blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
f15db92bf048ac1c0becd6b118825be852b63774
Python
Aasthaengg/IBMdataset
/Python_codes/p03760/s958997741.py
UTF-8
117
2.765625
3
[]
no_license
O=input() E=input() P = "" for i in range(len(E)): P += O[i] P += E[i] if len(O)-len(E)==1: P += O[-1] print(P)
true
612e503009acde2eaee4df4f0d1b28db14a71338
Python
rkdr055/BOJ
/2997.py
UTF-8
280
3.09375
3
[]
no_license
a,b,c=map(int,input().split()) list1=[a,b,c] list1=sorted(list1) if list1[1]-list1[0] == list1[2]-list1[1]: print(list1[2]+list1[2]-list1[1]) elif (list1[2]-list1[1])//(list1[1]-list1[0])==2: print(list1[1]+list1[1]-list1[0]) else: print(list1[1]-(list1[2]-list1[1]))
true
7f8d4793eefa9f0d8fd3499113ca788e249ce41a
Python
lyqscmy/iredis
/tests/unittests/test_utils.py
UTF-8
2,659
2.609375
3
[ "BSD-3-Clause" ]
permissive
import re import time import pytest from unittest.mock import patch from iredis.utils import timer, _strip_quote_args, split_command_args from iredis.commands_csv_loader import all_commands from iredis.utils import command_syntax from iredis.style import STYLE from iredis.commands_csv_loader import commands_summary from prompt_toolkit import print_formatted_text def test_timer(): with patch("iredis.utils.logger") as mock_logger: timer("foo") time.sleep(0.1) timer("bar") mock_logger.debug.assert_called() args, kwargs = mock_logger.debug.call_args matched = re.match(r"\[timer (\d)\] (0\.\d+) -> bar", args[0]) assert matched.group(1) == str(3) assert 0.1 <= float(matched.group(2)) <= 0.2 # --- test again --- timer("foo") time.sleep(0.2) timer("bar") mock_logger.debug.assert_called() args, kwargs = mock_logger.debug.call_args matched = re.match(r"\[timer (\d)\] (0\.\d+) -> bar", args[0]) assert matched.group(1) == str(5) assert 0.2 <= float(matched.group(2)) <= 0.3 @pytest.mark.parametrize( "test_input,expected", [ ("hello world", ["hello", "world"]), ("'hello world'", ["hello world"]), ('''hello"world"''', ["helloworld"]), (r'''hello\"world"''', [r"hello\world"]), (r'"\\"', [r"\\"]), (r"\\", [r"\\"]), (r"\abcd ef", [r"\abcd", "ef"]), # quotes in quotes (r""" 'hello"world' """, ['hello"world']), (r""" "hello'world" """, ["hello'world"]), (r""" 'hello\'world'""", ["hello'world"]), (r""" "hello\"world" """, ['hello"world']), (r"''", [""]), # set foo "" is a legal command (r'""', [""]), # set foo "" is a legal command (r"\\", ["\\\\"]), # blackslash are legal ("\\hello\\", ["\\hello\\"]), # blackslash are legal ], ) def test_stipe_quote_escaple_in_quote(test_input, expected): assert list(_strip_quote_args(test_input)) == expected @pytest.mark.parametrize( "command,expected", [ ("GET a", "GET"), ("cluster info", "cluster info"), ("getbit foo 17", "getbit"), ("command ", "command"), (" command count ", "command count"), (" command count ", "command count"), # command with multi space ], ) def test_split_commands(command, expected): assert split_command_args(command, all_commands)[0] == expected def test_render_bottom_with_command_json(): for command, info in commands_summary.items(): print_formatted_text(command_syntax(command, info), style=STYLE)
true
322632c0c7c915cc150934a19cf7bc6502125190
Python
sachinchauhan10497/Hack_gseb
/filter.py
UTF-8
1,296
2.8125
3
[]
no_license
