:
botsend(message, '`{}` のカウントが多いので削除を取り消しました(count: {})'.format(name, plus.counter))
return
plus.delete_instance()
message.send('`{}` を削除しました'.format(name))
@respond_to(r'^plusplus\s+rename\s+(\S+)\s+(\S+)')
def plusplus_rename(message, old, new):
"""
指定された old から new に名前を変更する
"""
try:
oldplus = Plusplus.get(name=old)
except Plusplus.DoesNotExist:
botsend(message, '`{}` という名前は登録されていません'.format(old))
return
newplus, created = Plusplus.create_or_get(name=new, counter=oldplus.counter)
if not created:
# すでに存在している
message.send('`{}` という名前はすでに登録されています'.format(new))
return
# 入れ替える
oldplus.delete_instance()
botsend(message, '`{}` から `{}` に名前を変更しました(count: {})'.format(old, new, oldplus.counter))
@respond_to(r'^plusplus\s+merge\s+(\S+)\s+(\S+)')
def plusplus_merge(message, old, new):
"""
指定された old と new を一つにまとめる
"""
try:
oldplus = Plusplus.get(name=old)
except Plusplus.DoesNotExist:
botsend(message, '`{}` という名前は登録されていません'.format(old))
return
try:
newplus = Plusplus.get(name=new)
except Plusplus.DoesNotExist:
botsend(message, '`{}` という名前は登録されていません'.format(new))
return
oldcount = oldplus.counter
newcount = newplus.counter
# 値を統合する
newplus.counter += oldplus.counter
newplus.save()
oldplus.delete_instance()
botsend(message, '`{}` を `{}` に統合しました(count: {} + {} = {})'.format(old, new, oldcount, newcount, newplus.counter))
@respond_to(r'^plusplus\s+search\s+(\S+)')
def plusplus_search(message, keyword):
"""
指定されたキーワードを含む名前とカウントの一覧を返す
"""
pattern = '%{}%'.format(keyword)
pluses = Plusplus.select().where(Plusplus.name ** pattern)
if len(pluses) == 0:
botsend(message, '`{}` を含む名前はありません'.format(keyword))
else:
pretext = '`{}` を含む名前とカウントの一覧です\n'.format(keyword)
text = ''
for plus in pluses:
text += '- {}(count: {})\n'.format(plus.name, plus.counter)
attachments = [{
'pretext': pretext,
'text': text,
'mrkdwn_in': ['pretext', 'text'],
}]
botwebapi(message, attachments)
@respond_to(r'^plusplus\s+help+')
def plusplus_help(message):
"""
ヘルプメッセージを返す
"""
botsend(message, '''- `名前++`: 指定された名前に +1 カウントする
- `名前--`: 指定された名前に -1 カウントする
- `$plusplus search (キーワード)`: 名前にキーワードを含む一覧を返す
- `$plusplus delete (名前)`: カウントを削除する(カウント10未満のみ)
- `$plusplus rename (変更前) (変更後)`: カウントする名前を変更する
- `$plusplus merge (統合元) (統合先)`: 2つの名前のカウントを統合先の名前にまとめる
''')
| true |
300a2fcbc48aae6404bae6f3cde9b84fd370b744
|
Python
|
wfjo852/wh2-webhook-public
|
/wh2_script/wh_rocket_chat/api/channel.py
|
UTF-8
| 2,036 | 2.578125 | 3 |
[] |
no_license
|
#-*- coding:utf-8 -*-
from wh2_script.wh_rocket_chat.api import wh_rocket_chat_request, wh_rocket_chat_api
def list():
return wh_rocket_chat_request.get(wh_rocket_chat_api.channel_list)
def create(channel_name):
#data 추가
payload = {'name': channel_name}
return wh_rocket_chat_request.post_payload(wh_rocket_chat_api.channel_create, payload)
def rename(roomid,newname):
#data 추가
payload = {"roomId":roomid,"name":newname}
return wh_rocket_chat_request.post_payload(wh_rocket_chat_api.channel_rename, payload)
def member_list(roomid):
# date 추가
params = {'roomId':roomid}
return wh_rocket_chat_request.get_params(wh_rocket_chat_api.channel_members, params)
def invite(roomid,user_uid):
# date 추가
payload = {'roomId':roomid,'userId':user_uid}
return wh_rocket_chat_request.post_payload(wh_rocket_chat_api.channel_invite, payload)
def kick(roomid,user_uid):
# date 추가
payload = {'roomId':roomid,'userId':user_uid}
return wh_rocket_chat_request.post_payload(wh_rocket_chat_api.channel_kick, payload)
# 채널의 ID 검색
def get_roomid(roomname):
lists = list()
channels = lists['channels']
for channel in channels:
if channel['name'] == roomname:
roomid = channel['_id']
print(roomname,'의 room id : ',roomid)
return roomid
else:
print(roomname+"의 이름이 정확하지 않습니다.")
#유저Id리스트를 기준으로 채널의 인원을 변경
def members_change(roomid,userid_list):
# userid_list = ["a","b"]
members = member_list(roomid)
before = []
for x in members['members']:
before.append(x['username'])
#채널에 인원 초대
invite_list = list(set(userid_list)-set(before))
#채널에 인원 내보내기
kick_list = list(set(before)-set(userid_list))
#채널에 맴버 추가 / 삭제
invite(roomid,invite_list)
kick(roomid,kick_list)
print("in :",invite_list,"\n","out :",kick_list)
| true |
0300ef414fd961910bc9c1628798ada3b879f5a6
|
Python
|
joneslabND/ICB_Fall2017
|
/Tutorials/Tutorial08/Exercise08_1_Pseudo.py
|
UTF-8
| 794 | 3.21875 | 3 |
[] |
no_license
|
#Exercise 8, Python question 1
#10/13/17, MMD
#Open files to read and write
vcffile = open("Cflorida.vcf","r")
outfile = open("CfloridaCounts.txt","w")
#assign regex to variable name, or compile to variable name
#loop over file
for :#look at old code to see how you looped over a file
#strip end of line
if : #how can you tell if this is the header line?
#write unchanged header line to file
elif : #how can you tell if this is the line with the column headings?
#standardize (replace) sample names with TX and FL regexes
#write new version of line to file
else: #now you're in the data
#replace full SNP info with allele counts only
#replace missing data with NA
#write new version of line to new file
#Close files
| true |
6223fc10e771616f0bf54cf9507b7b0783598156
|
Python
|
tstl87/PythonInterviewQuestions
|
/sort/KthLargestElement/Solution.py
|
UTF-8
| 402 | 3.53125 | 4 |
[] |
no_license
|
import heapq
class Solution():
def findKthLargest1(self, nums, k):
nums = sorted(nums)
return nums[-k]
def findKthLargest2(self, nums, k):
return heapq.nlargest(k,nums)[-1]
print('[3,2,3,1,2,4,5,5,6] and k = 4')
print( Solution().findKthLargest2([3,2,3,1,2,4,5,5,6],4) )
print('')
print('[3,2,1,5,6,4] and k=2')
print( Solution().findKthLargest2( [3,2,1,5,6,4], 2 ) )
| true |
3019b93210677b6b8c7887c94e9a3f4515ccc4db
|
Python
|
BingoZ/python_scripts
|
/word_similarity/similarity.py
|
UTF-8
| 1,936 | 3.421875 | 3 |
[] |
no_license
|
#!/usr/bin/env python
def longest_substring(one,two):
lone = len(one)
ltwo = len(two)
max_len = min(lone,ltwo)
longest = ''
for i in reversed(xrange(max_len)):
for j in reversed(xrange(i,lone+1-i)):
chunk = one[i:i+j]
if len(chunk) < len(longest):
continue
if chunk in two:
if len(chunk) > len(longest):
longest = chunk
return longest
def similar(word1,word2, fast=False):
if word1 == word2:
return 1.0
if fast:
guess = float(len(word1))/float(len(word2))
guess = min(float(len(word2))/float(len(word1)),guess)
if guess < 0.8:
return 0.0
max_len = max(len(word1),len(word2))
piece1 = longest_substring(word1,word2)
total_len = len(piece1)
if piece1 != word1 and piece1 != word2:
if piece1:
word2 = word2.replace(piece1,'')
leftover = word1.split(piece1)
for piece2 in leftover:
piece3 = longest_substring(piece2,word2)
total_len += len(piece3)
word2 = word2.replace(piece3,'')
else:
piece2 = ''
s2 = 0.0
s1 = float(total_len)/float(max_len)
return s1
piece2 = longest_substring(word2,word1)
s2 = float(len(piece2)/float(max_len))
return max(s1,s2)
def test(a,b):
print '%s vs %s'%(a,b), similar(a,b)
def dict_test(word):
f = open('/usr1/hcsjad/words/new_words','rb')
for word in f:
word = word.replace('\n','')
yield (similar(word1.lower(),word.lower(),True),word)
f.close()
if __name__ == '__main__':
test('dog','cot')
test('me','you')
test('you','me')
test('cat','cat')
test('sudden','suddenly')
test('suddenly','sudden')
test('male','female')
test('female','male')
test('graduation','gratuation')
test('a1b2c3','123abc')
test('test','west')
word1 = raw_input('word: ')
print 'Similar words are:'
results = dict_test(word1)
for x in reversed(sorted(results)[-25:]):
print x[1], '(%.2f%%)' % (x[0]*100)
| true |
1651768e425c14ec40d012e824e49700ac154db1
|
Python
|
GetTuh/KODI-plugin-Torrentz2-qbittorrent-remote
|
/resources/lib/site_parsing.py
|
UTF-8
| 1,168 | 2.828125 | 3 |
[
"MIT"
] |
permissive
|
import re
from bs4 import BeautifulSoup
import conn
import time
def link_to_magnet(site):
raw_html = conn.simple_get(site)
soup = BeautifulSoup(raw_html, 'html.parser')
all_links = soup.findAll("div", {"class": "downlinks"})
all_links = all_links[0].findAll("a")
adblock=0
for siteLink in all_links:
if(adblock==0): #pierwszy wynik to reklama wiec go omijam
adblock+=1
else:
siteLink=siteLink.get('href')
print("trying " + siteLink)
magnet = siteLink_to_magnet(siteLink)
if(magnet!=None):
return(magnet)
print("No magnet found")
def siteLink_to_magnet(siteLink):
raw_html = conn.simple_get(siteLink)
try:
soup = BeautifulSoup(raw_html, 'html.parser')
mag_re=re.compile("href=\"magnet:\?")
magnet = soup.findAll('a')
for a in magnet:
if re.findall("href=\"magnet:\?",str(a.encode('utf-8'))):
return(a.get('href'))
except:
return None
# print(siteLink_to_magnet("https://1337x.to/torrent/3223403/Solo-A-Star-Wars-Story-2018-BluRay-1080p-YTS-YIFY/"))
print(link_to_magnet("https://torrentz2.eu/e2e457b2e77128cd20fafd0837bbdb9a4d543578"))
| true |
e7d72e98839a15d41a75c3e0250a5fb91054a40b
|
Python
|
maxyonghuawei/Unet_seg
|
/mask_binary.py
|
UTF-8
| 2,374 | 3.03125 | 3 |
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 10 22:14:02 2019
Turn the grey level Images to binary Images and save in the files
@author: Kumawife
"""
from __future__ import print_function
#import numpy as np
from PIL import Image
import os
#mask = np.ones([256,256,3])
#
#mask = mask[:,:,0]
#print(mask.shape)
#
#new_mask = np.zeros(mask.shape + (3,))
#
#print(new_mask.shape)
#
#for i in range(3):
# new_mask[mask==i, i] = 3
#
#print(new_mask)
#im = Image.open("frame049.png")
# format shows the image format, mode shows the image is "L grey scale" or "RGB"
#print(im.format, im.size, im.mode)
#im.show()
#im_binary = im.convert("1")
#im_binary.show()
#print(im_binary.size, im_binary.mode)
def grey_to_binary(img, thresh):
"""
Converting the grey scale image to binary image through the PIL API
defining the "thresh" for binarize the pixel in the input image
"""
thresh = thresh
fn = lambda x: 255 if x>thresh else 0
r = img.point(fn, mode="1")
# r.save('foo.png')
print("convert mode from grey to binary")
return r
def saveImage(in_path, out_path, thresh):
"""
Enter the grey images input path "in_path"
Enter the save path "out_path"
The threshold for the frey scale images transfered to binary images
"""
if os.path.exists(in_path):
for img in os.listdir(in_path):
temp = in_path + '/' + img
img_pic = Image.open(temp)
img_bir = grey_to_binary(img_pic, thresh)
f, e = os.path.splitext(img)
outname = f + ".jpg"
final_out_path = out_path + outname
# print(final_out_path)
try:
img_bir.save(final_out_path)
except IOError:
print("Fail to save the file")
print("Binary pictures are successfully saved")
else:
print("Input path is not exist.")
#im_bir_test = grey_to_binary(im, 25)
#im_bir_test.show()
if __name__ == "__main__":
out_path = 'D:/Msc.project/data_2017/training/instrument_dataset_1/instrument_dataset_1/ground_truth/other/'
in_path = 'D:/Msc.project/data_2017/training/instrument_dataset_1/instrument_dataset_1/ground_truth/Other_labels'
thresh = 7
saveImage(in_path, out_path, thresh)
| true |
62c9967126c2cd809bce9b026d99b766ee20b2a7
|
Python
|
seequest/Learning
|
/ExtraHop/find_longest_word.py
|
UTF-8
| 19,611 | 3.890625 | 4 |
[] |
no_license
|
#!/usr/bin/env python36
""" ExtraHop Programming Problem--
Written by David Noble <david@thenobles.us>.
This module was developed and tested under Python 3.6 on macOS Sierra. Please ask for Python 2.7 code or code that
will run under Python 2.7 or Python 3.6, if you would prefer it. I mention this because I see that your deprecated
Python SDK is written for Python 2.7.3 or higher, but not Python 3.x.
mypy 0.511 clean
"""
import io
import random
import re
from collections import deque
from string import ascii_lowercase
from typing import Deque, Dict, Iterator, List, Mapping, Optional, MutableSet, Sequence, Tuple
def find_longest_word(grid: 'Grid', words: List[str]) -> Optional[Tuple[str, Tuple[Tuple[int, int], ...]]]:
""" Find the longest word from a list of words that can be produced from an 8 x 8 grid using grid movement rules
Words on the grid are located using this set of rules:
1. Start at any position in the grid, and use the letter at that position as the first letter in the candidate
word.
2. Move to a position in the grid that would be a valid move for a knight in a game of chess, and add the letter
at that position to the candidate word.
3. Repeat step 2 any number of times.
This function preserves the contents of the `words` list. Length ties are broken by alphabetic sort order. Hence,
for example, if `foo` and `bar` are
* in the list of words and
* the longest words to be found on a graph
:func:`find_longest_word` will return `'bar'` and a tuple of the coordinates of its letters in the grid as its
result.
Parameters
----------
:param grid: A grid presumably filled with letters from some alphabet.
:type grid: Grid
:param words: A list of words that might be produced from letters on the 'grid' using grid moves.
:type words: List[str]
:return: Longest word that can be produces from letters on the 'grid' using grid moves; or :const:`None`, if no word
can be produced from letters on the 'grid'.
:rtype: Optional[Tuple[str, Tuple[Tuple[int, int]]]]
Implementation notes
====================
A grid should be thought of as a directed graph. The cells of a grid are its vertices. The movements that are
permitted from a cell on the graph are edges. The vertices are labeled by row, column coordinates and contain a
single piece of data: a letter drawn from some alphabet. Producing a word from the letters contained by the cells
on a grid amount to a graph traversal in the search for a path that traces out the word.
In this solution we represent a grid with `Grid` class which encapsulates the small number of movement and lookup
operations that are required to trace out such a path. The `Grid` class also comes with a set of methods useful for
testing: `Grid.generate`, `Grid.load`, and `Grid.save`. See the `Grid` class for specifics.
Algorithm
---------
`find_longest_word` non-destructively sorts words by length and alphabetic order. It then iterates over the set of
positions from which a word might start as determined by `Grid.occurrences`. The search for a word from a starting
position is conducted by a local recursive function: `find_path`. All potential paths may be considered, but the
search is done depth-first and so the first complete path found will be taken. The order in which paths are
considered is fixed. This is based on the order of `Grid._moves`.
One might have considered more advanced/exotic data structures and algorithms. We chose to keep the code and data
structures simple with an assumption that grid (graph) traversal operations are not performance critical. We are
content, for example, to consider all moves from a grid position sequentially without providing auxiliary lookup
capabilities or more advanced data structures. These might or might not be required based on space or time
requirements.
An alternative
--------------
For each cell create a map of the coordinates of all reachable cells: a map of `Map[str, Tuple[int, int]]` keyed by
letter. When moving from one letter of a word to another, consider only those cells with the required letter. As in
this code, rule out known fruitless paths; those visited previously and found to be dead ends.
To speed searches over time one might also store (memoize) words/word stems; pre-populating some and building up
others over time. One might for example, create such a map of words/word stems from the output of `Grid.generate`.
Other words or word paths unknown to the author might likely be discovered over time.
Here's a Wikipedia article that **might** be useful, should it be determined that this naive implementation is
insufficient from a time perspective.
* [String searching algorithm](https://en.wikipedia.org/wiki/String_searching_algorithm)
Command line
============
This function may be executed from the command line using this syntax::
python find_longest_word.py --grid <filename> <word>...
Alternatively you may create a command argument file and reference it like this::
python @<command-file-name>
A command file should contain one argument per line as illustrated in `Programming-language-names.args`, included
with this code::
--grid
grid-1
ALGOL
FORTRAN
Simula
Output includes the word found and the sequence of coordinates of the letters of the word found on the input grid.
You will see that this command::
python @Programming-language-names.args
produces this output::
('FORTRAN', ((3, 4), (5, 3), (3, 2), (2, 0), (3, 2), (1, 3), (0, 5)))
The coordinates written are zero-based row, column values, not unit-based column, row values as presented in
`PythonCodingProblem.docx`.
"""
def find_path(index: int, origin: Tuple[int, int]) -> Optional[Deque[Tuple[int, int]]]:
""" Perform a recursive search for the tail end of a case-folded word from a position on the current grid
This local function economizes on stack space by relying on variables in its closure and short-circuiting
recursion along previously traversed paths. It is worth noting that words, even very long words in languages
like German aren't that long. Stack space should not be an issue and the code is straight forward with this
recursive implementation.
Sidebar
-------
According to the [BBC](http://www.bbc.com/news/world-europe-22762040) the longest German word was just lost
after an EU law change. It is 65 characters long, one more than the number of cells in a grid::
Rindfleischetikettierungsueberwachungsaufgabenuebertragungsgesetz
In our experiments the `Grid.generate` function has not yet found a placement for this word in a grid; though
there is a non-zero probability that the current implementation could. Alternatively one could update
`Grid.generate` to consider all possible starting places and all possible paths from each of them. We leave
this as an exercise.
Parameters
----------
:param index: Index into the current case-folded word.
:type index: int
:param origin: Grid coordinates from which to start the search.
:type origin: Tuple[int, int]
:return: Sequence of coordinates of the letters of the tail end of the cased-folded word starting at index or
:const:`None`, if the current case-folded word cannot be found.
:rtype: Optional[Tuple[Tuple[int, int]]]
"""
letter: str = case_folded_word[index]
for position in grid.moves_from(origin):
eliminated = eliminations[index - 1]
if eliminated and position in eliminated:
continue
if letter == grid[position]:
if index == end:
return deque((position,))
path: Deque[Tuple[int, int]] = find_path(index + 1, position)
if path is not None:
path.appendleft(position)
return path
if eliminated:
eliminated.add(position)
else:
eliminations[index - 1] = {position}
return None
words = sorted((word for word in words if word), key=lambda x: (-len(x), x))
for word in words:
case_folded_word: str = word.casefold() # type: ignore
end: int = len(case_folded_word) - 1
first_letter: str = case_folded_word[0]
eliminations: List[Optional[MutableSet[Tuple[int, int]]]] = [None] * (len(case_folded_word) - 1)
for position in grid.occurrences(first_letter):
path: Optional[Deque[Tuple[int, int]]] = find_path(1, position) if end > 0 else deque()
if path is not None:
path.appendleft(position)
return word, tuple(path)
return None
class Grid(object):
""" Represents an 8 x 8 grid--presumably--containing letters drawn from one or more alphabets
Grid entries are case folded when the grid is instantiated to ensure that case-insensitive comparisons can be made
with any (?) alphabet.
Implementation notes
--------------------
A grid is internally represented as a List[List[str]]. A cell on the grid is accessed by its zero-based row, column
coordinate: a `Tuple[int, int]`. All grids are 8 x 8 as indicated by the value of `Grid.size`: `8`.
"""
__slots__ = ('_grid',) # saves space; good practice for objects with no dynamic membership requirements
def __init__(self, grid: Sequence[str]) -> None:
assert len(grid) == Grid.size
self._grid: List[List[str]] = []
for record in grid:
record = Grid._replace_whitespace('', record).casefold() # type: ignore
assert len(record) == Grid.size
self._grid.append([c for c in record])
def __getitem__(self, position: Tuple[int, int]) -> str:
""" Get the letter in a cell on the current grid
This method only partially implements `self[key]` semantics. Most notably slicing is not supported.
:param position: row, column coordinates of a cell on the current grid
:type position: Tuple[int, int]
:return: The letter at 'position' on the current grid.
:rtype: str
:raises IndexError: If 'position' does not specify a location on the current grid.
"""
return self._grid[position[0]][position[1]]
def __str__(self) -> str:
""" Get a human readable string representation of the current grid
:return: A human readable string representation of the current grid
:rtype: str
"""
return '\n'.join(' '.join(column for column in row) for row in self._grid)
@classmethod
def generate(cls, words: Iterator[str]) -> Tuple['Grid', Mapping[str, Tuple[str, Tuple[Tuple[int, int],...]]]]:
""" Generate a grid containing a set of words that can be found using grid movement rules
Use this method to create test grids. An error message is produced for each word that cannot be put on the grid.
Randomly generated ASCII characters are used to fill cells not filled by the words or--as explained in the
code--partial words we put on the grid.
The implementation of this method is rudimentary, but useful for producing test grids and verifying correctness.
Parameters
----------
:param words: An iterator over the set of words to be put on to the grid.
:type words: Iterator[str]
:return: A grid object containing the words or partial words we put on the grid mixed with random ASCII fill
characters.
:rtype: Grid
Example
-------
To see this method in action run these statements from a Python 3.6 REPL. A variable number of letters from
the German word "Rindfleischetikettierungsueberwachungsaufgabenuebertragungsgesetz" will be placed on the
grid::
from find_longest_word import Grid, find_longest_word
grid, paths = Grid.generate([
'foo', 'bar', 'Rindfleischetikettierungsueberwachungsaufgabenuebertragungsgesetz'
])
find_longest_word(grid, ['foo', 'bar', 'rindfleischetikettierun'])
grid.save('grid-4')
We're OK with this given our intent: generate some useful test grids. As indicated in the above REPL session
output you will find the results of example this REPL session in `grid-4'. We did not save the paths created
for the words.
"""
paths: Dict[str, Tuple[str, Tuple[Tuple[int, int], ...]]] = {}
missing_data = chr(0)
data = [[missing_data] * Grid.size for i in range(0, Grid.size)]
for word in words:
# Put this word on the grid starting at a random location
origins = [(x, y) for x in range(0, Grid.size) for y in range(0, Grid.size)]
path: List[Tuple[int, int]] = None
row, column = None, None
random.shuffle(origins)
case_folded_word = word.casefold() # type: ignore
def put(letter: str, x: int, y: int) -> bool:
if data[x][y] in (missing_data, letter):
data[x][y] = letter
return True
return False
index = 0
for row, column in origins:
if put(case_folded_word[0], row, column):
path = [None] * len(case_folded_word)
path[0] = row, column
index = 1
break
if index == 0:
print('could not find a place for any of the letters from', case_folded_word)
paths[word] = None
else:
while index < len(case_folded_word):
# Try to put the letter at word[index] on the grid using a sequence of random grid moves
# One might try alternative paths the way function find_longest_word does, but we'll
# scope that out of this exercise and accept two things:
#
# * By selecting the first random letter placement that works and not trying alternatives path ways
# out chance of failure is high.
# * In the failure case this algorithm will leave partial words on the grid.
#
# We're OK with this given our intent for this method: generate some random grids for testing.
moves = [move for move in cls._moves]
random.shuffle(moves)
put_letter = False
for x, y in moves:
x, y = row + x, column + y
if 0 <= x < Grid.size and 0 <= y < Grid.size:
if put(case_folded_word[index], x, y):
path[index] = row, column = x, y
put_letter = True
index += 1
break
if not put_letter:
break
if index < len(case_folded_word):
print(
'only placed', index, 'out of', len(case_folded_word), 'letters from', case_folded_word,
':', case_folded_word[:index]
)
paths[word] = case_folded_word[:index], tuple(path[:index])
for record in data:
for column in range(0, Grid.size):
if record[column] == missing_data:
record[column] = random.choice(ascii_lowercase) # we do not use a larger alphabet like latin-1 :(
return Grid([' '.join(row) for row in data]), paths
@classmethod
def load(cls, filename: str) -> 'Grid':
""" Load a grid from a file
:param filename: Name of a file containing a grid.
:type filename: str
:return: A Grid object
:rtype: Grid
"""
with io.open(filename) as istream:
lines: List[str] = istream.readlines()
return cls(lines)
@classmethod
def moves_from(cls, origin: Tuple[int, int]) -> Iterator[Tuple[int, int]]:
""" Enumerate the coordinates of cells that can be reached from a cell on the current grid
Use this method to obtain the position of each element that can be legally reached from origin. Off-grid moves
are--as one should expect--excluded from the enumeration.
:param origin: A position on the current grid specified as a row, column coordinate
:type origin: Tuple[int, int]
:return: An iterator over the coordinates of cells that can be reached from 'origin'.
:rtype: Iterator[Tuple[int, int]]
"""
row, column = origin
for move in cls._moves:
x, y = row + move[0], column + move[1]
if 0 <= x < cls.size and 0 <= y < cls.size:
yield x, y
def occurrences(self, letter: str) -> Iterator[Tuple[int, int]]:
""" Enumerate the coordinates of each occurrence of a letter on the current grid
:param letter: A letter which might or might not be on the grid.
:type letter: str
:return: An iterator over the coordinates of those cells containing 'letter'
:rtype: Iterator[Tuple[int, int]]
"""
for row, record in enumerate(self._grid, 0):
column = -1
while True:
try:
column = record.index(letter, column + 1)
except ValueError:
break
yield row, column
def save(self, filename: str) -> None:
""" Save the current grid to a file
:param filename: Name of the file to which the current grid should be saved.
:type filename: str
:return: :const:`None`
"""
with io.open(filename, 'w') as ostream:
ostream.write(str(self))
size = 8
# region Protected
_moves = [
(-1, +2), # lt 1 up 2
(-1, -2), # lt 1 dn 2
(-2, +1), # lt 2 up 1
(-2, -1), # lt 2 dn 1
(+1, +2), # rt 1 up 2
(+1, -2), # rt 1 dn 2
(+2, +1), # rt 2 up 1
(+2, -1), # rt 2 dn 1
]
_replace_whitespace = re.compile('\s+').sub
# endregion
if __name__ == '__main__':
from argparse import ArgumentParser
import sys
parser = ArgumentParser(
description='Find the longest word from a list of words that can be produced from an 8 x 8 grid of letters',
fromfile_prefix_chars='@'
)
parser.add_argument('--grid', required=True)
parser.add_argument('words', nargs='+')
arguments = parser.parse_args(sys.argv[1:])
print(find_longest_word(Grid.load(arguments.grid), arguments.words))
| true |
c1f7e0d258322ac5b1c97e61b3586cf5805714f6
|
Python
|
LHB6540/Python_programming_from_entry_to_practice_code_demo
|
/part1_4th_list_control/practice4_8_4_9.py
|
UTF-8
| 389 | 4.5625 | 5 |
[] |
no_license
|
# 将同一个数字乘三次称为立方。例如,在Python中,2的立方用2**3表示。
# 请创建一个列表,其中包含前10个整数(即1~10)的立方,再使用一个for循环将这些立方数都打印出来
# 使用列表解析生成一个列表,其中包含前10个整数的立方
numbers = [value ** 3 for value in range(1, 11)]
for i in numbers:
print(i)
| true |
41461624fec1d2c51042ee1e81126ef6b18d2d9a
|
Python
|
robbymeals/topicmod
|
/lib/python_lib/topicmod/corpora/altlaw.py
|
UTF-8
| 4,537 | 2.5625 | 3 |
[] |
no_license
|
#!/usr/bin/python
__author__ = "Sean Gerrish (sgerrish@cs.princeton.edu)"
__copyright__ = "GNU Public License"
import datetime
import lexicon
import os
import re
import sys
import time
from nlp import tokenizer
from util.pdf_wrapper import PdfOpen, Clean
from xml.parsers import expat
YEAR_RE = re.compile("(1[89]\d\d|2[01]\d\d)")
class AltLawParser(lexicon.Document):
def __init__(self, lex):
self.parser_ = expat.ParserCreate()
self.parser_.StartElementHandler = self.StartElementHandler
self.parser_.EndElementHandler = self.EndElementHandler
self.parser_.CharacterDataHandler = self.CharacterDataHandler
self.elements_ = {}
self.body = ""
self.date = datetime.datetime(1, 1, 1)
self.id = ""
self.title = ""
self.case_number = ""
self.court = ""
self.docket = ""
lexicon.Document.__init__(self, lex)
def Parse(self, pdf_filename, meta_pdf_filename=None):
try:
pdf_file = PdfOpen(pdf_filename)
except RuntimeError:
print >>sys.stderr, "Error parsing pdf file. Skipping."
raise AssertionError
self.body = pdf_file.read()
pdf_file.close()
if meta_pdf_filename is None:
meta_pdf_filename = pdf_filename + ".xml"
self.meta_pdf_filename_ = meta_pdf_filename
if not os.path.exists(meta_pdf_filename):
print >>sys.stserr, (
"No document metadata found (looked in %s)." % meta_pdf_filename)
return
meta_pdf_file = open(meta_pdf_filename)
self.meta_text_ = "".join(meta_pdf_file.readlines())
self.parser_.Parse(self.meta_text_)
meta_pdf_file.close()
def ParseDate(self, data):
data = data.encode("ascii", "ignore")
try:
self.date = datetime.datetime(
*(time.strptime(data, "%Y/%m/%d")[0:6]))
return
except ValueError:
pass
try:
self.date = datetime.datetime(
*(time.strptime(data, "%m/%d/%Y")[0:6]))
return
except:
pass
try:
date_parts = data.split("/")
if len(date_parts[2]) == 2:
if len(date_parts[2]) < 10:
date_parts[2] = "20" + date_parts[2]
elif date_parts[2] > 10:
date_parts[2] = "19" + date_parts[2]
old_data = data
data = "/".join(date_parts)
self.date = datetime.datetime(*(time.strptime(data, "%m/%d/%Y")[0:6]))
print >>sys.stderr, (
"Warning: inferring possibly ambiguous date string from %s" % old_data)
return
except:
pass
try:
match_obj = YEAR_RE.search(data)
if match_obj:
# Don't bother with trying to infer
# anything more than the year.
self.date = datetime.datetime(int(match_obj.groups()[0]), 1, 1)
print >>sys.stderr, (
"Warning: ignoring month and day for document %s"
% self.meta_pdf_filename_)
return
except IOError:
pass
print >>sys.stderr, (
"Failed to parse date string '%s'" % data)
def CharacterDataHandler(self, data):
if "case" not in self.elements_:
return
if "Title" in self.elements_:
self.title = data
if "Court" in self.elements_:
self.court = data
if "CaseNum" in self.elements_:
self.case_number = data
if "Docket" in self.elements_:
self.docket = data
# Handle the date.
if "Released" in self.elements_:
self.ParseDate(data)
elif "Date" in self.elements_:
self.ParseDate(data)
elif "DateTimeSize" in self.elements_:
self.ParseDate(data)
def StartElementHandler(self, name, attrs):
if name not in self.elements_:
self.elements_[name] = []
self.elements_[name].append(attrs)
def EndElementHandler(self, name):
assert name in self.elements_
assert len(self.elements_[name])
self.elements_[name].pop()
if not len(self.elements_[name]):
del self.elements_[name]
def TokenizeBody(self):
self.Concatenate(tokenizer.Tokenize(self.body_))
def Write(self, fh):
lexicon.Document.Write(self, fh)
| true |
e655ffa94b4ce98610d7935ea1ce92d841de8562
|
Python
|
dyjwb001/autoimplant_vnet
|
/AutoImplant_downsampling/datasets/dataAugmentation.py
|
UTF-8
| 3,490 | 2.703125 | 3 |
[] |
no_license
|
import numpy as np
import scipy
from scipy.ndimage import interpolation
def translateit(image, offset, isseg=False):
order = 0 if isseg == True else 5
return scipy.ndimage.interpolation.shift(image, (int(offset[0]), int(offset[1]), 0), order=order, mode='nearest')
def scaleit(image, factor, isseg=False):
order = 0 if isseg == True else 3
height, width, depth= image.shape
zheight = int(np.round(factor * height))
zwidth = int(np.round(factor * width))
zdepth = depth
if factor < 1.0:
newimg = np.zeros_like(image)
row = (height - zheight) // 2
col = (width - zwidth) // 2
layer = (depth - zdepth) // 2
newimg[row:row+zheight, col:col+zwidth, layer:layer+zdepth] = interpolation.zoom(image, (float(factor), float(factor), 1.0), order=order, mode='nearest')[0:zheight, 0:zwidth, 0:zdepth]
return newimg
elif factor > 1.0:
row = (zheight - height) // 2
col = (zwidth - width) // 2
layer = (zdepth - depth) // 2
newimg = interpolation.zoom(image[row:row+zheight, col:col+zwidth, layer:layer+zdepth], (float(factor), float(factor), 1.0), order=order, mode='nearest')
extrah = (newimg.shape[0] - height) // 2
extraw = (newimg.shape[1] - width) // 2
extrad = (newimg.shape[2] - depth) // 2
newimg = newimg[extrah:extrah+height, extraw:extraw+width, extrad:extrad+depth]
return newimg
else:
return image
def resampleit(image, dims, isseg=False):
order = 0 if isseg == True else 5
image = interpolation.zoom(image, np.array(dims)/np.array(image.shape, dtype=np.float32), order=order, mode='nearest')
if image.shape[-1] == 3: # rgb图像
return image
else:
return image if isseg else (image-image.min())/(image.max()-image.min())
def rotateit(image, theta, isseg=False):
order = 0 if isseg == True else 5
return rotate(image, float(theta), reshape=False, order=order, mode='nearest')
def intensifyit(image, factor):
return image*float(factor)
def flipit(image, axes):
if axes[0]:
image = np.fliplr(image)
if axes[1]:
image = np.flipud(image)
return image
def cropit(image, seg=None, margin=5):
fixedaxes = np.argmin(image.shape[:2])
trimaxes = 0 if fixedaxes == 1 else 1
trim = image.shape[fixedaxes]
center = image.shape[trimaxes] // 2
if seg is not None:
hits = np.where(seg!=0)
mins = np.argmin(hits, axis=1)
maxs = np.argmax(hits, axis=1)
if center - (trim // 2) > mins[0]:
while center - (trim // 2) > mins[0]:
center = center - 1
center = center + margin
if center + (trim // 2) < maxs[0]:
while center + (trim // 2) < maxs[0]:
center = center + 1
center = center + margin
top = max(0, center - (trim //2))
bottom = trim if top == 0 else center + (trim//2)
if bottom > image.shape[trimaxes]:
bottom = image.shape[trimaxes]
top = image.shape[trimaxes] - trim
if trimaxes == 0:
image = image[top: bottom, :, :]
else:
image = image[:, top: bottom, :]
if seg is not None:
if trimaxes == 0:
seg = seg[top: bottom, :, :]
else:
seg = seg[:, top: bottom, :]
return image, seg
else:
return image
| true |
abd7e138a8496b91491528913c414f27b50ade32
|
Python
|
jaymekirchner/mybookmgr
|
/SqliteHelper.py
|
UTF-8
| 6,105 | 3.6875 | 4 |
[] |
no_license
|
import sqlite3
class SqliteHelper:
"""Creates connection to database and facilitates sqlite queries to create and modify the user's data.
METHODS:
__init__(self, name = None)
Accepts a database name to initialize the database connection and cursor, and call the open() method
open(self, name)
Attempts to connect to the database with the passed-in name and if it does not exist, the database will be created
create_table(self)
Creates the books table if it does not already exist
create_calendar_table(self)
Creates the calendar table if it does not already exist
create_filter_table(self)
Creates the filter table if it does not already exist
insert(self, query, inserts)
Executes the insert query with parameterized statements
select(self, query):
Executes the select query without parameterized statements
sort_items(self, query, comparisons):
Executes the select query with parameterized statements
update(self, query, updates):
Executes the update query with parameterized statements
delete(self, query)
Executes the delete query without parameterized statements
filter_items(self, category, data)
SQLite query to insert data into results table based on user's filter
"""
def __init__(self, name = None):
"""Accepts a database name to initialize the database connection and cursor, and call the open() method.
Parameters:
name (string) - default is None or user can pass in a database name
"""
self.conn = None
self.cursor = None
if name:
self.open(name)
def open(self, name):
"""Attempts to connect to the database with the passed-in name and if it does not exist, the database will be created.
Raises sqlite3.Error
Failed to connect to database
"""
try:
self.conn = sqlite3.connect(name)
self.cursor = self.conn.cursor()
print(sqlite3.version)
except sqlite3.Error as e:
print("Failed to connect to database")
def create_table(self):
"""Creates the books table if it does not already exist."""
c = self.cursor
c.execute("""CREATE TABLE IF NOT EXISTS books (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
author TEXT NOT NULL,
rating INTEGER NOT NULL,
genre TEXT NOT NULL,
series TEXT NOT NULL,
notes TEXT NOT NULL
)""")
def create_calendar_table(self):
"""Creates the calendar table if it does not already exist."""
c = self.cursor
c.execute("""CREATE TABLE IF NOT EXISTS calendar (
id INTEGER PRIMARY KEY AUTOINCREMENT,
date TEXT NOT NULL,
title TEXT NOT NULL,
author TEXT NOT NULL
)""")
def create_filter_table(self):
"""Creates the filter table if it does not already exist."""
c = self.cursor
c.execute("""CREATE TABLE IF NOT EXISTS results (
id INTEGER NOT NULL,
title TEXT NOT NULL,
author TEXT NOT NULL,
rating INTEGER NOT NULL,
genre TEXT NOT NULL,
series TEXT NOT NULL,
notes TEXT NOT NULL
)""")
def insert(self, query, inserts):
"""Executes the insert query.
Parameters:
query (string) - sqlite query passed in by user with parameterized statements
inserts (tuple) - items to be inserted into parameterized sqlite statement
"""
c = self.cursor
c.execute(query, inserts)
self.conn.commit()
def select(self, query):
"""Executes the select query without parameterized statements.
Parameters:
query (string) - sqlite query without parameterized statements
"""
c = self.cursor
c.execute(query)
return c.fetchall() #returns a list ([] if no matches)
def sort_items(self, query, comparisons):
"""Executes the select query with parameterized statements.
Parameters:
query (string) - sqlite query with parameterized statements
comparisons (tuple) - items to be inserted into parameterized sqlite statement
"""
c = self.cursor
c.execute(query, comparisons)
return c.fetchall() #returns a list ([] if no matches)
def update(self, query, updates):
"""Executes the update query with parameterized statements.
Parameters:
query (string) - sqlite query with parameterized statements
updates (tuple) - items to be inserted into parameterized sqlite statement
"""
c = self.cursor
c.execute(query, updates)
self.conn.commit()
def delete(self, query):
"""Executes the delete query without parameterized statements.
Parameters:
query (string) - sqlite query without parameterized statements
"""
c = self.cursor
c.execute(query)
self.conn.commit()
def filter_items(self, category, data):
"""SQLite query to insert data into results table based on user's filter.