import sys from processes import make_url import webbrowser import configs filters = [] for i in range(1,len(sys.argv)): filters.append(sys.argv[i]) def process_file(): output = {} f = open(configs.FILE_TO_SAVE_SEAT_NAME_PAIR) for line in f: values = line.split("-") if len(values) > 1: name = str(values[0]).strip() seat = str(values[1]).strip() output[name] = seat f.close() return output def do_filter(input, token): output = {} for name,seat in input.items(): if token.upper() in name: output[name] = seat return output if __name__ == "__main__": output = process_file() for token in filters: output = do_filter(output, token) print("\n\n-----------------------------------------\n\n") print("Filter string - " + token + " - " + str(len(output)) + " Results") print("\n\n-----------------------------------------\n\n") for k in output.keys(): print(k + " - " + output[k]) print("\n\n------------------Final-----------------------\n\n") url = "" for k in output.keys(): url = make_url(output[k]) print(k + " - " + output[k] + " - " + url) if len(output) == 1: webbrowser.open(url)
true
36ee61b891bac431f323459bd7fa6c7c8cbb5576
Python
EnotionZ/FoodListing
/RestaurantStore.py
UTF-8
1,812
3.015625
3
[]
no_license
""" UserInfo.py -- Grabs user info from the database. by Sean. """ from Config import Config from pymongo import Connection from datetime import datetime import time from base64 import b64encode from hashlib import sha256 import logging class RestaurantStore: def __init__( self, config ): self.config = Config( config ) self.address = self.config['mongo']['address'] self.port = self.config['mongo']['port'] self.database = "foodlisting" self.logger = logging.getLogger( "FoodListing.DB.UserInfo" ) try: self.database = self.config['mongo']['database'] except: pass self.collection = "restaurants" self.con = Connection( self.address, self.port ) self.db = self.con[self.database] self.collection = self.db[self.collection] self.collection.ensure_index( "id", unique=True ) def addRestaurant( self, name, location ): restaurant = {} restaurant['name'] = name #Name of the place restaurant['id'] = b64encode( sha256( name ).digest() )[:5].replace( "/", "1" ) restaurant['menu'] = [] #menu of food items restaurant['loc'] = location #location if self.collection.save( restaurant ) != None: return restaurant['id'] else: return None def getByID( self, id ): restaurant = self.collection.find_one( { "id": id } ) return restaurant def addMenuItem( self, id, fid ): return self.collection.update( { "id": id }, { "$addToSet": { "menu": fid } } ) def getMenu( self, id ): ret = self.collection.find_one( { "id": id } ) return ret['menu'] if __name__ == "__main__": u = RestaurantStore( "config.json" ) a = u.addRestaurant( "Out Back Steak House", ( 73.1, 73.1 ) ) a = u.getByID( a ) print a
true
b08ec101695ebebe2a0d205ec85ab68a49360894
Python
hwheelen/state_senate_results
/process_2016.py
UTF-8
956
2.921875
3
[]
no_license
import pandas as pd import geopandas as gpd import numpy as np #input start path start_path = '' #load in raw election data raw_elec = gpd.read_file(start_path + 'GitHub/MEDSL/stateoffices2016.csv') #select states and print offices for this state in 2016 states = ['Florida'] for st in states: st_df = raw_elec.loc[raw_elec.state == st] offices = st_df.office.unique() print(offices) #input name of state senate election to aggregate sen = 'State Senator' st_sen = st_df.loc[st_df.office == sen] st_sen['votes'] = st_sen['candidatevotes'].astype(int) st_sen_tots = pd.pivot_table(st_sen, index = ['district'], columns = ['party'], values = ['votes'], aggfunc = np.sum) st_sen_tots.columns = st_sen_tots.columns.to_series().str.join(' ') st_sen_tots['state'] = st st_sen_tots['year'] = '2016' st_sen_tots.to_csv(start_path + 'GitHub/projects/state_senate_results/2016_results/' + st + '_st_sen_tots.csv')
true
9b30f1bab9f67cbec2556916f6fae8542997b5a2
Python
RoboticsClubatUCF/Laki2
/catkin_ws/src/laki2_mechanical/ugv/winchCalc.py
UTF-8
19,478
2.921875
3
[]
no_license