Parameters:
category (string) - category chosen from radio button in filter wizard (author, genre, rating, or notes)
data (string) - value selected from drop-down menu in filter wizard
"""
c = self.cursor
query = "INSERT INTO results SELECT * FROM books WHERE "+ category + "= \"" + data +"\""
c.execute(query)
| true |
c890846fcf46863f4bd4bf521b42a613626677bd
|
Python
|
RemcoHalman/PythonTodoAction
|
/src/utils/writer.py
|
UTF-8
| 994 | 2.984375 | 3 |
[] |
no_license
|
import json
from .colors import BackgroundColors
class Writer():
def put(data, filename):
try:
jsondata = json.dumps(data,
indent=4,
skipkeys=False,
sort_keys=True)
fd = open(filename, 'w')
fd.write(jsondata)
fd.close()
except Exception as e:
BackgroundColors.printColor(
value=f"ERROR writing: {e.filename}",
color=BackgroundColors.WARNING
)
pass
def get(filename):
returndata = {}
try:
fd = open(filename, 'r')
text = fd.read()
fd.close()
returndata = json.loads(text)
print(returndata)
except IOError as e:
BackgroundColors.printColor(
value=f"COULD NOT LOAD: {e.filename}",
color=BackgroundColors.FAIL
)
| true |
44200ee2ace0afcc53a3c27af8c2b8c31b178515
|
Python
|
johannbrehmer/manifold-flow
|
/manifold_flow/transforms/standard.py
|
UTF-8
| 2,179 | 2.9375 | 3 |
[
"MIT"
] |
permissive
|
"""Implementations of some standard transforms."""
import torch
from manifold_flow import transforms
class IdentityTransform(transforms.Transform):
"""Transform that leaves input unchanged."""
def forward(self, inputs, context=None, full_jacobian=False):
batch_size = inputs.shape[0]
if full_jacobian:
jacobian = torch.eye(inputs.shape[1:]).unsqueeze(0)
return inputs, jacobian
else:
logabsdet = torch.zeros(batch_size)
return inputs, logabsdet
def inverse(self, inputs, context=None, full_jacobian=False):
return self(inputs, context, full_jacobian)
class AffineScalarTransform(transforms.Transform):
"""Computes X = X * scale + shift, where scale and shift are scalars, and scale is non-zero."""
def __init__(self, shift=None, scale=None):
super().__init__()
if shift is None and scale is None:
raise ValueError("At least one of scale and shift must be provided.")
if scale == 0.0:
raise ValueError("Scale cannot be zero.")
self.register_buffer("_shift", torch.tensor(shift if (shift is not None) else 0.0))
self.register_buffer("_scale", torch.tensor(scale if (scale is not None) else 1.0))
@property
def _log_scale(self):
return torch.log(torch.abs(self._scale))
def forward(self, inputs, context=None, full_jacobian=False):
batch_size = inputs.shape[0]
num_dims = torch.prod(torch.tensor(inputs.shape[1:]), dtype=torch.float)
outputs = inputs * self._scale + self._shift
if full_jacobian:
raise NotImplementedError
logabsdet = torch.full([batch_size], self._log_scale * num_dims)
return outputs, logabsdet
def inverse(self, inputs, context=None, full_jacobian=False):
batch_size = inputs.shape[0]
num_dims = torch.prod(torch.tensor(inputs.shape[1:]), dtype=torch.float)
outputs = (inputs - self._shift) / self._scale
if full_jacobian:
raise NotImplementedError
logabsdet = torch.full([batch_size], -self._log_scale * num_dims)
return outputs, logabsdet
| true |
517faa0b3de1c68c0db59628ef27339d57079b0a
|
Python
|
zhuli19901106/hackerrank
|
/Practice/Algorithms/Sorting/insertionsort1(AC).py
|
UTF-8
| 355 | 2.859375 | 3 |
[] |
no_license
|
import re
def main():
n = int(raw_input())
a = [int(val) for val in re.split(' ', raw_input())]
key = a[n - 1]
i = n - 1
while True:
if i == 0 or a[i - 1] <= key:
a[i] = key
print(' '.join([str(val) for val in a]))
break
else:
a[i] = a[i - 1]
i -= 1
print(' '.join([str(val) for val in a]))
if __name__ == '__main__':
main()
| true |
631cbba81289f8ea79e44776cc21f6318decc581
|
Python
|
atashi/LLL
|
/algorithm/328.odd-even-linked-list.py
|
UTF-8
| 1,740 | 3.484375 | 3 |
[] |
no_license
|
#
# @lc app=leetcode id=328 lang=python
#
# [328] Odd Even Linked List
#
# https://leetcode.com/problems/odd-even-linked-list/description/
#
# algorithms
# Medium (48.41%)
# Total Accepted: 137.7K
# Total Submissions: 284.3K
# Testcase Example: '[1,2,3,4,5]'
#
# Given a singly linked list, group all odd nodes together followed by the even
# nodes. Please note here we are talking about the node number and not the
# value in the nodes.
#
# You should try to do it in place. The program should run in O(1) space
# complexity and O(nodes) time complexity.
#
# Example 1:
#
#
# Input: 1->2->3->4->5->NULL
# Output: 1->3->5->2->4->NULL
#
#
# Example 2:
#
#
# Input: 2->1->3->5->6->4->7->NULL
# Output: 2->3->6->7->1->5->4->NULL
#
#
# Note:
#
#
# The relative order inside both the even and odd groups should remain as it
# was in the input.
# The first node is considered odd, the second node even and so on ...
#
#
#
# Definition for singly-linked list.
class ListNode(object):
def __init__(self, x):
self.val = x
self.next = None
class Solution(object):
def oddEvenList(self, head):
"""
:type head: ListNode
:rtype: ListNode
"""
if not head:
return head
total = 1
last = head
while last.next:
last = last.next
total += 1
h = head
i = 1
while i <= total // 2 and h.next.next:
# 取出下一个节点,不破坏链表结构
next = h.next
h.next = h.next.next
# 取出节点放到最后
last.next = next
last = last.next
last.next = None
h = h.next
i += 1
return head
| true |
5359bccdf0a7b9c943e7c48aa8aefa3a274afcbc
|
Python
|
kmollee/2014_fall_cp
|
/4/practice_scripts/flashcards.py
|
UTF-8
| 702 | 3.78125 | 4 |
[] |
no_license
|
# sys is a module. It lets us access command line arguments, which are
# stored in sys.argv.
import sys
if len(sys.argv) < 2:
print "Please supply a flash card file."
exit(1)
flashcard_filename = sys.argv[1]
with open(flashcard_filename, 'r') as f:
for line in f.readlines():
# line format is:
# question,answer
# strip() removes any trailing whitespace (like newlines).
# split(",") turns a string into a list of elements, split on ','.
question, answer = line.strip().split(",")
print "Question: " + question
raw_input("> Press return to show answer ")
print "Answer: " + answer
print "" # Print an empty line.
| true |
fa1376606b86dfec2185c70f1a29b32a9abebdb3
|
Python
|
RoshaniPatel10994/ITCS1140---Python-
|
/final exam/exam example.py
|
UTF-8
| 1,609 | 4.15625 | 4 |
[] |
no_license
|
# For loop
def LoadLists():
sales = [0]*12
one_sale = float()
for index in range (0, len(sales)):
one_sale = float(input("Enter monthly sales: "))
sales[index]=one_sale
return sales
#Determine Total
def DetermineTotal(sales):
one_sale = float()
total = float()
for index in range (0, len(sales)):
one_sale = sales[index]
total = total + one_sale
return total
#Determine Average
def DetermineAverage(total):
average = float()
average = total/12
return average
#FindHighest
def FindHighest(sales):
high = float()
one_sale = float()
for index in range (0, len(sales)):
one_sale = sales[index]
if one_sale >high:
high = one_sale
return high
def FindLowest(sales):
low = float()
one_sale = float()
low = sales[0]
for index in range (0, len(sales)):
one_sale = sales[index]
if one_sale < low:
low = one_sale
return low
# Call main
def main():
monthly_sales = [0]*12
total_sales = float()
average_sales = float()
high_sales = float()
low_sales = float()
monthly_sales = LoadLists()
total_sales = DetermineTotal(monthly_sales)
average_sales = DetermineAverage(total_sales)
high_sales = FindHighest(monthly_sales)
low_sales = FindLowest(monthly_sales)
#Print
print("Total sales: ", total_sales)
print("Average sales: ", average_sales)
print("Highest sales: ", high_sales)
print("Lowest sales: ", low_sales)
main()
| true |
973cbd13835591797898446c503195069525be86
|
Python
|
OlgaUlrich/prework
|
/PY-Training/13.py
|
UTF-8
| 344 | 3.6875 | 4 |
[] |
no_license
|
def prime_number(n):
if n<=0:
return "Input positive number, please"
elif n == 1:
return []
elif n == 2:
return [2]
else:
primeNum = [2, 3]
for i in range(3, n+1):
if i % 2 != 0 and i % 3 != 0:
primeNum.append(i)
return primeNum
print(prime_number(6))
| true |
80169d5cf53103156489d0220924149e2a14dd4d
|
Python
|
elllot/Algorithms
|
/Strings/longestCommonSubsequence.py
|
UTF-8
| 491 | 3.375 | 3 |
[] |
no_license
|
def lcs(word1, word2):
row = [0 for _ in range(len(word1) + 1)]
for r in range(1, len(word2)+1):
prev = 0
for c in range(1, len(row)):
val = prev + 1
if word2[r-1] != word1[c-1]:
val = max(row[c-1], row[c])
row[c], prev = val, row[c]
return row[-1]
if __name__ == '__main__':
one = 'aggtab'
two = 'gxtxayb'
print(lcs(one, two))
three = 'abcdgh'
four = 'aedfhr'
print(lcs(three, four))
| true |
b28023b698c2cdb87ebcf25329d503e1c3672958
|
Python
|
nishant5254/Loop-Structure
|
/Alphabet2.py
|
UTF-8
| 237 | 3.796875 | 4 |
[] |
no_license
|
Number_rows=int(input("Enter the no of rows you want to print: "))
Number=65
for i in range(0,Number_rows):
for j in range(0,i+1):
ch=chr(Number)
print(ch,end=" ")
Number=Number+1
Number=65
print("\n")
| true |
afe2539f9603a6843c7292e59e4e13106e70890a
|
Python
|
buihoang95/dialogue-act-project
|
/src/convertToCRFData.py
|
UTF-8
| 1,057 | 2.625 | 3 |
[] |
no_license
|
import codecs
import os
import csv
import re
dialogueList = []
file = open('data/normallizedCRF/' + "CRFdata" + '.csv','wb')
def convertDataToNormalizeData(fileName):
overallData=[]
with open('data/normallized/' + fileName + '.csv', 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',', quotechar='"')
for row in spamreader:
break
data=[]
count = 0
for row in spamreader:
item=row[0].split(':::');
item[1]=item[1].split(':')[0]
data.append('<'+item[1]+'>'+item[0]+'</'+item[1]+'>')
count+=1
if(count == 15):
overallData.append(' '.join(data))
data=[]
count=0
file.write('Data')
file.write('\n')
file.write('\n'.join(overallData))
def main():
for file in os.listdir('./data/normallized'):
if file.endswith('.csv'):
file_name = file[:-4]
convertDataToNormalizeData(file_name)
if __name__ == '__main__':
main()
| true |
ac39f7558d25cda02c7e82646a853610b6e0d2fb
|
Python
|
npinto/craigslistParser
|
/gmail.py
|
UTF-8
| 2,336 | 2.703125 | 3 |
[
"LicenseRef-scancode-unknown-license-reference",
"BSD-3-Clause"
] |
permissive
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
import smtplib
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email import Encoders
import os
# modified from
# http://kutuma.blogspot.com/2007/08/sending-emails-via-gmail-with-python.html
class Gmail():
def __init__(self, gmail_username, gmail_password):
self.gmail_user = gmail_username
self.gmail_pwd = gmail_password
def mail(self, to, subject, text, cc = None, attach = None):
msg = MIMEMultipart()
msg['From'] = self.gmail_user
msg['To'] = to
msg['Subject'] = subject
if cc is not None:
msg['CC'] = cc
msg.attach(MIMEText(text))
if attach:
part = MIMEBase('application', 'octet-stream')
part.set_payload(open(attach, 'rb').read())
Encoders.encode_base64(part)
part.add_header('Content-Disposition',
'attachment; filename="%s"'
% os.path.basename(attach))
msg.attach(part)
mailServer = smtplib.SMTP("smtp.gmail.com", 587)
mailServer.ehlo()
mailServer.starttls()
mailServer.ehlo()
print mailServer.login(self.gmail_user, self.gmail_pwd)
mailServer.sendmail(self.gmail_user, to, msg.as_string())
# Should be mailServer.quit(), but that crashes...
mailServer.close()
if __name__ == "__main__":
# quick hardcoded cmd line
import sys
from pprint import pprint
fin = open(sys.argv[1])
fnames = [fname.split()[0] for fname in fin.readlines()]
txts = [open(fname).read() for fname in fnames]
emails = [fname.split('__grading.txt')[0].split('/')[-1]
for fname in fnames]
pprint(emails)
# init GMail object with user/pass
from getpass import getpass
print "*"*80
username = raw_input("Gmail account name: ")
password = getpass("Password: ")
gm = Gmail(username, password)
print "*"*80
cc = "pinto@mit.edu"
for email, txt in zip(emails, txts):
to = email # DEBUG: "pinto@mit.edu"
subject = "CS264 HW4 Grade (%s)" % email
msg = txt
attach = None # could be attach = "/path/to/file"
print email,
gm.mail(to, subject, msg, cc=cc, attach=attach)
| true |
6e842c09073784a1a2fb13e02ee2ce6e4c5d5e48
|
Python
|
KushalkumarUmesh/Internal-Initiative
|
/GoalSheet/empDash_Goalsheet_OnlineExam/realapp/modules/bcsdata/bcscheckclaims.py
|
UTF-8
| 9,909 | 2.640625 | 3 |
[
"Apache-2.0"
] |
permissive
|
"""
Overall Approach is as follows: Re-write the entire BCS-CHeck program. DO it in this order:
0) Creat main loop and view-file
a) Create Holiday Table - Done
b) Write methods for:
-IsHoliday?
-Hours booked by Emp on a day, on a project : Total billable hours
-Is the emp on leave today? Is the leave approved?
c) Write methods for Error recording: Need to define a table
d) Methods for error-detection
e) Aggregate metrics
= For employee
= For DC-Leads
= For Org
= YTD, MTD Values
TODO:
a) Bug: Total claimed hours does not include hours booked on Sunday - Pragnya.Senapati@msg-global.com
"""
import logging
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy import and_
import datetime
import os
from bcsorgstruct import *
from bcsdomain import *
from projdomain import *
from bcsmodel import *
import calendar
from emailstrings import *
from hrmsempdata import getEmpDictbyEmail
from notification import notify
from hrmsdomain import getAllEmployees
#### THIS NOT A VIEW FILE, views are being created only for testing to be moved to another file
#Method for genering error-log for each employee
#Overall structure is as follows:
# For Each employee, For each day:
# Get bookings, get leave info
# Calculate agreegates
# Calcuate Utiization
def validEmpBcsData(empEmail,month, year, mrange ) :
messageBuffer = []
bookedHours = 0 # Total billable and non-billable hours booked
billableHours = 0 # Initialize total billable hours available
totalLeaveHours = 0 # Total Leave approved
totalLeaveAppliedHours = 0 # Total Leave Applied For (not yet approved)
errorcount = 0
projBillableHash = dict() # Is the project billable? Not used
projNameHash = dict() # Project Name
projList = dict() # Hash of emp-hash hours
e = empEmail # For convenience
for d in range(1,mrange) : #Extremely inefficent, brute force, but also safest course of action
day = datetime.date(year,month,d)
dayOfWeek = day.weekday()
wd = (dayOfWeek <= 4) and not isHoliday(day) # WorkingDay if true
if wd :
billableHours += 8 # Add 8 billable hours
#Get Leave data ONLY if it is a working-date
(leaveHours,leaveHoursApplied) = getLeaveInfo(e,day)
totalLeaveHours += leaveHours
totalLeaveAppliedHours += leaveHoursApplied
#Emp. can work on weekends/holidays, so the processing need to be completed
bookings = EmpBCSClaimData.query.filter_by(bookingDate = day).\
filter_by(empEmail = e).all()
daysBooking = 0 # this day, this employe, store separately
for b in bookings: # All bookings for this day
project_ID = b.project_ID.strip()
projectName = b.projectName.strip()
billability = b.billability.strip()
duration = b.duration
empEmail = b.empEmail # Should be same as "e", no need to check...its part of the filter_by
projBillableHash[project_ID] = billability
projNameHash[project_ID] = projectName
fduration = float(duration) #Convert String to float
if (round(fduration*60) == 8 or round(fduration*60) == 4 ) : # Person has claimed min instead of hours
msg = "WARNING:%s:Looks like MINUTES instead of HOURS on Project:%s" % (day.strftime('%Y-%m-%d'),projectName)
logEmpBCSMessage(messageBuffer, msg )
# logEmpError(e, msg)
daysBooking += fduration # Hours booked only today, all projects: Used for checking
if project_ID in projList.keys() : # Project is already encountered
if empEmail in projList[project_ID] : #Emp in this project encountered
projList[project_ID][empEmail] += fduration #Add the hours
else :
projList[project_ID][empEmail] = fduration
else :
projList[project_ID] = dict()
projList[project_ID][empEmail] = fduration
#Start checking for various errors
#No claim found
if wd and not daysBooking and leaveHours != 8 :
logEmpBCSMessage(messageBuffer, "REMINDER:%s:No booking or approved leave found, please book your hours." % (day.strftime('%Y-%m-%d')) )
errorcount += 1
#Total 8 hours claimed if leave was applied for
if wd and daysBooking and (leaveHours or leaveHoursApplied) and \
( (daysBooking + leaveHours) != 8 and (daysBooking + leaveHoursApplied) != 8) :
logEmpBCSMessage(messageBuffer, "WARNING:%s:Hours Booked AND Leave(applied for) do not add-up to 8 hours" % (day.strftime('%Y-%m-%d') ) )
errorcount += 1
if wd and daysBooking > 8 :
logEmpBCSMessage(messageBuffer, "INFORMATION:%s:More than 8 Hours(%d) Booked on a single day" % ( day.strftime('%Y-%m-%d'), daysBooking ) )
errorcount += 1
if errorcount :
logEmpBCSMessage(messageBuffer, "Total %d discrepencies identified in BCS booking for month of %s" % \
(errorcount, calendar.month_name[month]))
else :
logEmpBCSMessage(messageBuffer, "Thanks for claiming BCS correctly. No errors detected")
#Aggregate errors and messages
billedHours = 0
# logEmpBCSMessage(messageBuffer, "")
# logEmpBCSMessage(messageBuffer, "Utilization Summary:")
bcsUtilSummary = dict()
bcsProjSummary = dict()
for pid in projList.keys() :
for e in projList[pid].keys() :
# logEmpBCSMessage(messageBuffer, "Project[%s]:Hours[%s]" % (projNameHash[pid], str(projList[pid][e])))
bcsProjSummary[pid] = "Project[%s]:Hours[%s]" % (projNameHash[pid], str(projList[pid][e]))
if projBillableHash[pid] != 'N/B' :
billedHours += projList[pid][e]
bookedHours += projList[pid][e]
bcsUtilSummary["AvailableHours"] = billableHours
bcsUtilSummary["BookedHours"] = bookedHours
bcsUtilSummary["BilledHours"] = billedHours
bcsUtilSummary["LeaveHours"] = totalLeaveHours
# logEmpBCSMessage(messageBuffer, "Available Hours[%d], Booked Hours[%d], Billed Hours[%d]" % \
# (billableHours, bookedHours,bookedHours))
return (messageBuffer, bcsProjSummary, bcsUtilSummary)
def getLeaveInfo(e,day) :
#Get Leave Data
leaves = EmpBCSLeaveData.query.filter_by(empEmail = e).filter(and_(EmpBCSLeaveData.dateStart <= day, EmpBCSLeaveData.dateEnd >= day)).all()
leaveHours = 0
leaveHoursApplied = 0
for l in leaves: #Leave record
# print("Leave:[%s]:%s:Start=%s:End=%s:Hours:%s" %(str(day), e, str(l.dateStart), str(l.dateEnd), str(l.duration)) )
dur = float(l.duration[:-1])
#status ='Applied For' and 'Approved'. Others (planned, rejected, etc.) are ignored
if l.status == 'Approved':
if dur >=1 :
leaveHours += 8
else :
leaveHours += 4
if l.status == 'Applied For':
if dur >=1 :
leaveHoursApplied += 8
else :
leaveHoursApplied += 4
# print("Half Day Leave:[%s]:%s:%s:%s:Hours:%s" %(str(day), e, str(l.dateStart), str(l.dateEnd), str(l.duration)) )
return(leaveHours,leaveHoursApplied)
def isHoliday(day) :
fetch = Holidays.query.filter_by(date = day).first()
return fetch
def logEmpBCSMessage(messageBuffer, message) :
messageBuffer += [message]
return
def formatMessageBuffer(messList) :
str = htmlhead + "<table>"
for m in messList :
str += "<tr><td>" + m + "</td></tr>"
str += "</table>" + hrmsfooter + htmlfooter
return str
def emailBCSInfoToEmp(empEmail,date, fullmsgbuf, bcsProjSummary, bcsUtilSummary) :
#Get emp Details
empDict = getEmpDictbyEmail(empEmail)
#Form Message
subject ="BCS Booking and Error Summary:" + date.strftime('%d-%m-%y')
message = htmlhead + "<h4>Summary for : " + empDict["FIRST_NAME"] + " " + empDict["LAST_NAME"] +"</h4>"
message = "<h4>This is in BETA Test. Kindly help by pointing out any errors to K.Srinivas.</h4>"
tstr = "<table>"
for m in fullmsgbuf :
tstr += "<tr><td>" + m + "</td></tr>"
tstr += "</table>"
message += tstr
message += "<h3>Available Hours[%d], Booked Hours[%d], Billed Hours[%d] and Leave Hours[%d]</h3>" % \
(bcsUtilSummary["AvailableHours"], bcsUtilSummary["BookedHours"], \
bcsUtilSummary["BilledHours"],bcsUtilSummary["LeaveHours"] )
message += hrmsfooter + htmlfooter
#Send e-mail
notify(empEmail, "BETA:" + subject , message , templateId="-1")
def emailBCSInfoToPMO (date, allErrors ) :
#Form Message
subject = "BCS Booking Errors-All:" + date.strftime('%d-%m-%y')
message = "<h4>Error Summary for all employees</h4>"
message = "<h4>This is in BETA Test. Kindly help by pointing out any errors to K.Srinivas.</h4>"
tstr = "<table>"
for m in allErrors :
tstr += "<tr><td>" + m + "</td></tr>"
tstr += "</table>"
message += tstr
message += hrmsfooter
notifyGroup("PMO", "BETA:" + subject , htmlhead+ message+ htmlfooter, fromemail = "bcs-checkbookings@msg-global.com")
return message
def checkBCSEmailsWithHRMS(nameHash) :
retStr = ""
emps = getAllEmployees()
empDict = {e.OFFICE_EMAIL_ID.lower():e.OFFICE_EMAIL_ID for e in emps }
for n in nameHash.values() :
if n.lower() not in empDict.keys() :
retStr += ":" + n
if retStr:
return ("Following BCS-Emails not in HRMS:" + retStr)
return("")
##############################################################################################################
### Stuff below is the old one that will not work with DB #########################################################
##############################################################################################################
| true |
ecb19ef29d81b9d52502d24eff26bf36e82243df
|
Python
|
Ray980625/python200818
|
/turtle5.py
|
UTF-8
| 120 | 3.9375 | 4 |
[] |
no_license
|
import turtle
a = turtle.Turtle()
b = int(input('邊數:'))
for i in range(b):
a.forward(100)
a.left(360/b)
| true |
c11bd21069ace24167a3d9e341c9e0c818166b6f
|
Python
|
Elliotcomputerguy/LearningPython
|
/ListMethods.py
|
UTF-8
| 4,862 | 4.46875 | 4 |
[] |
no_license
|
#!/usr/bin/env python
# Methods are just like functions, except they are attached to a non-module value with a period.
# A function is not a method just because it is in a module. It can some times get confusing.
# Appending list elements via the method append() is the easiest solution rather than concatenating.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
sneakers.append('Zanotti')
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
newListName = ['Zanotti']
for element in range(len(sneakers)):
newListName.append(sneakers[element])
print(newListName)
# ===============================================================
# If you want to insert a new item at any position you can use the insert() method. If you specify a position that is already allocated
# it will not remove the element but change the position of the element. You specify the index and then the element you want to add.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
sneakers.insert(0, 'Zanotti')
print(sneakers) # = ['Zanotti', 'Jordan', 'Nike', 'Yeezy', 'Adidas']
print(sneakers[0]) # = Zanotti
print(sneakers[1]) # = Jordan
# ===============================================================
# Sometimes you will want to use a list element after removing it from the list. The pop() method allows you do just this.
# If you do not pass an argument into the pop() method it will remove the last element in the list. To choose which element
# you want to remove add the index position.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
popVariable = sneakers.pop()
print(sneakers)
print(popVariable)
popVariable = sneakers.pop(0)
print(sneakers)
print(popVariable)
# ===============================================================
# How to pop in a nested list.
# ===============================================================
# Example:
sneakers = [['Nike', 'Yeezy', 'Jordan', 'Adidas', 'Zanotti'],[8, 7, 9, 6, 5]]
popped = sneakers[0].pop(0)
popped1 = sneakers[1].pop(0)
print(popped)
print(popped1)
# ===============================================================
# if you only know the value of the list element you can use the remove() method.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
removeItem = 'Adidas'
def func():
print(f'List item located. Removing item {removeItem}')
if removeItem.upper() in sneakers:
func()
sneakers.remove(removeItem.upper())
elif removeItem.lower() in sneakers:
func()
sneakers.remove(removeItem.lower())
elif removeItem.capitalize() in sneakers:
func()
sneakers.remove(removeItem.capitalize())
else:
print('Cannot locate List item')
print(sneakers)
# ===============================================================
# Most likely when items are assigned to a list they are in a unpredicable order. To sort a list alphabetically or in reverse order
# you can use the sort() method. You can either sort the list permanently or just display sorted list in the print() function.
# When all values are not in lowercase sorting a list alphabetically is a little more complicated.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
print(sorted(sneakers)) #<-- Only print out the list in alphabetical order. If used with numbers will put them in numerical order.
print(sneakers)
sneakers.sort() #<-- Permanently sort the list alphabetically.
print(sneakers)
sneakers.sort(reverse=True) #<-- sort list in Reverse alphabetical order. Will reverse numerical order. Good for scores by keeping highest at top.
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
for sneaker in sorted(sneakers):
print(sneaker)
# ===============================================================
# To reverse the list you can use the reverse() method. Again there is no way to just print this and
# will be a permanent change. To reverse it back you simply rerun the reverse() method
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
sneakers.reverse()
print(sneakers)
sneakers.reverse()
print(sneakers)
# ===============================================================
# Index method will return the integer index position of the list element.
# If there are duplicates of the element then it will produce the first found.
# ===============================================================
# Example:
sneakers = ['Jordan', 'Nike', 'Yeezy', 'Adidas']
sneakers.index('Jordan')
# ===============================================================
| true |
6186d1b4608c02daf821f260c746d331d11be57e
|
Python
|
wattaihei/ProgrammingContest
|
/Codeforces/ECR84/probA.py
|
UTF-8
| 204 | 2.75 | 3 |
[] |
no_license
|
import sys
input = sys.stdin.readline
Q = int(input())
Query = [list(map(int, input().split())) for _ in range(Q)]
for n, k in Query:
ok = k**2 <= n and (n-k)%2 == 0
print("YES" if ok else "NO")
| true |
18e4d911d7500fc1807d7f39796530bf88a2f257
|
Python
|
AnimState/AnimX_2018
|
/repivot.py
|
UTF-8
| 2,484 | 2.890625 | 3 |
[] |
no_license
|
"""
Copyright (c) 2018 Mike Malinowski
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
"""
This is a simple re-pivoting tool which allows you to select an
object you want to animate, and an object you want to animate it
from.
It will map all the motion of the object onto the new pivot object
and allow you to manipulate the object from that pivot. You can then
keep running this to change the pivot as and hwen you need.
By Mike Malinowski
www.twisted.space
"""
import pymel.core as pm
# -- Assume a selection order. The first object is the object
# -- we want to drive, the second object is the object we want
# -- to use as a new pivot point
driven = pm.selected()[0]
driver = pm.selected()[1]
# -- We need to map the motion of the soon-to-be driven
# -- object onto our driver
cns = pm.parentConstraint(
driven,
driver,
maintainOffset=True,
)
pm.bakeResults(
driver,
time=[
pm.playbackOptions(q=True, min=True),
pm.playbackOptions(q=True, max=True),
],
simulation=True,
)
# -- Now remove the constraint, and ensure there are no
# -- constraints on the soon-to-be driven object
pm.delete(cns)
constraints = list()
for child in driven.getChildren():
if isinstance(child, pm.nt.Constraint):
constraints.append(child)
pm.delete(constraints)
# -- Now we can constrain the driven to our new driver and
# -- we should get the same result, but we can manipulate
# -- it from our new space
pm.parentConstraint(
driver,
driven,
maintainOffset=True,
)
| true |
7f27b0263fab50ba716c24013ce1ce5d95f4b73a
|
Python
|
openjason/refer
|
/listmysqldatabases.py
|
UTF-8
| 5,432 | 2.953125 | 3 |
[] |
no_license
|
#!/usr/bin/env python
# coding: utf-8
import json
import pymysql
class Mysql(object):
# mysql 端口号,注意:必须是int类型
def __init__(self, host, user, passwd, port, db_name):
self.host = host
self.user = user
self.passwd = passwd
self.port = port
self.db_name = db_name
def select(self, sql):
"""
执行sql命令
:param sql: sql语句
:return: 元祖
"""
try:
conn = pymysql.connect(
host=self.host,
user=self.user,
passwd=self.passwd,
port=self.port,
database=self.db_name,
charset='utf8',
cursorclass=pymysql.cursors.DictCursor
)
cur = conn.cursor() # 创建游标
# conn.cursor()
cur.execute(sql) # 执行sql命令
res = cur.fetchall() # 获取执行的返回结果
cur.close()
conn.close()
return res
except Exception as e:
print(e)
return False
def get_all_db(self):
"""
获取所有数据库名
:return: list
"""
# 排除自带的数据库
exclude_list = ["sys", "information_schema", "mysql", "performance_schema"]
sql = "show databases" # 显示所有数据库
res = self.select(sql)
# print(res)
if not res: # 判断结果非空
return False
db_list = [] # 数据库列表
for i in res:
db_name = i['Database']
# 判断不在排除列表时
if db_name not in exclude_list:
db_list.append(db_name)
# print(db_name)
if not db_list:
return False
#保存结果数据库列表
with open('dblist.txt','w') as fp:
for oneitem in db_list:
fp.write(oneitem+'\n')
return db_list
def get_user_list(self):
"""
获取用户列表
:return: list
"""
# 排除自带的用户
exclude_list = ["root", "mysql.sys", "mysql.session"]
sql = "select User from mysql.user"
res = self.select(sql)
# print(res)
if not res: # 判断结果非空
return False
user_list = []
for i in res:
db_name = i['User']
# 判断不在排除列表时
if db_name not in exclude_list:
user_list.append(db_name)
if not user_list:
return False
return user_list
def get_user_power(self):
"""
获取用户权限
:return: {}
{
"test":{ # 用户名
"read":["db1","db2"], # 只拥有读取权限的数据库
"all":["db1","db2"], # 拥有读写权限的数据库
},
...
}
"""
info_dict = {} # 最终结果字典
# 获取用户列表
user_list = self.get_user_list()
if not user_list:
return False
# 查询每一个用户的权限
for user in user_list:
# print("user",user)
sql = "show grants for {}".format(user)
res = self.select(sql)
if not res:
return False
for i in res:
key = 'Grants for {}@%'.format(user)
# print("key",key)
# 判断key值存在时
if i.get(key):
# print(i[key])
# 包含ALL或者SELECT时
if "ALL" in i[key] or "SELECT" in i[key]:
# print(i[key])
if not info_dict.get(user):
info_dict[user] = {"read": [], "all": []}
cut_str = i[key].split() # 空格切割
# print(cut_str,len(cut_str))
power = cut_str[1] # 权限,比如ALL,SELECT
if len(cut_str) == 6: # 判断切割长度
# 去除左边的`
tmp_str = cut_str[3].lstrip("`")
else:
tmp_str = cut_str[4].lstrip("`")
# 替换字符串
tmp_str = tmp_str.replace('`.*', '')
value = tmp_str.replace('\_', '-')
# 判断权限为select 时
if power.lower() == "select":
if value not in info_dict[user].get("read"):
# 只读列表
info_dict[user]["read"].append(value)
else:
if value not in info_dict[user].get("all"):
# 所有权限列表
info_dict[user]["all"].append(value)
# print(info_dict)
return info_dict
if __name__ == '__main__':
host = "10.88.23.199"
user = "it"
passwd = "007"
port = 3306
db_name = "mysql"
obj = Mysql(host, user, passwd, port, db_name)
all_db_list = obj.get_all_db()
user_power = obj.get_user_power()
print("all_db_list",all_db_list)
print("user_power",user_power)
| true |
12446d8dbf64982ed30939ac150028c1ebc1ee8e
|
Python
|
soko48653a/MSE_Python
|
/ex010.py
|
UTF-8
| 188 | 3.484375 | 3 |
[] |
no_license
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
#예제 10번 : 5/3의 결과를 화면에 출력하세요.
print(5/3) # print(A) -> A를 출력 ( 숫자 또는 연산으로 구성)
| true |
f2b59c0312f88057f785a4efb009f5f04c28abe4
|
Python
|
Safankov/NureQ_bot
|
/controller.py
|
UTF-8
| 17,202 | 2.59375 | 3 |
[] |
no_license
|
import math
import json
import random
from router import command_handler, response_handler, callback_handler, \
default_callback_handler, default_command_handler, default_response_handler
NEW_QUEUE_COMMAND_RESPONSE_TEXT \
= "Введите имя новой очереди в ответ на это сообщение"
DEFAULT_QUEUES_PAGE_SIZE = 3
class ButtonCallbackType:
NOOP = 1
SHOW_NEXT_QUEUE_PAGE = 2
SHOW_PREVIOUS_QUEUE_PAGE = 3
SHOW_QUEUE = 4
ADD_ME = 5
CROSS_OUT = 6
UNCROSS_OUT = 7
REMOVE_ME = 8
class Controller:
def __init__(self, telegram_message_manager, repository):
self.telegram_message_manager = telegram_message_manager
self.repository = repository
@command_handler("/start")
@command_handler("/start@NureQ_bot")
def handle_start_command(self, message):
self.telegram_message_manager.send_message(
message["chat"]["id"],
"Йоу"
)
@command_handler("/newqueue")
@command_handler("/newqueue@NureQ_bot")
def handle_new_queue_command(self, message):
self.telegram_message_manager.send_message(
message["chat"]["id"],
NEW_QUEUE_COMMAND_RESPONSE_TEXT,
reply_markup={"force_reply": True}
)
@command_handler("/showqueue")
@command_handler("/showqueue@NureQ_bot")
def handle_show_queue_command(self, message):
self.handle_generic_queue_command(
message,
ButtonCallbackType.SHOW_QUEUE,
"Выберите очередь, которую хотите посмотреть."
)
@command_handler("/crossout")
@command_handler("/crossout@NureQ_bot")
def handle_cross_out_command(self, message):
self.handle_generic_queue_command(
message,
ButtonCallbackType.CROSS_OUT,
"Выберите очередь, из которой необходимо вычеркнуть участника"
)
@command_handler("/uncrossout")
@command_handler("/uncrossout@NureQ_bot")
def handle_uncross_out_command(self, message):
self.handle_generic_queue_command(
message,
ButtonCallbackType.UNCROSS_OUT,
"Выберите очередь, в которую необходимо вернуть участника"
)
@command_handler("/addme")
@command_handler("/addme@NureQ_bot")
def handle_add_me_command(self, message):
self.handle_generic_queue_command(
message,
ButtonCallbackType.ADD_ME,
"Выберите очередь, в которую хотите добавиться."
)
@command_handler("/removeme")
@command_handler("/removeme@NureQ_bot")
def handle_remove_me_command(self, message):
self.handle_generic_queue_command(
message,
ButtonCallbackType.REMOVE_ME,
"Выберите очередь, которую хотите покинуть."
)
@response_handler(NEW_QUEUE_COMMAND_RESPONSE_TEXT)
def handle_new_queue_response(self, message):
queue_name = message["text"]
error = self.repository.create_queue(queue_name)
if error == "INTEGRITY_ERROR":
self.telegram_message_manager.send_message(
message["chat"]["id"],
"Очередь с именем " + queue_name + " уже существует"
)
return
self.repository.commit()
self.telegram_message_manager.send_message(
message["chat"]["id"],
"Создана новая очередь: " + queue_name
)
@callback_handler(ButtonCallbackType.ADD_ME)
def handle_add_me_callback(
self,
callback_query,
callback_query_data
):
try:
username = callback_query["from"]["username"]
queue_id = callback_query_data["queue_id"]
error = self.repository.add_me_to_queue(username, queue_id)
self.repository.commit()
queue_name = self.repository.get_queue_name_by_queue_id(queue_id)
if error == "DUPLICATE_MEMBERS":
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"@{username} уже состоит в данной очереди: {queue_name}"
)
return
if error == "NO_QUEUE":
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"Данной очереди не существует: " + queue_name
)
return
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"@{username} добавлен(а) в очередь: {queue_name}"
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.CROSS_OUT)
def handle_cross_out_callback(
self,
callback_query,
callback_query_data
):
try:
queue_id = callback_query_data["queue_id"]
username = self.repository.find_uncrossed_queue_member(queue_id)
queue_name = self.repository.get_queue_name_by_queue_id(queue_id)
if username is None:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"В данной очереди не осталось участников: " + queue_name
)
return
self.repository.cross_out_the_queue_member(username, queue_id)
self.repository.commit()
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"Участник @{username} вычеркнут из очереди: {queue_name}"
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.UNCROSS_OUT)
def handle_uncross_out_callback(
self,
callback_query,
callback_query_data
):
try:
queue_id = callback_query_data["queue_id"]
username = self.repository.find_last_crossed_queue_member(queue_id)
queue_name = self.repository.get_queue_name_by_queue_id(queue_id)
if username is None:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"В данной очереди не осталось подходящих участников: "
+ queue_name
)
return
self.repository.uncross_out_the_queue_member(username, queue_id)
self.repository.commit()
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"Участник @{username} снова в очереди: {queue_name}"
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.REMOVE_ME)
def handle_remove_me_callback(
self,
callback_query,
callback_query_data
):
try:
username = callback_query["from"]["username"]
queue_id = callback_query_data["queue_id"]
queue_name = self.repository.get_queue_name_by_queue_id(queue_id)
success \
= self.repository.remove_user_from_queue(username, queue_id)
if not success:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"@{username} не состоит в данной очереди: {queue_name}"
)
return
self.repository.commit()
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
f"Участник @{username} удален из очереди: {queue_name}"
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.NOOP)
def handle_noop_callback(self, callback_query, callback_query_data):
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.SHOW_NEXT_QUEUE_PAGE)
def handle_show_next_queue_page_callback(
self,
callback_query,
callback_query_data
):
try:
main_button_type = callback_query_data["main_button_type"]
queue_pagination_reply_markup \
= build_queue_pagination_reply_markup(
self.repository,
page_index=callback_query_data["page_index"] + 1,
page_size=DEFAULT_QUEUES_PAGE_SIZE,
main_button_type=main_button_type
)
if queue_pagination_reply_markup is None:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"Пока что нету ни одной доступной очереди."
)
return
self.telegram_message_manager.edit_message_reply_markup(
callback_query["message"]["chat"]["id"],
callback_query["message"]["message_id"],
queue_pagination_reply_markup
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.SHOW_PREVIOUS_QUEUE_PAGE)
def handle_show_previous_queue_page_callback(
self,
callback_query,
callback_query_data
):
try:
main_button_type = callback_query_data["main_button_type"]
queue_pagination_reply_markup \
= build_queue_pagination_reply_markup(
self.repository,
page_index=callback_query_data["page_index"] - 1,
page_size=DEFAULT_QUEUES_PAGE_SIZE,
main_button_type=main_button_type
)
if queue_pagination_reply_markup is None:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"Пока что нету ни одной доступной очереди."
)
return
self.telegram_message_manager.edit_message_reply_markup(
callback_query["message"]["chat"]["id"],
callback_query["message"]["message_id"],
queue_pagination_reply_markup
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@callback_handler(ButtonCallbackType.SHOW_QUEUE)
def handle_show_queue_callback(self, callback_query, callback_query_data):
try:
queue_id = callback_query_data["queue_id"]
queue_name = self.repository.get_queue_name_by_queue_id(queue_id)
if queue_name is None:
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"Очереди с ID: " + queue_id + " не существует"
)
return
queue_members \
= self.repository.get_queue_members_by_queue_id(queue_id)
if len(queue_members) != 0:
queue_description = f"{queue_name}:\n" + "".join(map(
lambda member_index: member_index[1].format_queue_string(
member_index[0] + 1
),
enumerate(queue_members)
))
else:
queue_description = f"{queue_name}:\nОчередь пуста"
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
queue_description,
parse_mode="HTML"
)
finally:
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@default_callback_handler
def handle_unknown_callback(self, callback_query, callback_query_data):
callback_type = callback_query_data["type"]
print(f"Received an unknown callback query type: {callback_type}")
self.telegram_message_manager.send_message(
callback_query["message"]["chat"]["id"],
"???"
)
self.telegram_message_manager.answer_callback_query(
callback_query["id"]
)
@default_command_handler
@default_response_handler
def handle_unknown_response(self, message):
self.telegram_message_manager.send_message(
message["chat"]["id"],
"???"
)
def handle_error_while_processing_update(self, update):
if "message" in update:
chat_id = update["message"]["chat"]["id"]
elif "callback_query" in update:
chat_id = update["callback_query"]["message"]["chat"]["id"]
else:
return
self.telegram_message_manager.send_message(chat_id, "Ошибка")
def handle_generic_queue_command(
self,
message,
main_button_type,
success_message
):
queue_pagination_reply_markup = build_queue_pagination_reply_markup(
self.repository,
page_index=1,
page_size=DEFAULT_QUEUES_PAGE_SIZE,
main_button_type=main_button_type
)
if queue_pagination_reply_markup is None:
self.telegram_message_manager.send_message(
message["chat"]["id"],
"Пока что нету ни одной доступной очереди."
)
return
self.telegram_message_manager.send_message(
message["chat"]["id"],
success_message,
queue_pagination_reply_markup
)
def build_queue_pagination_reply_markup(
repository,
page_index,
page_size,
main_button_type
):
total_queue_count = repository.get_total_queue_count()
if total_queue_count == 0:
return None
queues_page = repository.get_queues_page(
page_index,
page_size
)
queue_choice_buttons = make_queue_choice_buttons(
queues_page,
page_index,
page_size,
total_queue_count,
main_button_type
)
return {"inline_keyboard": queue_choice_buttons}
def make_queue_choice_buttons(
queues_page,
page_index,
page_size,
total_queue_count,
main_button_type
):
total_page_count = math.ceil(total_queue_count / page_size)
is_first_page = page_index == 1
is_last_page = page_index == total_page_count
return list(map(
lambda queue:
[
{
"text": queue.name,
"callback_data": json.dumps({
"type": main_button_type,
"queue_id": queue.id,
}),
}
],
queues_page
)) + [[
{
"text": "<" if not is_first_page else "x",
"callback_data":
json.dumps({
"type": ButtonCallbackType.NOOP,
"distinction_factor": random.random(),
})
if is_first_page
else json.dumps({
"type": ButtonCallbackType.SHOW_PREVIOUS_QUEUE_PAGE,
"page_index": page_index,
"main_button_type": main_button_type,
}),
},
{
"text": f"{page_index}/{total_page_count}",
"callback_data": json.dumps({
"type": ButtonCallbackType.NOOP,
"distinction_factor": random.random(),
}),
},
{
"text": ">" if not is_last_page else "x",
"callback_data":
json.dumps({
"type": ButtonCallbackType.NOOP,
"distinction_factor": random.random(),
})
if is_last_page
else json.dumps({
"type": ButtonCallbackType.SHOW_NEXT_QUEUE_PAGE,
"page_index": page_index,
"main_button_type": main_button_type,
}),
},
]]
| true |
5c800ea4b15493913e6d8830957b90bbdaf588fd
|
Python
|
avirtualcoder/learning_code
|
/homework/100_1.py
|
UTF-8
| 423 | 4.28125 | 4 |
[] |
no_license
|
#猜数字游戏
import random
guess=1
number=random.randint(0,100)
while True:
numberGuess = eval(input('输入一个0和100间的整数: '))
print(numberGuess,end=' ')
if numberGuess!=number:
print('第{}次猜测,猜错了,结果偏{}'.format(guess,'大' if numberGuess>number else "小"))
guess+=1
else:
print('弟%d次,猜测猜对了!!!'%(guess))
break
| true |
b9d6c34c8be9db7d9e4ff49b07ebe245abca2319
|
Python
|
huangpd/nongAnServer
|
/naxy_api/apps/base/utils.py
|
UTF-8
| 6,733 | 2.71875 | 3 |
[] |
no_license
|
# coding=utf-8
import calendar
import json
import urllib
import urllib2
import re
from datetime import datetime, date
from decimal import *
from django.db import connection
class utils:
"""
工具类
"""
def __init__(self):
pass
@staticmethod
def md5(str):
"""
md5加密
:param str:
:return:
"""
import hashlib
m = hashlib.md5()
m.update(str)
return m.hexdigest().upper()
@staticmethod
def send_request(type, url, params={}):
"""
发送请求
:param type: 请求类型-str POST或GET
:param url: 请求地址-str
:param params: 发送请求参数 dict
:return:
"""
try:
if type in ['POST', 'GET']:
request = urllib2.Request(url)
if type == 'GET':
res_data = urllib2.urlopen(request)
elif type == 'POST':
encode_param = urllib.urlencode(params)
res_data = urllib2.urlopen(url=request, data=encode_param)
data = res_data.read()
return data
else:
return ''
except Exception as e:
return ''
@staticmethod
def param_list_index_value(parameter_list, str):
'''
接口参数值查询
:param parameter_list: 参数列表
:param str: 要查询得参数名称
:return:
'''
if str == "service_charge":
ret = "0"
else:
ret = ""
for parameter in parameter_list:
parameter_info = parameter.split(':')
if parameter_info[0] == str:
if len(parameter_info) > 1:
ret = parameter_info[1]
else:
ret = ''
break
return ret
@staticmethod
def hiding_info(info, type):
"""
隐藏用户信息
:param user_info: 用户信息手机或者email
:param type: 屏蔽类型 1 手机, 2 email, 3 身份证号码, 4 银行卡号
:return:
"""
try:
if info:
if type == 1:
info = info[0:3] + "****" + info[-4]
elif type == 2:
index = info.index("@")
info = info[0:index - 4] + "****" + info[index:]
elif type == 3:
info = info[0:6] + "********" + info[len(info) - 2:len(info)]
elif type == 4:
info = info[0:6] + " **** **** ****" + info[len(info) - 3:len(info)]
return info
except Exception, e:
return ""
@staticmethod
def checkPhoneNo(phone_no):
"""
校验手机号
:param phone_no:
:return:
"""
reMobile = re.match(r'1\d{10}$', phone_no)
if not reMobile:
return False
else:
return True
pass
@staticmethod
def checkBankCardNo(card_no):
"""
校验银行卡号
:param phone_no:
:return:
"""
# 现在暂时只校验卡号长度,现在一般银行卡号都是16位和19位
if len(card_no) == 16 or len(card_no) == 19:
return True
return False
pass
@staticmethod
def checkIDCardNo(card_no):
"""
校验身份证号码
:param card_no: 身份证号
:return:
"""
def get_checkCode(card_no):
CountValue = [7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2]
get_checkcode_key = reduce(
lambda x, y: x + y,
map(
lambda x, y: x * y,
[int(x) for x in card_no[:-1]],
CountValue))
checkcode_key = get_checkcode_key % 11
CountRule = {
'0': '1',
'1': '0',
'2': 'X',
'3': '9',
'4': '8',
'5': '7',
'6': '6',
'7': '5',
'8': '4',
'9': '3',
'10': '2'}
get_checkcode_value = CountRule.get(str(checkcode_key), None)
return get_checkcode_value
if card_no[-1] == get_checkCode(card_no):
return True
return False
@staticmethod
def toJSON(self):
"""
将models转换成json
:return:
"""
return json.dumps(dict([(attr, getattr(self, attr)) for attr in [f.name for f in self._meta.fields]]),
cls=JsonDateEncoder)
@staticmethod
def calculate_age(born):
today = date.today()
try:
birthday = born.replace(year=today.year)
except ValueError:
# raised when birth date is February 29
# and the current year is not a leap year
birthday = born.replace(year=today.year, day=born.day-1)
if birthday > today:
return today.year - born.year - 1
else:
return today.year - born.year
@staticmethod
def sql_helper(sql):
"""
sql语句操作,只执行sql语句查询
:param sql: sql语句
:return:返回查询结果
"""
cursor = connection.cursor() # 创建游标
try:
cursor.execute(sql) # 执行sql
info = cursor.fetchall() # 获取查询结果集(元组类型)
cursor.close() # 关闭连接
return info
except Exception, e:
cursor.close()
return None
@staticmethod
def add_months(dt, months):
month = dt.month - 1 + months
year = dt.year + month / 12
month = month % 12 + 1
day = min(dt.day, calendar.monthrange(year, month)[1])
return dt.replace(year=year, month=month, day=day)
class JsonDateEncoder(json.JSONEncoder):
def default(self, obj):
"""
对时间格式进行json转换
:param obj:
:return:
"""
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%d %H:%M:%S')
elif isinstance(obj, date):
return obj.strftime('%Y-%m-%d')
elif isinstance(obj, Decimal):
return "%.2f" % obj
else:
return json.JSONEncoder.default(self, obj)
| true |
fe127caf9f0aefd238d8cc65676b28dc8f0eaa50
|
Python
|
aws-samples/connected-drink-dispenser-workshop
|
/deploy/lambda_functions/cog_pre_signup/lambda.py
|
UTF-8
| 1,391 | 2.578125 | 3 |
[
"MIT-0"
] |
permissive
|
"""
Cognito UserPool Pre-SignUp Trigger
Executed after sign up step and before completion of sign up
"""
import os
import json
import logging
import boto3
__copyright__ = (
"Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved."
)
__license__ = "MIT-0"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def handler(event, context):
"""Main entry into function"""
logger.info("Received event: %s", json.dumps(event))
cog_client = boto3.client("cognito-idp")
ddb_client = boto3.client("dynamodb")
# If phone number already on confirmed user, reject
try:
phone_number = event["request"]["userAttributes"]["phone_number"]
except KeyError:
raise Exception(f"User attribute 'phone_number' not found in Cognito User Pool")
# Check all other entries
response = cog_client.list_users(
UserPoolId=event["userPoolId"], Filter=f'phone_number = "{phone_number}"'
)
if len(response["Users"]) > 0:
raise Exception(
f"Phone number {phone_number} already associated with an account"
)
response = ddb_client.scan(TableName=os.environ["USER_TABLE"], Select="COUNT")
if response["Count"] > int(os.environ["PARTICIPANT_LIMIT"]):
raise Exception(
"Maximum participants reached, please see workshop leader for assistance"
)
return event
| true |
694764d9a0c126ab3bf47299d4d3afb7dc7bc3ed
|
Python
|
IanC13/NBA-Win-Loss-Predictor
|
/genetic_algorithm.py
|
UTF-8
| 5,288 | 3.28125 | 3 |
[] |
no_license
|
import random
from determine_record import *
west = teams('west')
east = teams('east')
def individual(N,min,max):
x = []
for i in range(N):
x.append( random.randint(min,max) / 100 )
return x
'''randomly generates a number between min, max and appends them into a list. does it N times '''
# Creates an individual in a population
def population(count,N,min,max):
x = []
for i in range(count):
x.append(individual(N,min,max))
return x
# Creates the population using the individual function
def fitnessFunction(conference, numbers, target, cNum, tNum, year):
# numbers is the list of coefficients
print(numbers)
if conference == 'east':
observed = simulateEast(east[cNum][tNum], cNum, tNum, year, numbers)
elif conference == 'west':
observed = simulateWest(west[cNum][tNum], cNum , tNum, year, numbers)
score = abs(target - observed)
print(score, 'fitness score')
return score
# Takes in a LIST and a target
# Generates a score based on the difference between the sum of the list and the target
def evolution(prevPop, target, conf, cNum, tNum, year):
newPop = []
targetLength = len(prevPop)
noHP = (1/3)
noLP = (1/3)
while len(newPop) != int(targetLength * noHP):
min = 100
for i in range(len(prevPop)):
x = fitnessFunction(conf, prevPop[i], target, cNum, tNum, year)
if x <= 0:
return prevPop[i]
''' If we find the solution within the predefined population we return it straight away
there is no need for evolution '''
else:
if x <= min:
k = i
min = x
newPop.append(prevPop[k])
prevPop.pop(k)
''' loop through everything
if the individual is in our desired range of the target, we return it straight away
otherwise , take the SMALLEST fitnessfunction score individuals (which would be 1D list)
(smaller fitnessFunction scores are BETTER performers)
(one of the arrays in the 2D array)
put in new pop
pop it off prevPop '''
# Randomly select lesser performers
for i in range(int(targetLength * noLP)):
ran = random.randint(0, len(prevPop)-1)
newPop.append(prevPop[ran])
prevPop.pop(ran)
# newPop are parents of next generation
# 2/3 is selected to be parents
# 1/3 is breeded
# Breeding
parentsLength = len(newPop)
children = []
child1 = []
child2 =[]
childrenTargetLength = targetLength - parentsLength
while len(children) != childrenTargetLength:
fatherNo = random.randint(0, parentsLength - 1)
motherNo = random.randint(0, parentsLength - 1)
''' Randomly chooses mother and father from the group of parents
With some high performers and some lower performers '''
if fatherNo != motherNo:
# Ensures father and mother are not the same
father = newPop[fatherNo]
mother = newPop[motherNo]
firstPoint = random.randint(0, len(father)-1)
secondPoint = random.randint(0, len(father) - 1)
# Multipoint crossover: Chooses two points in an individual as crossover points
if firstPoint != secondPoint and secondPoint > firstPoint:
# First point != second point (otherwise no crossover)
# Second point > first point (prevents weird stuff from happening because of how child1 and child2 are defined)
child1 = father[:firstPoint] + mother[firstPoint: secondPoint] + father[secondPoint:]
child2 = mother[:firstPoint] + father[firstPoint: secondPoint] + mother[secondPoint:]
children.append(child1)
children.append(child2)
# Mutations
chanceToMutate = random.randint(1,20)
# 5% chance
if chanceToMutate == 1:
individualToMutate = random.randint(0,len(children)-1)
geneToMutate = random.randint(0, len(children[individualToMutate])-1)
# Randomly chooses which individual and which gene in that individual to mutate
children[individualToMutate][geneToMutate] = random.randint(75, 125) / 100
# randint is any number for generating individual
print(individualToMutate, geneToMutate, 'mutated')
newPop.extend(children)
print(newPop)
return newPop
def runGA(target, conference, cNum, tNum, year ):
size = 12
# not 4
test = population(size ,4,75,125)
repeat = True
count = 0
while repeat == True:
count = count + 1
test = evolution(test, target, conference, cNum, tNum, year)
solution = test
print(count, 'evolution(s)')
if len(solution) != size:
return solution
repeat = False
break
''' If the returning value is a solution, the len of the 1 d list will be Four
this is not 'size' so we know that what was returned was the solution
if returning value is the new population for next evolution, the length
will be 6 and the same as size so we know this is the pop for next evolution
so these functions are not executed '''
| true |
cfecafbc4debfa95055f61502c2165b2bc902798
|
Python
|
z-x-z/rl
|
/src/rl_algorithms/A3C/test_a3c.py
|
UTF-8
| 1,138 | 2.640625 | 3 |
[] |
no_license
|
'''
Description :
Author : CagedBird
Date : 2021-08-13 15:19:51
FilePath : /rl/src/rl_algorithms/A3C/test_a3c.py
'''
import gym
from src.rl_algorithms.A3C.simple_a3c import SimpleA3C
import torch.multiprocessing as mp
import matplotlib.pyplot as plt
def test_a3c(a3c: SimpleA3C):
a3c.run()
res = []
while not a3c.global_net.episode_reward_queue.empty():
r = a3c.global_net.episode_reward_queue.get()
res.append(r)
plt.xlabel("情节数")
plt.ylabel("奖励")
plt.title("A3C算法解决Pendulum-v0问题")
plt.plot(res)
plt.show()
def show_chinese():
from matplotlib import rcParams
config = {
"font.family": 'serif',
"font.size": 14,
"mathtext.fontset": 'stix',
"font.serif": ['SimSun'],
"axes.unicode_minus": False
}
rcParams.update(config)
if __name__ == "__main__":
show_chinese()
game_name = "Pendulum-v0"
n_work = mp.cpu_count()
envs = [gym.make(game_name) for _ in range(n_work)]
lr = 1e-4
discount = 0.9
simple_a3c = SimpleA3C(lr, discount, envs)
test_a3c(simple_a3c)
| true |
76c314c0b28c84d2bd6bcd796eff6fc67fb703bf
|
Python
|
abingham/project_euler
|
/python/src/euler/exercises/ex0028.py
|
UTF-8
| 821 | 4.125 | 4 |
[] |
no_license
|
"""Starting with the number 1 and moving to the right in a clockwise direction
a 5 by 5 spiral is formed as follows:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed
in the same way?
"""
def level_sum(n):
"""Sum of corners for a given level where the inner-most cell of a spiral is
level 1.
"""
corner_average = (4 * n ** 2 - 7 * n + 4)
return 4 * corner_average
def diagonal_sum(side_length):
# TODO: Can we analyze the sequence to find a non-iterative solution?
depth = (side_length + 1) // 2
return 1 + sum(level_sum(level) for level in range(2, depth + 1))
def main():
return diagonal_sum(1001)
| true |
03a7ae07840ad4076055c33f3a07cc616fd07dee
|
Python
|
ivoryspren/basic_data_structures
|
/single_linked_list_recursive.py
|
UTF-8
| 1,760 | 3.6875 | 4 |
[] |
no_license
|
class Node(object):
def __init__(self, d, n = None):
self.data = d
self.next_node = n
def get_next (self):
return self.next_node
def set_next (self, n):
self.next_node = n
def get_data (self):
return self.data
def set_data (self, d):
self.data = d
class SingleLinkedList (object):
def __init__(self, r=None):
self.root = r
self.size = 0
def get_size (self):
return self.size
def add (self, d):
new_node = Node (d, self.root)
self.root = new_node
self.size += 1
def remove (self, this_node, d):
#this_node = self.root
prev_node = None
if this_node.get_data() == d:
print("d is equal to: " + d)
if prev_node:
prev_node.set_next(this_node.get_next())
else:
self.root = this_node.get_next()
self.size -= 1
print("d removed")
return True
else:
if this_node.get_next() == None:
return None
else:
return self.remove(this_node.get_next(),d)
def find (self, this_node, d):
if this_node.get_data() == d:
print("d is equal to: " + d)
return d
else:
if this_node.get_next() == None:
print("not found")
return None
else:
return self.find(this_node.get_next(),d)
myList = SingleLinkedList()
myList.add("Breakfast")
myList.add("Lunch")
myList.add("Dinner")
#x = myList.find(myList.root,"Breakfast")
y = myList.remove(myList.root,"Breakfast")
print(y)
x = myList.find(myList.root,"Breakfast")
#print(myList.root.get_next().get_data())
| true |
634a840fc0f135742444a7666d582195ab8aad6b
|
Python
|
sathiyapriya1997/github
|
/Base.py
|
UTF-8
| 513 | 2.609375 | 3 |
[] |
no_license
|
from selenium import webdriver
class Base:
def Launch_Browser(self):
self.driver = webdriver.Chrome(executable_path=r"C:\Users\Sathiyapriya\Documents\webdrivers\chromedriver.exe")
self.driver.maximize_window()
self.driver.implicitly_wait(10)
return self.driver
def load_url(self,url):
self.driver.get(url)
def send_text(self,e,data):
e.send_keys(data)
def btn_click(self,h):
h.click()
def quit_browser(self):
self.driver.quit()
| true |
eea844323e5b2adde86e958fa76d422f155296b8
|
Python
|
viaacode/event-handler-deletes
|
/tests/services/pika_mock.py
|
UTF-8
| 743 | 2.78125 | 3 |
[] |
no_license
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
class Channel:
"""Mocks a pika Channel"""
def __init__(self):
self.queues = {}
def basic_publish(self, *args, **kwargs):
"""Puts a message on the in-memory list"""
self.queues[kwargs["routing_key"]].append(kwargs["body"])
def queue_declare(self, *args, **kwargs):
"""Creates an in-memory list to act as queue"""
queue = kwargs["queue"]
if not self.queues.get(queue):
self.queues[queue] = []
class Connection:
"""Mocks a pika Connection"""
def __init__(self):
pass
def channel(self):
self.channel_mock = Channel()
return self.channel_mock
def close(self):
pass
| true |
8e01af4e0e9f4e137c6738b35799c89bf65d3a49
|
Python
|
snehalmore/Video_Frame_Interpolation
|
/utils.py
|
UTF-8
| 7,650 | 2.890625 | 3 |
[] |
no_license
|
import skvideo.io
import numpy as np
import tensorflow as tf
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import os
def generate_dataset_from_video(video_path):
"""
Convert the video frame into the desired format for training and testing
:param video_path: String, path of the video
:return: train_data -> [N, H, W, 6]
train_target -> [H, W, 3]
test_data -> [N, H, W, 6]
test_target -> [H, W, 3]
"""
train_data = []
train_target = []
test_data = []
test_target = []
frames = skvideo.io.vread(video_path)
frames = np.array(frames / 255, dtype=np.float32)
mean_img = np.mean(frames[::2], 0)
frames = frames - mean_img
for frame_index in range(len(frames)):
if frame_index % 2 == 1:
test_target.append(frames[frame_index])
else:
try:
train_data.append(np.append(frames[frame_index], frames[frame_index + 4], axis=2))
train_target.append(frames[frame_index + 2])
test_data.append(np.append(frames[frame_index], frames[frame_index + 2], axis=2))
except IndexError:
print("Dataset generation done!")
break
train_data = np.array(train_data).reshape([-1, 288, 352, 6])
train_target = np.array(train_target).reshape([-1, 288, 352, 3])
test_data = np.array(test_data).reshape([-1, 288, 352, 6])
test_target = np.array(test_target).reshape([-1, 288, 352, 3])
return train_data, train_target, test_data, test_target, mean_img
def split_video_frames(video_path):
video_frames = []
frames = skvideo.io.vread(video_path)
frames = np.array(frames / 255, dtype=np.float32).reshape([-1, 288, 352, 3])
mean_img = np.mean(frames[::2], 0)
frames = frames - mean_img
for frame_index in range(len(frames)):
try:
video_frames.append(np.append(frames[frame_index], frames[frame_index + 1], axis=2))
except IndexError:
print("Dataset prepared!")
break
video_frames = np.array(video_frames).reshape([-1, 288, 352, 6])
return video_frames
# TODO: Remove this function later
def split_video_frames_v2(images_path):
frames = []
train_data = []
train_target = []
test_data = []
test_target = []
img_paths = sorted(os.listdir(images_path))[1:]
for i, img_path in enumerate(img_paths):
img = Image.open(images_path + '/' + img_path)
img = ImageOps.crop(img, 130)
img = np.array(img.resize([352, 288]))[:, :, :3]
img = img/255
frames.append(img)
frames = np.array(frames).reshape([-1, 288, 352, 3])
mean_img = np.mean(frames[::2], 0)
frames = frames - mean_img
for frame_index in range(len(frames)):
if frame_index % 2 == 1:
test_target.append(frames[frame_index])
else:
try:
train_data.append(np.append(frames[frame_index], frames[frame_index + 4], axis=2))
train_target.append(frames[frame_index + 2])
test_data.append(np.append(frames[frame_index], frames[frame_index + 2], axis=2))
except IndexError:
print("Dataset generation done!")
break
train_data = np.array(train_data).reshape([-1, 288, 352, 6])
train_target = np.array(train_target).reshape([-1, 288, 352, 3])
test_data = np.array(test_data).reshape([-1, 288, 352, 6])
test_target = np.array(test_target).reshape([-1, 288, 352, 3])
return train_data, train_target, test_data, test_target, mean_img
# TODO: Remove this later
def split_video_frames_v3(images_path):
video_frames = []
frames = []
img_paths = sorted(os.listdir(images_path))[1:]
for i, img_path in enumerate(img_paths):
img = Image.open(images_path + '/' + img_path)
img = ImageOps.crop(img, 130)
img = np.array(img.resize([352, 288]))[:, :, :3]
img = img/255
frames.append(img)
frames = np.array(frames).reshape([-1, 288, 352, 3])
for i, frame in enumerate(frames):
plt.imsave('./Dataset/i_{:05d}.png'.format(i), frame)
mean_img = np.mean(frames[::2], 0)
frames = frames - mean_img
for frame_index in range(len(frames)):
try:
video_frames.append(np.append(frames[frame_index], frames[frame_index + 1], axis=2))
except IndexError:
print("Dataset prepared!")
break
video_frames = np.array(video_frames).reshape([-1, 288, 352, 6])
return video_frames
# TODO: Understand this
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
with tf.variable_scope("ms_ssim_loss"):
img1 = tf.image.rgb_to_grayscale(img1)
img2 = tf.image.rgb_to_grayscale(img2)
weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
mssim = []
mcs = []
for l in range(level):
ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
mssim.append(tf.reduce_mean(ssim_map))
mcs.append(tf.reduce_mean(cs_map))
filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
img1 = filtered_im1
img2 = filtered_im2
# list to tensor of dim D+1
mssim = tf.stack(mssim, axis=0)
mcs = tf.stack(mcs, axis=0)
value = (tf.reduce_prod(mcs[0:level - 1] ** weight[0:level - 1]) *
(mssim[level - 1] ** weight[level - 1]))
if mean_metric:
value = tf.reduce_mean(value)
return value
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5):
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1 * L) ** 2
C2 = (K2 * L) ** 2
mu1 = tf.nn.conv2d(img1, window, strides=[1, 1, 1, 1], padding='VALID')
mu2 = tf.nn.conv2d(img2, window, strides=[1, 1, 1, 1], padding='VALID')
mu1_sq = mu1 * mu1
mu2_sq = mu2 * mu2
mu1_mu2 = mu1 * mu2
sigma1_sq = tf.nn.conv2d(img1 * img1, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_sq
sigma2_sq = tf.nn.conv2d(img2 * img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu2_sq
sigma12 = tf.nn.conv2d(img1 * img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_mu2
if cs_map:
value = (((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2)),
(2.0 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2))
else:
value = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2)))
return g / tf.reduce_sum(g)
| true |
2009c3ca969d8f5a51993d823ec0d26751e2e0f4
|
Python
|
hsson428/demo
|
/firstproject/aedlocation/aedlocation_repository.py
|
UTF-8
| 1,427 | 2.796875 | 3 |
[] |
no_license
|
class AedlocationRepository:
def __init__(self):
self.connection_info = { 'host': 'localhost', 'db': 'demodb', 'user': 'root', 'password': 'PASSWORD', 'charset': 'utf8' }
def select_aedlocation_by_name(self, name_key):
import pymysql
conn = pymysql.connect(**self.connection_info)
cursor = conn.cursor()
sql = "select num, Address from aedlocation where Address like %s" # where DetailedAddress like %s 추가
cursor.execute(sql, ("%" + name_key + "%",))
rows = cursor.fetchall() # 반환 값은 tuple의 list [ (...), (...), ..., (...) ]
keys = ["num", "Address"]
result = []
for row in rows:
row_dict = { key:value for key, value in zip(keys, row) }
result.append(row_dict)
conn.close()
return result
def select_aedlocation_by_num(self, num):
import pymysql
conn = pymysql.connect(**self.connection_info)
cursor = conn.cursor()
sql = "select num, DetailedAddress from aedlocation where num = %s"
cursor.execute(sql, (num,))
rows = cursor.fetchall() # 반환 값은 tuple (...)
keys = ["num", "DetailedAddress"]
result = []
for row in rows:
row_dict = {key:value for key, value in zip(keys, row)}
result.append(row_dict)
conn.close()
return result
| true |
00cd8eeebb67b566354a5251995a0f7eaeed59b6
|
Python
|
neszwil/Scraping_with_Django
|
/ilosc/author_finder.py
|
UTF-8
| 670 | 2.75 | 3 |
[] |
no_license
|
from ilosc.adress_maker import adress_maker
import requests
from bs4 import BeautifulSoup
import requests
list_of_author = []
def author_finder(adress_urls):
"""
Function that finds authors for each article on the blog
:param adress_urls:
:return list_of_author:
"""
for adress in adress_urls:
r = requests.get(adress)
soup = BeautifulSoup(r.content, "lxml")
author = soup.find('span', {'class': "author-content"})
author = (author.find('h4')).text.strip()
author = author.replace(' ', '_')
if author not in list_of_author:
list_of_author.append(author)
return(list_of_author)
| true |
6775ae05b1ce2ad9dd10dd88412cb8ed80efe95f
|
Python
|
aman9875/cs771
|
/assignment1/convex.py
|
UTF-8
| 1,720 | 3.15625 | 3 |
[] |
no_license
|
import numpy as np
num_seen_classes = 40
num_unseen_classes = 10
num_features = 4096
num_test_examples = 6180
# function to calculate the unseen class whose mean is at minimum distance from the mean of a given test sample.
def calc_min_mean(mean_unseen,x_i):
distance = np.sum((mean_unseen - x_i)**2 , axis = 1)
min_index = np.argmin(distance)
return min_index
#loading data
X_seen = np.load('X_seen.npy')
Xtest = np.load('Xtest.npy')
Ytest = np.load('Ytest.npy')
class_attributes_seen=np.load('class_attributes_seen.npy')
class_attributes_unseen=np.load('class_attributes_unseen.npy')
mean_seen = np.zeros((num_seen_classes,num_features))
mean_unseen = np.zeros((num_unseen_classes,num_features))
#calculating mean of seen classes
for i in range(num_seen_classes):
mean_seen[i] = np.mean(X_seen[i] , axis = 0)
#initializing and calculating similarity
similarity = np.zeros((num_unseen_classes,num_seen_classes))
similarity = np.dot(class_attributes_unseen , class_attributes_seen.T)
sum_similarity = np.sum(similarity , axis = 1)
#normalizing similarity
for i in range(num_unseen_classes):
similarity[i] /= sum_similarity[i]
#calculating mean for unseen classes using similarity
for i in range(num_unseen_classes):
for j in range(num_seen_classes):
mean_unseen[i] += similarity[i][j] * mean_seen[j]
Y_predict = np.zeros((num_test_examples))
#calculating prediction for each test example
for i in range(num_test_examples):
min_index = calc_min_mean(mean_unseen,Xtest[i])
Y_predict[i] = min_index + 1
#calculating accuracy
count = 0
for i in range(num_test_examples):
if(Ytest[i] == Y_predict[i]):
count += 1
accuracy = count/(num_test_examples*1.0)
print("Accuracy = %f" %(accuracy))
| true |
3a5880b61a0c70a3a5caca880d5c53b41215b294
|
Python
|
D3tenney/zip_it
|
/db/db_setup.py
|
UTF-8
| 1,179 | 2.5625 | 3 |
[
"MIT"
] |
permissive
|
import sqlite3
sql_con = sqlite3.connect('./zipcode_db.sqlite')
ZIP_FILENAME = './zip_data/uszips.csv'
TABLE_NAME = 'zipcode'
CREATE_TABLE = f"""
CREATE TABLE {TABLE_NAME} (
zip TEXT PRIMARY KEY,
lat TEXT,
lng TEXT,
city TEXT,
state_id TEXT,
state_name TEXT,
zcta TEXT,
parent_zcta TEXT,
population TEXT,
density TEXT,
county_fips TEXT,
county_name TEXT,
county_weights TEXT,
county_names_all TEXT,
county_fips_all TEXT,
imprecise TEXT,
military TEXT,
timezone TEXT
);
"""
sql_con.execute(CREATE_TABLE)
id_count = 0
with open(ZIP_FILENAME, 'r') as f:
for line in f:
# skip headers in first row
if id_count == 0:
id_count += 1
continue
insert_stmt = f"INSERT INTO {TABLE_NAME} VALUES ({line});"
sql_con.execute(insert_stmt)
id_count += 1
sql_con.commit()
| true |
5f147afd56bd872742934a7aef54113860e4b5ac
|
Python
|
Ezi4Zy/leetcode
|
/652.寻找重复的子树.py
|
UTF-8
| 889 | 3.046875 | 3 |
[] |
no_license
|
#
# @lc app=leetcode.cn id=652 lang=python
#
# [652] 寻找重复的子树
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def findDuplicateSubtrees(self, root):
"""
:type root: TreeNode
:rtype: List[TreeNode]
"""
dic = {}
ret = []
def dfs(node):
if not node:
return '#'
dfs_ = '%s,%s,%s' % (node.val, dfs(node.left), dfs(node.right))
if dfs_ in dic:
dic[dfs_] += 1
else:
dic[dfs_] = 1
if dic[dfs_] == 2:
ret.append(node)
return dfs_
dfs(root)
return ret
# @lc code=end
| true |
a571ca3a59192de780aafa906928acf74e288359
|
Python
|
nbvc1003/AI
|
/ch06/softMax1.py
|
UTF-8
| 263 | 3.109375 | 3 |
[] |
no_license
|
import numpy as np
import matplotlib.pyplot as plt
def softmax(x):
e_x = np.exp(x-np.max(x))
return e_x / e_x.sum()
x = np.array([1.0,1.0,2.0])
y = softmax(x)
ration = y
labels = y
plt.pie(ration, labels= labels, shadow=True, startangle=90)
plt.show()
| true |
f55dc596a671b7e0de6e99d22584ed490c2d2b65
|
Python
|
amrithrajvb/EmployeeDjango
|
/company/forms.py
|
UTF-8
| 3,155 | 2.640625 | 3 |
[] |
no_license
|
from django import forms
from django.forms import ModelForm
from company.models import Employee
import re
class EmployeeAddForm(ModelForm):
class Meta:
model=Employee
fields="__all__"
widgets={
"emp_name":forms.TextInput(attrs={"class":"form-control"}),
"department":forms.TextInput(attrs={"class":"form-control"}),
"salary":forms.TextInput(attrs={"class":"form-control"}),
"experience":forms.TextInput(attrs={"class":"form-control"})
}
labels={
"emp_name":"Employee Name"
}
# emp_name=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"}))
# department=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"}))
# salary=forms.CharField(widget=forms.NumberInput(attrs={"class":"form-control"}))
# experience=forms.CharField(widget=forms.NumberInput(attrs={"class":"form-control"}))
def clean(self):
cleaned_data=super().clean()
emp_name=cleaned_data["emp_name"]
salary=cleaned_data["salary"]
department=cleaned_data["department"]
experience=cleaned_data["experience"]
x="[a-zA-Z]*"
if int(salary)<0:
msg="invalid salary"
self.add_error("salary",msg)
if int(experience)<0:
msg="invalid experience"
self.add_error("experience",msg)
matcher=re.fullmatch(x,emp_name)
if matcher is not None:
pass
else:
msg="please enter valid employee name"
self.add_error("emp_name",msg)
depmatcher = re.fullmatch(x, department)
if depmatcher is not None:
pass
else:
msg = "please enter valid department name"
self.add_error("department", msg)
class EmployeeChange(ModelForm):
class Meta:
model=Employee
fields="__all__"
widgets={
"emp_name":forms.TextInput(attrs={"class":"form-control"}),
"department":forms.TextInput(attrs={"class":"form-control"}),
"salary":forms.TextInput(attrs={"class":"form-control"}),
"experience":forms.TextInput(attrs={"class":"form-control"})
}
labels={
"emp_name":"Employee Name"
}
# emp_name = forms.CharField(widget=forms.TextInput(attrs={"class": "form-control"}))
# department = forms.CharField(widget=forms.TextInput(attrs={"class": "form-control"}))
# salary = forms.CharField(widget=forms.NumberInput(attrs={"class": "form-control"}))
# experience = forms.CharField(widget=forms.NumberInput(attrs={"class": "form-control"}))
def clean(self):
cleaned_data=super().clean()
salary = cleaned_data["salary"]
experience = cleaned_data["experience"]
if int(salary) < 0:
msg="invalid price"
self.add_error("salary",msg)
if int(experience) < 0:
msg="invalid experience"
self.add_error("experience",msg)
class SearchEmpForm(forms.Form):
emp_name=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"}))
| true |
a39c10762443348880b8d23e0e0104acaba25d03
|
Python
|
beauthi/contests
|
/BattleDev/112020_0/test.py
|
UTF-8
| 1,275 | 3.265625 | 3 |
[] |
no_license
|
mem = dict()
def get_all_children_string(s):
"""
gets all 2-partitions of the string s
"""
children = set()
for bitmask in range(2**len(s)-1):
taken, left = [], []
b = 1
for i in range(len(s)):
if (b & bitmask) == 0:
left += [s[i]]
else:
taken += [s[i]]
b *= 2
children.add(("".join(taken), "".join(left)))
return children
def get_all_children_pair(f, d):
"""
gets all pairs of strings that we can get from the pair (f,d)
"""
children_f, children_d = get_all_children_string(f), get_all_children_string(d)
res = set()
for taken_f, left_f in children_f:
for taken_d, left_d in children_d:
if left_f == left_d:
res.add((taken_f, taken_d))
return res
def get_mex(f, d):
"""
computes the Minimum EXcluded for a given state
"""
if (f, d) not in mem:
excluded = set()
children = get_all_children_pair(f, d)
for new_f, new_d in children:
excluded.add(get_mex(new_f, new_d))
res = 0
while res in excluded:
res += 1
mem[(f, d)] = res
return mem[(f, d)]
print(get_mex("cabb", "abbd"))
| true |
913ebf555914b4b1fbc5c41f33a8b2588afc00d4
|
Python
|
StevenAWillis/login_registration
|
/apps/login_regist_app/models.py
|
UTF-8
| 2,706 | 2.6875 | 3 |
[] |
no_license
|
from __future__ import unicode_literals
from django.db import models
class UserManager(models.Manager):
def registration_validator(self, postData):
errors = {}
email_match = User.objects.filter(email = postData['email'])
if len(postData['email']) == 0:
errors["email_blank"] = "Please enter your email."
elif len(email_match) > 0:
errors["email_invalid"] = "That email exist in the database already."
if len(postData['first_name']) == 0:
errors["first_name"] = "First Name field cannot be blank."
elif postData['first_name'].isalpha() == False:
errors["first_name_alpha"] = "First Name field must only contain letters"
elif len(postData['first_name']) < 2:
errors["first_name_short"] = "First Name should be at least 2 characters"
if len(postData['last_name']) == 0:
errors["last_name"] = "Last Name field cannot be blank."
elif postData['last_name'].isalpha() == False:
errors["last_name_alpha"] = "Last Name field must only contain letters"
elif len(postData['last_name']) < 2:
errors["last_name_short"] = "Last Name should be at least 2 characters"
if len(postData['password']) == 0:
errors["pword_blank"] = "Password field cannot be blank."
elif len(postData['password']) < 8:
errors["pword_short"] = "Password must be at least 8 characters"
if (postData['password'] != postData['confirm_pass']):
errors["pword_match_fail"] = "Passwords do not match."
return errors
def login_validator(self, postData):
errors = {}
user = User.objects.filter(email = postData['email_login'])
if len(user) == 0:
errors["invalid"] = "Invalid login credentials."
else:
user = User.objects.get(email = postData['email_login'])
if postData['password_login'] == user.password:
print("Password accepted, logging in...")
else:
errors["invalid"] = "Invalid login credentials."
return errors
# Create your models here.
class User(models.Model):
first_name = models.CharField(max_length=45)
last_name = models.CharField(max_length=45)
email = models.TextField()
password = models.TextField()
confirm_pass = models.TextField()
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
objects = UserManager()
| true |
641a8520843624adbf0ec2d3eb5b005efaad6a6c
|
Python
|
DANIL00FIONOV/work1
|
/test_sportsman.py
|
UTF-8
| 533 | 3.140625 | 3 |
[] |
no_license
|
import pytest
from Sportsman import Sportsman
@pytest.mark.parametrize('answer',[7,6,12,23])
def test_run(answer):
assert Sportsman.run(60) == answer
@pytest.mark.parametrize('answer',[5,3,10,6])
def test_jump(answer):
assert Sportsman.jump("from the spot") == answer
@pytest.mark.parametrize('answer',[8,9,10,11])
def test_sleep(answer):
assert Sportsman.sleep(answer) == "I recovered"
@pytest.mark.parametrize('answer',["steroids",7,"eat",10])
def test_eat(answer):
assert Sportsman.eat(answer) == "zaebumba"
| true |
941b00cf28387e0d15723f51c3e160dec5ba90c0
|
Python
|
rtoal/uva-problems
|
/195.py
|
UTF-8
| 935 | 3.390625 | 3 |
[] |
no_license
|
import sys
# String to array of ints that can be arranged and sorted according to the
# weird rules of the problem. Interleaves upper and lower ASCII letters.
def encoded(s):
return [c*2 if c<92 else c*2-63 for c in bytes(s, 'utf-8')]
# Encoded array back to string
def decoded(a):
return ''.join(chr(b//2 if b%2==0 else (b+63)//2) for b in a)
# Credit to SO user jfs https://stackoverflow.com/a/34325140/831878
def next_permutation(a):
for i in reversed(range(len(a) - 1)):
if a[i] < a[i + 1]:
break
else:
return False
j = next(j for j in reversed(range(i + 1, len(a))) if a[i] < a[j])
a[i], a[j] = a[j], a[i]
a[i + 1:] = reversed(a[i + 1:])
return True
cases = int(sys.stdin.readline())
for _ in range(cases):
word = sorted(encoded(sys.stdin.readline().strip()))
while True:
print(decoded(word))
if not next_permutation(word):
break
| true |
a34bc3c7603dff5706166e8d54d0458638730def
|
Python
|
byrgazov/foolscap
|
/src/foolscap/slicers/decimal_slicer.py
|
UTF-8
| 1,345 | 2.609375 | 3 |
[
"MIT"
] |
permissive
|
# -*- test-case-name: foolscap.test.test_banana -*-
import decimal
from twisted.internet.defer import Deferred
from foolscap.tokens import BananaError, STRING, SVOCAB
from foolscap.slicer import BaseSlicer, LeafUnslicer
from foolscap.constraint import Any
class DecimalSlicer(BaseSlicer):
opentype = (b'decimal',)
slices = decimal.Decimal
def sliceBody(self, streamable, banana):
yield str(self.obj)
class DecimalUnslicer(LeafUnslicer):
opentype = (b'decimal',)
value = None
constraint = None
def setConstraint(self, constraint):
if not isinstance(constraint, Any):
raise BananaError('DecimalUnslicer does not currently accept a constraint')
def checkToken(self, typebyte, size):
if typebyte not in (STRING, SVOCAB):
raise BananaError('DecimalUnslicer only accepts strings')
#if self.constraint:
# self.constraint.checkToken(typebyte, size)
def receiveChild(self, obj, ready_deferred=None):
assert not isinstance(obj, Deferred)
assert ready_deferred is None
if self.value is not None:
raise BananaError('already received a string')
self.value = decimal.Decimal(obj)
def receiveClose(self):
return self.value, None
def describe(self):
return '<unicode>'
| true |
27df9a371bc3caa459aa40ab7169047357a92b04
|
Python
|
MaxGabrielima/Python-Codes
|
/Desafios/desafio015.py
|
UTF-8
| 189 | 3.703125 | 4 |
[
"MIT"
] |
permissive
|
km = float(input('Quantos km foram rodados? '))
dias = float(input('Por quantos dias o carro esteve alugado? '))
print('O valor total a pagar é de {} R$'.format((dias * 60) + (km * 0.15)))
| true |
0c0fc2beb016a549f428b98b6c3eec73910709bf
|
Python
|
bfishbaum/euler
|
/.prob60F2.py
|
UTF-8
| 1,012 | 3.203125 | 3 |
[] |
no_license
|
import prime as pi
import permutations as pr
import math
import time
def confirmList(x):
x = x[:]
if(x == []): return False
if(len(x) == 1): return pi.isPrime(x[0])
b = x[-1]
for a in x[:-1]:
p1 = (a * 10 ** (int(math.log(b,10))+1) + b)
p2 = (b * 10 ** (int(math.log(a,10))+1) + a)
if(not pi.isPrime(p1) or not pi.isPrime(p2)):
return False
return True
def findPrimeCatSet(high,length):
final = []
for j in range(1,3):
sieve = pi.sieve(high)
mod1 = [3] + [i for i in sieve if i % 3 == j]
result = [[i] for i in mod1]
leng = length
while(leng > 1):
temp = []
a = len(result)
b = 1
for y in result:
print(b,a)
b += 1
for x in mod1:
if(x > y[-1]):
z = y + [x]
if(confirmList(z)):
temp += [z]
result = temp
leng -= 1
print(len(result))
final += result
print(result)
return final
print([sum(x) for x in [[7, 1237, 2341, 12409, 18433], [13, 5197, 5701, 6733, 8389]]])
x = 1/0
r = findPrimeCatSet(20000,5)
print(r)
| true |
2a3e198467beaa7e28281814c188425e4714831f
|
Python
|
danilorribeiro/training
|
/python/guppe/loop_for.py
|
UTF-8
| 920 | 4.34375 | 4 |
[] |
no_license
|
"""
iteráveis:
- String
nome = 'Geek University'
- Lista
lista = [1, 3, 5, 7, 9]
- Range
numeros = range [1,10]
"""
nome = 'Geek University'
lista = [1, 3, 5, 7, 9]
"""
range = range(1, 10)
for letra in nome:
print(letra)
for numero in lista:
print (numero)
for numero in range:
print (numero)
Enumerate:
retorna indice,letra
for indice, letra in enumerate(nome):
print(nome[indice])
for _, letra in enumerate(nome):
print (letra)
for valor in enumerate(nome):
print (valor[0],valor[1])
print (valor)
qtd = int(input('Quantas vezess esse loop deve rodar? '))
soma = 0
for n in range(1,qtd+1):
num = int(input(f'Informe o {n}/{qtd} valor: '))
soma = soma + num
print(f'A soma é {soma}')
for letra in nome:
print(letra, end='')
"""
for _ in range(3):
for num in range(1,11):
print('\U0001F60D' * num)
| true |
2f01325ec7e327cab80d9596301a188f735fad78
|
Python
|
Yang-YiFan/shiftresnet-cifar
|
/models/depthwiseresnet.py
|
UTF-8
| 3,113 | 2.671875 | 3 |
[
"Apache-2.0"
] |
permissive
|
"""PyTorch implementation of DepthwiseResNet
ShiftResNet modifications written by Bichen Wu and Alvin Wan.
Reference:
[1] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant,
Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions.
arXiv:1711.08141
"""
import torch.nn as nn
import torch.nn.functional as F
from .resnet import ResNet
class DepthWiseWithSkipBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, reduction=1):
super(DepthWiseWithSkipBlock, self).__init__()
self.expansion = 1 / float(reduction)
self.in_planes = in_planes
self.mid_planes = mid_planes = int(self.expansion * out_planes)
self.out_planes = out_planes
self.conv1 = nn.Conv2d(
in_planes, mid_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.depth = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, padding=1,
stride=1, bias=False, groups=mid_planes)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(
mid_planes, out_planes, kernel_size=1, bias=False, stride=stride)
self.bn3 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != out_planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False),
nn.BatchNorm2d(out_planes)
)
def flops(self):
if not hasattr(self, 'int_nchw'):
raise UserWarning('Must run forward at least once')
(_, _, int_h, int_w), (
_, _, out_h, out_w) = self.int_nchw, self.out_nchw
flops = int_h * int_w * self.mid_planes * self.in_planes + out_h * out_w * self.mid_planes * self.out_planes
flops += out_h * out_w * self.mid_planes * 9 # depth-wise convolution
if len(self.shortcut) > 0:
flops += self.in_planes * self.out_planes * out_h * out_w
return flops
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
self.int_nchw = out.size()
out = self.bn2(self.depth(out))
out = self.bn3(self.conv3(out))
self.out_nchw = out.size()
out += self.shortcut(x)
out = F.relu(out)
return out
def DepthwiseResNet20(reduction=1, num_classes=10):
block = lambda in_planes, planes, stride: \
DepthWiseWithSkipBlock(in_planes, planes, stride, reduction=reduction)
return ResNet(block, [3, 3, 3], num_classes=num_classes)
def DepthwiseResNet56(reduction=1, num_classes=10):
block = lambda in_planes, planes, stride: \
DepthWiseWithSkipBlock(in_planes, planes, stride, reduction=reduction)
return ResNet(block, [9, 9, 9], num_classes=num_classes)
def DepthwiseResNet110(reduction=1, num_classes=10):
block = lambda in_planes, planes, stride: \
DepthWiseWithSkipBlock(in_planes, planes, stride, reduction=reduction)
return ResNet(block, [18, 18, 18], num_classes=num_classes)
| true |
5fad779f7be3fafc4f72639932121c165098a314
|
Python
|
davidgaribaldi/GuitarNeck
|
/Guitar Neck.py
|
UTF-8
| 692 | 3.015625 | 3 |
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 6 13:07:28 2019
@author: DavidGaribaldi
"""
fretboard = {}
fretboard['E'] = ['E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E']
fretboard['A'] = ['A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A']
fretboard['D'] = ['D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D']
fretboard['G'] = ['G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G']
fretboard['B'] = ['B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
fretboard['e'] = ['E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E']
print(fretboard['B'][6])
| true |
1f2a9e73d6e4864bf087c1346fe6fcd1e0aa1791
|
Python
|
ballaneypranav/rosalind
|
/archive/perm.py
|
UTF-8
| 625 | 3.578125 | 4 |
[] |
no_license
|
from copy import copy
# n = int(input())
n = 7
def factorial(n):
if n == 1:
return 1
return n * factorial(n-1)
print(factorial(n))
numbers = [x+1 for x in range(n)]
def generate_permutations(numbers):
if len(numbers) == 1:
return [numbers]
permutations = []
for number in numbers:
numbers_copy = copy(numbers)
numbers_copy.remove(number)
for permutation in generate_permutations(numbers_copy):
permutations.append([number] + permutation)
return permutations
for permutation in generate_permutations(numbers):
print(*permutation)
| true |
4fa3823207d11fe6f53d306452ec4f7722724cd7
|
Python
|
Zhenye-Na/leetcode
|
/interview/amazon/shopping-patterns.py
|
UTF-8
| 1,800 | 3.53125 | 4 |
[
"MIT"
] |
permissive
|
# Shopping Patterns
# https://aonecode.com/amazon-online-assessment-shopping-patterns
from collections import defaultdict
class ShoppingPatterns:
def __init__(self):
self.neighbors = defaultdict(list)
def getMinScore(self, products_nodes, products_edges, products_from, products_to):
if products_edges <= products_nodes - 1:
# graph without cycle, no trios
return -1
if len(products_from) != len(products_to):
return -1
self._build_graph(products_from, products_to)
min_score = 3 * products_nodes
for node in range(1, products_nodes):
# extract node 1
neighbors = self.neighbors[node]
for i in range(len(neighbors)):
second_node = neighbors[i]
second_node_neighbors = self.neighbors[second_node]
for j in range(i + 1, len(neighbors)):
if neighbors[j] in second_node_neighbors:
# we find a trios, compute score
min_score = min( min_score, len(self.neighbors[node]) + len(self.neighbors[second_node]) + len(self.neighbors[neighbors[j]]) - 6 )
print(min_score)
return min_score
def _build_graph(self, products_from, products_to):
length = len(products_from)
for i in range(length):
self.neighbors[products_from[i]].append(products_to[i])
self.neighbors[products_to[i]].append(products_from[i])
# test
solver = ShoppingPatterns()
solver.getMinScore(
6,
6,
[1,2,2,3,4,5],
[2,4,5,5,5,6]
)
solver2 = ShoppingPatterns()
solver2.getMinScore(
5,
6,
[1,1,2,2,3,4],
[2,3,3,4,4,5]
)
| true |
2b8fceddbcbeea7e7394c1740fc42740324e4a52
|
Python
|
RahulanT/Python_Stock_Analysis
|
/maincode/scipy_test.py
|
UTF-8
| 685 | 3.375 | 3 |
[] |
no_license
|
from scipy.signal import argrelextrema
import matplotlib.pyplot as plt
import numpy as np
# Generate random data.
data_x = np.arange(start = 0, stop = 25, step = 1, dtype='int')
data_y = np.random.random(25)*6
# Find peaks(max).
peak_indexes = argrelextrema(data_y, np.greater)
peak_indexes = peak_indexes[0]
# Find valleys(min).
valley_indexes = argrelextrema(data_y, np.less)
valley_indexes = valley_indexes[0]
# Plot main graph.
(fig, ax) = plt.subplots()
ax.plot(data_x, data_y)
# Plot peaks.
peak_x = peak_indexes
peak_y = data_y[peak_indexes]
ax.plot(peak_x, peak_y, marker='o', linestyle='dashed', color='green', label="Peaks")
plt.show()
| true |
1a16644af849fe54031479496d6101b79bfd87e3
|
Python
|
log2timeline/dftimewolf
|
/dftimewolf/lib/exporters/gce_disk_export_base.py
|
UTF-8
| 5,877 | 2.65625 | 3 |
[
"Apache-2.0"
] |
permissive
|
# -*- coding: utf-8 -*-
"""Base class to Export Compute disk images to Google Cloud Storage."""
from typing import List, Optional
from googleapiclient.errors import HttpError
from libcloudforensics.providers.gcp.internal import project as gcp_project
from libcloudforensics.providers.gcp.internal.compute import GoogleComputeDisk # pylint: disable=line-too-long
from dftimewolf.lib import module
from dftimewolf.lib.state import DFTimewolfState
#pylint: disable=abstract-method
class GoogleCloudDiskExportBase(module.BaseModule):
"""Google Cloud Platform (GCP) disk export base class.
Attributes:
source_project (gcp_project.GoogleCloudProject): Source project
containing the disk/s to export.
remote_instance_name (str): Instance that needs forensicating.
source_disk_names (list[str]): Comma-separated list of disk names to copy.
all_disks (bool): True if all disks attached to the source
instance should be copied.
"""
def __init__(self,
state: DFTimewolfState,
name: Optional[str]=None,
critical: bool=False) -> None:
"""Initializes GCP disk export base class.
Args:
state (DFTimewolfState): recipe state.
name (Optional[str]): The module's runtime name.
critical (Optional[bool]): True if the module is critical, which causes
the entire recipe to fail if the module encounters an error.
"""
super(GoogleCloudDiskExportBase, self).__init__(
state, name=name, critical=critical)
self.source_project = None # type: gcp_project.GoogleCloudProject
self.remote_instance_name = None # type: Optional[str]
self.source_disk_names = [] # type: List[str]
self.all_disks = False
def _GetDisksFromNames(
self, source_disk_names: List[str]) -> List[GoogleComputeDisk]:
"""Gets disks from a project by disk name.
Args:
source_disk_names: List of disk names to get from the project.
Returns:
List of GoogleComputeDisk objects to copy.
"""
disks = []
for name in source_disk_names:
try:
disks.append(self.source_project.compute.GetDisk(name))
except RuntimeError:
self.ModuleError(
'Disk "{0:s}" was not found in project {1:s}'.format(
name, self.source_project.project_id),
critical=True)
return disks
def _GetDisksFromInstance(
self, instance_name: str, all_disks: bool) -> List[GoogleComputeDisk]:
"""Gets disks to copy based on an instance name.
Args:
instance_name : Name of the instance to get the disks from.
all_disks : If set, get all disks attached to the instance. If
False, get only the instance's boot disk.
Returns:
list: List of GoogleComputeDisk objects to copy.
"""
try:
remote_instance = self.source_project.compute.GetInstance(instance_name)
except RuntimeError as exception:
self.ModuleError(str(exception), critical=True)
if all_disks:
return list(remote_instance.ListDisks().values())
return [remote_instance.GetBootDisk()]
def _FindDisksToCopy(self) -> List[GoogleComputeDisk]:
"""Determines which disks to copy depending on object attributes.
Returns:
The disks to copy to the analysis project.
"""
if not (self.remote_instance_name or self.source_disk_names):
self.ModuleError(
'You need to specify at least an instance name or disks to copy',
critical=True)
if self.remote_instance_name and self.source_disk_names:
self.ModuleError(
('Both --source_disk_names and --remote_instance_name are provided, '
'remote_instance_name will be ignored in favour of '
'source_disk_names.'),
critical=False)
disks_to_copy = []
try:
if self.source_disk_names:
disks_to_copy = self._GetDisksFromNames(self.source_disk_names)
elif self.remote_instance_name:
disks_to_copy = self._GetDisksFromInstance(self.remote_instance_name,
self.all_disks)
except HttpError as exception:
if exception.resp.status == 403:
self.ModuleError(
'403 response. Do you have appropriate permissions on the project?',
critical=True)
if exception.resp.status == 404:
self.ModuleError(
'GCP resource not found. Maybe a typo in the project / instance / '
'disk name?',
critical=True)
self.ModuleError(str(exception), critical=True)
if not disks_to_copy:
self.ModuleError(
'Could not find any disks to copy', critical=True)
return disks_to_copy
def _DetachDisks(self, disks: List[GoogleComputeDisk]) -> None:
"""Detaches disks from VMs in case they are attached.
Args:
disks: disks to detach.
"""
try:
for disk in disks:
users = disk.GetValue('users')
if users:
instance_name = users[0].split('/')[-1]
instance = self.source_project.compute.GetInstance(instance_name)
self.logger.warning(
'Disk "{0:s}" will be detached from instance "{1:s}"'.format(
disk.name, instance_name))
instance.DetachDisk(disk)
except HttpError as exception:
if exception.resp.status == 400:
self.ModuleError(
('400 response. To detach the boot disk, the instance must be in '
'TERMINATED state: {0!s}'.format(exception)), critical=True)
self.ModuleError(str(exception), critical=True)
def _VerifyDisksInSameZone(self, disks: List[GoogleComputeDisk]) -> bool:
"""Verifies that all dicts are in the same Zone.
Args:
disks: compute disks.
Returns:
Whether all disks are in the same zone.
"""
return all(disk.zone == disks[0].zone for disk in disks)
| true |
6b44138caab94ca20c827a7d9add8dd88a6d5456
|
Python
|
umbonoce/SignatureVerificationNN
|
/main_hmm.py
|
UTF-8
| 23,341 | 2.578125 | 3 |
[] |
no_license
|
import os
import numpy as np
import math
import csv
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
from hmmlearn import hmm
import warnings
import random
from scipy.interpolate import interp1d
from scipy.optimize import brentq
from sklearn.metrics import roc_curve
from sklearn.neighbors import KNeighborsClassifier
from collections import Counter
warnings.filterwarnings("ignore")
np.random.seed(42) # pseudorandomic
N_USERS = 29
# tanh normalization; values between 0 and 1
def normalization(data):
mean = data.mean()
std = data.std()
data = 0.5 * (np.tanh(0.01 * ((data - mean) / std)) + 1)
return data
def z_normalization(df):
column_maxes = df.max()
df_max = column_maxes.max()
return df / df_max
# time derivative approsimation
def second_order_regression(data_list):
pad_list = data_list.copy()
pad_list.append(data_list[len(data_list) - 1])
pad_list.append(data_list[len(data_list) - 1])
pad_list.insert(0, data_list[0])
pad_list.insert(0, data_list[0])
derivata = [None] * (len(data_list))
for n in range(2, len(data_list) + 2):
derivata[n - 2] = ((pad_list[n + 1] - pad_list[n - 1] + 2 * (pad_list[n + 2] - pad_list[n - 2])) / 10)
return derivata
def load_dataset(user):
training_list = list() # dictionary of all training dataframes [1..40]
testing_dict = {'skilled': [], 'genuine': [], 'random': []} # dictionary of all testing dataframes [41..56]
training_fs_list = list() # list of training dataframes (feature selection) [alltrain - validation]
validation_fs_dict = {'true': [],
'false': []} # dictionary of validation dataframes (feature selection) [one true for each session, 18 false random]
random.seed(42) # pseudorandomic
path = './xLongSignDB/'
path_user = path + str(user) + '/'
files = os.listdir(path_user)
i = 0
for file in files:
df = pd.read_csv(path_user + file, header=0, sep=' ',
names=['X', 'Y', 'TIMESTAMP', 'PENSUP', 'AZIMUTH', 'ALTITUDE', 'Z'])
df = initialize_dataset(df)
if 'ss' in file:
testing_dict['skilled'].append(df)
elif 'sg' in file:
i += 1
if i > 41:
testing_dict['genuine'].append(df)
else:
training_list.append(df)
if i % 4 == 0:
validation_fs_dict['true'].append(df)
else:
training_fs_list.append(df)
else:
print(file)
for i in range(0, 20):
numbers = [x for x in range(1, 30)]
numbers.remove(user)
y = random.choice(numbers)
path_user = path + str(y) + '/'
files = os.listdir(path_user)
z = random.randint(10, 40)
df = pd.read_csv(path_user + files[z], header=0, sep=' ',
names=['X', 'Y', 'TIMESTAMP', 'PENSUP', 'AZIMUTH', 'ALTITUDE', 'Z'])
df = initialize_dataset(df)
validation_fs_dict['false'].append(df)
for u in range(1,30):
if u != user:
path_user = path + str(u) + '/'
files = os.listdir(path_user)
z = random.randint(10, 40)
df = pd.read_csv(path_user + files[z], header=0, sep=' ',
names=['X', 'Y', 'TIMESTAMP', 'PENSUP', 'AZIMUTH', 'ALTITUDE', 'Z'])
df = initialize_dataset(df)
testing_dict['random'].append(df)
return training_list, testing_dict, training_fs_list, validation_fs_dict
def initialize_dataset(df):
del df['TIMESTAMP']
del df['AZIMUTH']
del df['ALTITUDE']
df = compute_features(df)
new_df = pd.DataFrame(data=None)
for column in df.columns.values:
new_df[column] = normalization(df[column].values)
return new_df
def compute_features(df):
e = np.finfo(np.float32).eps
leng = len(df)
x_list = df['X'].tolist()
y_list = df['Y'].tolist()
z_list = df['Z'].tolist() # pression
up_list = df['PENSUP'].tolist()
dx_list = second_order_regression(x_list)
dy_list = second_order_regression(y_list)
theta_list = [None] * leng
v_list = [None] * leng # velocity
for i in range(0, leng):
theta_list[i] = np.arctan(dy_list[i] / (dx_list[i] + e))
v_list[i] = np.sqrt(dy_list[i] ** 2 + dx_list[i] ** 2)
dtheta_list = second_order_regression(theta_list)
p_list = [None] * leng # ro
dv_list = second_order_regression(v_list)
a_list = [None] * leng # acceleration
for i in range(0, leng):
dtheta = np.abs(dtheta_list[i] + e)
v = np.abs(v_list[i] + e)
p_list[i] = math.log(v / dtheta)
a_list[i] = np.sqrt((dtheta_list[i] * v_list[i]) ** 2 + dv_list[i] ** 2)
dz_list = second_order_regression(z_list)
da_list = second_order_regression(a_list)
dp_list = second_order_regression(p_list)
ddx_list = second_order_regression(dx_list)
ddy_list = second_order_regression(dy_list)
ratios_list = [None] * leng # np.array([]) Ratio of the minimum over the maximum speed over a 5-samples window
for n in range(0, leng - 4):
vmin = np.amin(v_list[n:n + 4])
vmax = np.amax(v_list[n:n + 4]) + e
ratios_list[n] = vmin / vmax
alphas_list = [None] * leng # Angle of consecutive samples
for n in range(0, leng - 1):
alphas_list[n] = np.arctan((y_list[n + 1] - y_list[n]) / (x_list[n + 1] - x_list[n] + e))
alphas_list[leng - 1] = alphas_list[leng - 2]
dalpha_list = second_order_regression(alphas_list)
sinalpha_list = np.array(np.sin(alphas_list))
cosalpha_list = np.array(np.cos(alphas_list))
strokeratio5_list = [None] * leng # Stroke length to width ratio over a 5-samples window
for n in range(0, leng - 4):
stroke_len = np.sum(up_list[n:n + 4])
width = np.max(x_list[n:n + 4]) - np.min(x_list[n:n + 4]) + e
strokeratio5_list[n] = stroke_len / width
strokeratio7_list = [None] * leng # Stroke length to width ratio over a 7-samples window
for n in range(0, leng - 6):
stroke_len = np.sum(up_list[n:n + 6])
width = np.max(x_list[n:n + 6]) - np.min(x_list[n:n + 6]) + e
strokeratio7_list[n] = stroke_len / width
df['theta'] = theta_list
df['v'] = v_list
df['ro'] = p_list
df['ac'] = a_list
df['dX'] = dx_list
df['dY'] = dy_list
df['dZ'] = dz_list
df['dTheta'] = dtheta_list
df['dv'] = dv_list
df['dRo'] = dp_list
df['dAc'] = da_list
df['ddX'] = ddx_list
df['ddY'] = ddy_list
df['vRatio'] = ratios_list
df['alpha'] = alphas_list
df['dAlpha'] = dalpha_list
df['SIN'] = sinalpha_list
df['COS'] = cosalpha_list
df['5_WIN'] = strokeratio5_list
df['7_WIN'] = strokeratio7_list
df['vRatio'].fillna(value=df['vRatio'].mean(), inplace=True)
df['alpha'].fillna(value=df['alpha'].mean(), inplace=True)
df['dAlpha'].fillna(value=df['dAlpha'].mean(), inplace=True)
df['SIN'].fillna(value=df['SIN'].mean(), inplace=True)
df['COS'].fillna(value=df['COS'].mean(), inplace=True)
df['5_WIN'].fillna(value=df['5_WIN'].mean(), inplace=True)
df['7_WIN'].fillna(value=df['7_WIN'].mean(), inplace=True)
del(df['PENSUP'])
return df
def feature_selection(training_set, validation_set):
k = 0 # counter number of feature to select
subset = set() # empty set ("null set") so that the k = 0 (where k is the size of the subset)
header = list(training_set[0].columns.values)
total_features = set(header)
last_score = [1] * 10
while k != 9:
best_score = 1
best_trust = 0
best_feature = ""
feature_set = subset.copy()
for f in (total_features - subset):
feature_set.add(f)
score, trust = evaluate_score(training_set, validation_set, list(feature_set))
feature_set.remove(f)
if (score < best_score) or (score == best_score and trust > best_trust):
best_trust = trust
best_score = score
best_feature = f
subset.add(best_feature)
k += 1
last_score[k] = best_score
print("best " + str(best_feature))
still_remove = True
first_time = True
while still_remove:
if len(subset) > 1:
feature_set = subset.copy()
worst_feature = ""
removed_score = 1
for f in subset:
feature_set.remove(f)
score, trust = evaluate_score(training_set, validation_set, list(feature_set))
feature_set.add(f)
if score < removed_score:
removed_score = score
worst_feature = f
if (worst_feature == best_feature) and first_time:
still_remove = False
else:
if removed_score >= last_score[k-1]: # if removed score is worse than before, go adding features
still_remove = False
else: # otherwise keep removing features
# last_score[k-1] = removed_score
subset.remove(worst_feature)
k -= 1
first_time = False
print("removed" + str(worst_feature))
else:
still_remove = False
return subset, best_score, best_trust
def evaluate_score(train_set, valid_set, features):
print(features)
training_set = train_set.copy()
validation_set = valid_set.copy()
x_list = [signature[features] for signature in training_set]
x_train = pd.concat(x_list)
try:
model = hmm.GMMHMM(n_components=32, n_mix=2, random_state=42).fit(x_train)
score_train = [None] * (len(train_set))
score_test_gen = [None] * (len(validation_set["true"]))
score_test_skilled = [None] * (len(validation_set["false"]))
count_training = 0
count_validation = 0
for signature in x_list:
score_train[count_training] = model.score(signature)/len(signature)
count_training += 1
average_score = np.average(score_train)
count_training = 0
for signature in x_list:
distance = np.abs(score_train[count_training] - average_score)
score_train[count_training] = np.exp((distance * -1) / len(features))
count_training += 1
for signature in validation_set["true"]:
a = signature[features]
distance = np.abs(model.score(a)/len(signature) - average_score)
score_test_gen[count_validation] = np.exp((distance * -1) / len(features))
count_validation += 1
count_validation = 0
for signature in validation_set["false"]:
a = signature[features]
distance = np.abs(model.score(a)/len(signature) - average_score)
score_test_skilled[count_validation] = np.exp((distance * -1) / len(features))
count_validation += 1
i = 0
for score in score_test_gen:
i += 1
# print(f" prob signature testing genuine {i}: {score}")
i = 0
for score in score_test_skilled:
i += 1
# print(f" prob signature testing skilled {i}: {score}")
labels = [1] * len(validation_set["true"]) + [0] * len(validation_set["false"])
probs = np.concatenate([score_test_gen, score_test_skilled])
fpr, tpr, thresh = roc_curve(labels, probs)
equal_error_rate = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
threshold = interp1d(fpr, thresh)(equal_error_rate)
print(f"threshold: {threshold} eer: {equal_error_rate}")
except:
equal_error_rate = 1
threshold = 0
print("Fit Training Error")
print(f"equal error rate: {equal_error_rate}")
return equal_error_rate, threshold
def test_evaluation(train_set, features, valid_set, n_comp, n_mix):
i = 0
training_set = train_set.copy()
validation_set = valid_set.copy()
x_list = [signature[features] for signature in training_set]
x_train = pd.concat(x_list)
try:
model = hmm.GMMHMM(n_components=n_comp, n_mix=n_mix, random_state=42).fit(x_train)
score_train = [None] * (len(training_set))
score_test_gen = [None] * (len(validation_set["genuine"]))
score_test_skilled = [None] * (len(validation_set["skilled"]))
count_training = 0
for signature in x_list:
score_train[count_training] = model.score(signature)/len(signature)
count_training += 1
average_score = np.average(score_train)
count_training = 0
for signature in x_list:
distance = np.abs(score_train[count_training] - average_score)
score_train[count_training] = np.exp((distance * -1) / len(features))
count_training += 1
count_validation = 0
for signature in validation_set["genuine"]:
a = signature[features]
distance = np.abs(model.score(a)/len(signature) - average_score)
score_test_gen[count_validation] = np.exp((distance * -1) / len(features))
count_validation += 1
count_validation = 0
for signature in validation_set["skilled"]:
a = signature[features]
distance = np.abs(model.score(a)/len(signature) - average_score)
score_test_skilled[count_validation] = np.exp((distance * -1) / len(features))
count_validation += 1
i = 0
for score in score_test_gen:
i += 1
print(f" prob signature testing genuine {i}: {score}")
i = 0
for score in score_test_skilled:
i += 1
print(f" prob signature testing random {i}: {score}")
labels = [1] * len(score_test_gen) + [0] * len(score_test_skilled)
probs = np.concatenate([score_test_gen, score_test_skilled])
fpr, tpr, thresh = roc_curve(labels, probs)
equal_error_rate = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
threshold = interp1d(fpr, thresh)(equal_error_rate)
print(f"threshold: {threshold} eer: {equal_error_rate}")
except:
equal_error_rate = 1.0
print("Raised exception")
return equal_error_rate
def knn_experiment(k, fs, type):
train_list, testing_dict, training_fs_list, validation_fs_dict = load_dataset(k)
training_list = [None] * len(train_list)
count_training = 0
for signature in train_list:
training_list[count_training] = signature[fs]
count_training += 1
knn = KNeighborsClassifier(n_neighbors=5)
labels = list()
models = list()
splits = list()
splits.append(training_list[0:4])
splits.append(training_list[4:8])
splits.append(training_list[8:12])
splits.append(training_list[12:16])
splits.append(training_list[21:25])
splits.append(training_list[36:40])
first = np.sum(len(x) for x in training_list[0:4])
second = np.sum(len(x) for x in training_list[4:8])
third = np.sum(len(x) for x in training_list[8:12])
fourth = np.sum(len(x) for x in training_list[12:16])
fifth = np.sum(len(x) for x in training_list[21:25])
sixth = np.sum(len(x) for x in training_list[36:40])
for split in splits:
x_train = pd.concat(split)
models.append(hmm.GMMHMM(n_components=2, n_mix=16, random_state=42).fit(x_train))
df_training = pd.DataFrame()
#training_list = training_list[0:16] + training_list[21:25]
training_list = training_list[0:16] + training_list[21:25] + training_list[36:40]
for element in training_list:
df_training = df_training.append(element)
labels.extend('1' for counter in range(0, first))
labels.extend('2' for counter in range(0, second))
labels.extend('3' for counter in range(0, third))
labels.extend('4' for counter in range(0, fourth))
labels.extend('5' for counter in range(0, fifth))
labels.extend('6' for counter in range(0, sixth))
df_labels = pd.DataFrame(data=labels, columns=['Y'])
knn.fit(df_training, df_labels)
average_training = [None] * len(models)
score_test_gen = [None] * len(testing_dict["genuine"])
score_test_skilled = [None] * len(testing_dict[type])
for m in range(0, len(splits)):
count_training = 0
score_training = [None] * 4
for signature in splits[m]:
try:
score_training[count_training] = models[m].score(signature)/len(signature)
except:
score_training[count_training] = 0
count_training += 1
average_training[m] = np.average(score_training)
i = 0
for signature in testing_dict["genuine"]:
a = signature[fs]
score = knn.predict(a)
occurrences = Counter(score)
print(occurrences)
index = int(max(occurrences, key=occurrences.get)) - 1
score = models[index].score(a)/len(signature)
distance = np.abs(score - average_training[index])
score_test_gen[i] = np.exp(distance * (-1)/len(fs))
i += 1
i = 0
for signature in testing_dict[type]:
a = signature[fs]
score = knn.predict(a)
occurrences = Counter(score)
print(occurrences)
index = int(max(occurrences, key=occurrences.get)) - 1
score = models[index].score(a)/len(signature)
distance = np.abs(score - average_training[index])
score_test_skilled[i] = np.exp(distance * (-1)/len(fs))
i += 1
i = 0
for score in score_test_gen:
i += 1
print(f" prob signature testing genuine {i}: {score}")
i = 0
for score in score_test_skilled:
i += 1
print(f" prob signature testing {type} {i}: {score}")
labels = [1] * len(score_test_gen) + [0] * len(score_test_skilled)
probs = np.concatenate([score_test_gen, score_test_skilled])
fpr, tpr, thresh = roc_curve(labels, probs)
equal_error_rate = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
threshold = interp1d(fpr, thresh)(equal_error_rate)
print(f"threshold: {threshold} eer: {equal_error_rate}")
return equal_error_rate
def testing():
exp = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']
results = dict()
for i in exp:
results[i] = [None] * N_USERS
with open('features_HMM.csv', mode='r') as feature_file:
feature_reader = csv.reader(feature_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
i = 0
for (fs) in feature_reader:
if i > 0:
print(f"user n#{i}")
print(fs)
fs.pop()
training_list, testing_dict, training_fs_list, validation_fs_dict = load_dataset(i)
n_mix = 16
n_comp = 2
training = training_list[0:4]
results['a'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[4:8]
results['b'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[8:12]
results['c'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[12:16]
results['d'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[21:25]
results['e'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[36:40]
results['f'][i - 1] = test_evaluation(training, fs, testing_dict, 1, 16)
results['g'][i - 1] = results['a'][i - 1]
n_mix = 2
n_comp = 32
training = training_list[0:16]
results['h'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[0:31]
results['i'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[0:16] + training_list[21:25]
results['j'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[4:16] + training_list[21:25]
results['k'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
n_mix = 16
n_comp = 2
training = training_list[8:16] + training_list[21:25]
results['l'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
training = training_list[12:16] + training_list[21:25]
results['m'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
results['n'][i - 1] = results['e'][i - 1]
training = training_list[16:31]
results['o'][i - 1] = test_evaluation(training, fs, testing_dict, n_comp, n_mix)
results['p'][i - 1] = knn_experiment(i, fs)
i += 1
eer = [None] * len(exp)
i = 0
for e in exp:
eer[i] = np.average(results[e])*100
i += 1
print("average equal error rate for experiment:")
print(eer)
plt.plot(exp[0:6], eer[0:6], color='r', linestyle='dashed', marker='o', label='Ageing Experiments (a-f)')
plt.ylabel('EER (%)')
plt.xlabel('Experiments')
plt.show()
plt.plot(exp[6:15], eer[6:15], color='r', linestyle='dashed', marker='o', label='Ageing Experiments (f-o)')
plt.ylabel('EER (%)')
plt.xlabel('Experiments')
plt.show()
def knn_testing():
exp = ['p', 'q']
results = dict()
for i in exp:
results[i] = [None] * N_USERS
with open('features_HMM_tolosana.csv', mode='r') as feature_file:
feature_reader = csv.reader(feature_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
i = 0
for (fs) in feature_reader:
if i > 0:
print(f"user n#{i}")
print(fs)
fs.pop()
results['p'][i - 1] = knn_experiment(i, fs, "skilled")
results['q'][i - 1] = knn_experiment(i, fs, "random")
i += 1
eer = [None] * len(exp)
i = 0
for e in exp:
eer[i] = np.average(results[e])*100
i += 1
print("average equal error rate for experiment:")
print(eer)
def start_fs():
for i in range(1, 30):
training_list, testing_dict, training_fs, validation_fs = load_dataset(i)
subset, eer, thresh = feature_selection(training_fs, validation_fs)
with open('features_HMM_tolosana.csv', mode='a') as feature_file:
feature_writer = csv.writer(feature_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
subset = list(subset)
subset.append(eer)
feature_writer.writerow(subset)
knn_testing()
| true |
5f672686e75121ff9b1e3062a464d495e63e34da
|
Python
|
Gundas3073/PDF-Downloaders
|
/FIS.py
|
UTF-8
| 1,307 | 2.703125 | 3 |
[] |
no_license
|
import urllib2
def main():
global count
count = 0
global n
for n in range(0000,6000):
global test
test = n
getName("http://www.freeinfosociety.com/media.php?id=" + str(n),"</h1>","</a>/", 30)
download_file("http://www.freeinfosociety.com/media/pdf/" + str(n) + ".pdf")
print str(count)
def download_file(download_url):
try:
# Used to make sure no errors w/ HTTP request (AKA 404 Error trolls)
response = urllib2.urlopen(download_url)
file = open(name + ".pdf", 'wb')
file.write(response.read())
file.close()
print("Completed")
count = count + 1
except urllib2.HTTPError, e:
print "file " + str(n) + " " +name + " is not present or is not a pdf"
except urllib2.URLError, e:
print "file " + str(n) + " " + name + " is not present or is not a pdf"
except:
print " "
def getName(url, beg, beg2, testlength):
try:
reponse2 = urllib2.urlopen(url)
file2 = reponse2.read()
# file2 = "".join(file2.split())
a = file2.find(beg2, 0, len(file2))
a = file2.find(beg2, a+6, len(file2))
a = file2.find(beg2, a+6, len(file2))
b = file2.find(beg, a, len(file2))
global name
name = file2[a+5:b]
print name
except:
print " "
if __name__ == "__main__":
main()
| true |
ef1d6939dd10926cccc9dd4dbfa4a999108d8599
|
Python
|
jonrh/lambda-lovelace
|
/sandbox/Python Xinqi/18jul2016/RecommenderTextual.py
|
UTF-8
| 5,089 | 2.78125 | 3 |
[
"ISC"
] |
permissive
|
# -*- coding: utf-8 -*-
from sklearn.feature_extraction.text import CountVectorizer
from collections import Counter
import tweepy
import time
import string
class RecommenderTextual:
#TO-DO:
#-set language to users own twitter language
#-currently misses end hashtags
#-Does not search for hashtags, just "word-searches"
#-does not add hashtags to term-frequency document
#-does not distinguish Java from JavaScript (Could use a bigram list for this)
def __init__(self, users_own_tweets, users_followed_tweets):#, ckey, csecret, atoken, atokensecret):
self.vectorizer = CountVectorizer()
self.own_tweets = users_own_tweets
self.followed_tweets = users_followed_tweets
self.get_term_frequency_weightings(None, None)
#This method currently gets the top thirty terms that a users tweets with
def get_term_frequency_weightings(self, number_of_terms_in_document, number_of_user_timeline_tweets):
weightings = {}#Dictionary of terms (keys) and their weighting (value)
top_amount_of_terms = 30# or just the "number_of_terms_in_document" parameter
amount_of_tweets_to_gather = 101#Or just the "number_of_user_timeline_tweets" parameter, + 1
#The extra "1" is because python is not inclusive of the last digit in the range that
#this variable is used for later on.
#On a scale up to 10.0
numeric_scale = 10
#We want the top 5 most occurring terms
top_x_terms = 5
#http://stackoverflow.com/questions/265960/best-way-to-strip-punctuation-from-a-string-in-python
exclude = set(string.punctuation)
#generate a list of stop words
stop_words = [word for word in CountVectorizer(stop_words='english').get_stop_words()]
stop_words.append('rt')
stop_words.append('https')
#Filtering section
my_first_x_tweets = self.own_tweets[0:amount_of_tweets_to_gather]
overall_list = []
for sublist in my_first_x_tweets:
for item in sublist['text'].split():
if item not in stop_words:
transformed_item = item.lower().translate(string.punctuation)
overall_list.append(transformed_item)# item.lower())
total_count = len(overall_list)
frequency_doc = Counter(overall_list)
term_frequncy_list = {}
for term in frequency_doc.keys():
term_weight = (float(frequency_doc.get(term))/total_count) * numeric_scale
term_frequncy_list[term] = term_weight
self.termfreq_doc = term_frequncy_list
top_terms = []
most_common_raw = frequency_doc.most_common(top_x_terms)
for x in range(0, top_x_terms):
top_terms.append(most_common_raw[x][0])
remove_these_terms = []
for term in self.termfreq_doc:
if term not in top_terms:
remove_these_terms.append(term)
for removal in remove_these_terms:
self.termfreq_doc.pop(removal, None)
return weightings
def get_tweet_term_weighting(self, tweet_text, term):
weighting = 0
term_match_weighting = 0
already_weighted_terms = []
tweet_text_stripped = tweet_text.replace("#","").encode('utf-8')
individual_tweet_words = tweet_text_stripped.split(" ")
for word in individual_tweet_words:
if self.termfreq_doc.get(word.lower()) is not None:
term_match_weighting += self.termfreq_doc.get(word.lower())
weighting = term_match_weighting
return weighting
def generate(self, number_of_recommendations, how_many_days_ago):
list_of_owners_tweets = []
unfollowed_tweets = []
for tweet in self.own_tweets:
list_of_owners_tweets.append(tweet['text'].encode('utf-8'))
self.vectorizer.fit_transform(list_of_owners_tweets)
words = self.own_tweets #The users own tweets
tweet_list = self.followed_tweets #tweets from accounts that the user is following
data_returned = sorted(tweet_list, key=self.count_bag, reverse=True)
results = data_returned[0:number_of_recommendations]
counts = [self.count_bag(tweet) for tweet in results]
return {"recommended_tweets":results, "counts":sorted(counts, reverse=True)}
def count_bag(self, tweet):
count = 0
sanitised_tweet_text = tweet['text']
#bug
#Somehow, the following tweet is being counted as six (should be three)
#Tweet!
#Guavate: tiny library bridging Guava and Java8 - Core Java Google Guava, Guavate, Java 8 https://t.co/kQnWkUy9V7
#count!
#6
for word in sanitised_tweet_text.split():
if word.lower() in self.termfreq_doc.keys():
count += 1
count += self.get_tweet_term_weighting(sanitised_tweet_text, self.termfreq_doc.get(word))
return count
| true |