from __future__ import division import numpy as np from scipy import integrate from scipy.optimize import minimize import matplotlib.pyplot as plt #----------------------------------------------------------------------------------# # BE WARNED: currently does not work for spool sizes other than what is listed as a # constant here # Define Constants: # Mass in kg mass = 1.36078 # Drop Height in m dropHeight = 30.48 # Gravity in m/s^2 g = 9.81 # Landing speed in m/s landingSpeed = 5.5 # Max motor hub radius maxHub = 3 * 0.0254 #----------------------------------------------------------------------------------# def newDrop(brakeHeight, maxSpeed, Kv, hub, spoolWidth, gear = 1): # Calculates the voltage, current, power, and force from the motors # Inputs speed in m/s # Outputs [voltage, current, power, force] def motorVals(speed, height): if (speed == 0): return [0, 0, 0] if ((height > brakeHeight) and (abs(speed) < maxSpeed)) or (abs(speed) < 3): return [0, 0, 0] # Motor speed in rad/s: gear-ratio * linear-velocity / hub-radius omega = gear * abs(speed) / effHub(hub, height, spoolWidth) # Voltage produced by the motor voltage = omega / Kv # Power produced by the motor: V^2 / R power = 3 * (20.88 * voltage - 42.1) # Max power the motor can handle if (power > 113.4*0.9): power = 113.4*0.9 # Force from motor: power = force * linear-velocity force = power / abs(speed) return [voltage, power, force] # Update function for IVP solver # my" = Fm - Fg # Ground is 0, up is + # Inputs: # U = [y, y'] # t is unused # Outputs: # [y', y"] def dU_dt(t, U): # Force of gravity Fg = mass * g # Pull force from the motor from the helper function motorForce = motorVals(U[1], U[0])[2] print U[1], motorForce # Net Force acting on the motor netForce = motorForce - Fg # Net acceleration on the UGV (y double prime) yDub = netForce / mass # Return [y', y"] return [U[1], yDub] # Dropped from the drop height with 0 initial velocity U = [dropHeight, 0] ts = [0, 0] # Make a list to populate with (t, y) tVals = [] yVals = [] yPrimeVals = [] motorVolt = [] power = [] tensionVals = [] # While the vehicle is not on the ground, continue to iterate while (U[0] > 0): # Take another time step ts = [ts[1], ts[1] + 1e-2] # Solve for the next time step intermediate = integrate.solve_ivp(dU_dt, ts, U) volt, powerVal, force = motorVals(U[1], U[0]) print "power: ", powerVal tensionVals.append((dU_dt(0, U)[1] + g) / mass) U = [intermediate.y[0][-1], intermediate.y[1][-1]] tVals.append(ts[1]) yVals.append(U[0]) yPrimeVals.append(-U[1]) motorVolt.append(volt) power.append(powerVal) return (tVals, yVals, yPrimeVals, motorVolt, power, tensionVals) # Estimates the size of a given hub at a given height due to the wrapping of the # tether def effHub(hub, height, spoolWidth): # The fishing line can be thought of as cylinders wrapped around a circle # It can be modeled ad cylinders with some packing efficiency # cross sectional area is assumed to be that of 30lb fishing line (Dia = 0.022") tetherCrossArea = np.pi * (0.022 * 0.0254 / 2)**2 # Height is the length of wire remaining # Volume (with 100% packing efficiency) is height * cross sectional area volume = height * tetherCrossArea # Assume it has 90% of the theoretical cylinder packing efficiency of 91%: volume /= 0.91 / 0.9 # Find the cross sectional area of the spool spoolCrossArea = volume / spoolWidth # Area of an annulus is pi(R^2 -r^2) effHub = np.sqrt((spoolCrossArea / np.pi) + hub**2) return effHub #----------------------------------------------------------------------------------# # Returns lists for time, y, y', and tension in the tether # of a vehicle dropping in 0 air friction from the drop height to the ground # Solve numerically def drop(brakeHeight, maxSpeed, Kv, hub, spoolWidth, res): # Calculates the voltage, current, power, and force from the motors # Inputs speed in m/s # Outputs [voltage, current, power, force] def motorVals(speed, height): if (speed == 0): return [0, 0, 0, 0] if ((height > brakeHeight) and (abs(speed) < maxSpeed)): return [0, 0, 0, 0] # Motor speed in rad/s: gear-ratio * linear-velocity / hub-radius omega = gear * abs(speed) / effHub(hub, height, spoolWidth) # Voltage produced by the motor voltage = omega / Kv # Total resistance of the system totalRes = Ra + res # Current throught the motor and resistor: V = IR current = voltage / totalRes # Power produced by the motor: V^2 / R power = voltage**2 / totalRes # Force from motor: power = force * linear-velocity force = power / abs(speed) return [voltage, current, power, force] # Update function for IVP solver # my" = Fm - Fg # Ground is 0, up is + # Inputs: # U = [y, y'] # t is unused # Outputs: # [y', y"] def dU_dt(t, U): # Force of gravity Fg = mass * g # Pull force from the motor from the helper function motorForce = motorVals(U[1], U[0])[3] # Net Force acting on the motor netForce = motorForce - Fg # Net acceleration on the UGV (y double prime) yDub = netForce / mass # Return [y', y"] return [U[1], yDub] # Dropped from the drop height with 0 initial velocity U = [dropHeight, 0] ts = [0, 0] # Make a list to populate with (t, y) tVals = [] yVals = [] yPrimeVals = [] tensionVals = [] resVolt = [] motorVolt = [] sysCurr = [] rmsPower = [] resPower = [] motorPower = [] # While the vehicle is not on the ground, continue to iterate while (U[0] > 0): # Take another time step ts = [ts[1], ts[1] + 1e-2] # Solve for the next time step intermediate = integrate.solve_ivp(dU_dt, ts, U) tensionVals.append((dU_dt(0, U)[1] + g) / mass) U = [intermediate.y[0][-1], intermediate.y[1][-1]] tVals.append(ts[1]) yVals.append(U[0]) yPrimeVals.append(-U[1]) volts, curr, powers = brakeElecProps(Kv, Ra, gear, effHub(hub, U[0], spoolWidth), res, U[1]) motorVolt.append(-volts[0]) resVolt.append(-volts[1]) sysCurr.append(-curr) resPower.append(powers[1]) motorPower.append(powers[0]) power = motorVals(U[1], U[0])[2] rmsPower.append(power) return (tVals, yVals, yPrimeVals, resVolt, motorVolt, sysCurr, rmsPower, resPower, motorPower, tensionVals) #----------------------------------------------------------------------------------# # Returns lists for time, and y # of a vehicle dropping in 0 air friction from the drop height to the ground # Solve analytically (at least mostly analytically) def analyticalDrop(brakeHeight, maxSpeed, Kv, gear, hub, totalRes, flag = None): # Returns the height of the UGV for a given time after the brakeHeight def decayedDescentPos(t): # Height as a function of time (solved by wolfram symbolic diff eq solver): # y(t) = brakeHeight + (g * m^2 / c^2) * (exp(r) - 1) + (g * m / c) * t # + (maxSpeed * m / c) * (1 - exp(r)) # Where: # g = -abs(gravity) # m = mass # c = (gear * hub / Kv)^2 / (totRes) # r = -c * t / m c = (gear /(hub * Kv))**2 / (totalRes) r = -c * t / mass gravity = -g speed = -maxSpeed height = (brakeHeight + (gravity * mass**2 / c**2) * (np.exp(r) - 1) + (gravity * mass / c) * t - (maxSpeed * mass / c) * (1 - np.exp(r))) return height # Returns the speed of the UGV for a given time after the brakeHeight def decayedDescentVel(t): # Velocity as a function of time (solved by wolfram symbolic diff eq solver): # y'(t) = (g * m / c) * exp(r) + (g * m / c) + maxSpeed * exp(r) # Where: # g = -abs(gravity) # m = mass # c = (gear * hub / Kv)^2 / (totRes) # r = -c * t / m c = (gear /(hub * Kv))**2 / (totalRes) r = -c * t / mass gravity = -g speed = -maxSpeed speed = ((-gravity * mass / c) * np.exp(r) + (gravity * mass / c) + speed * np.exp(r)) return speed # Height at which the max speed is achieved speedHeight = speedHeightCalc(maxSpeed) # If the brakeHeight is less than the speedHeight, the system follows 3 phases: # Phase 1: Free Fall # Phase 2: Perfect PWM to maintain max speed # Phase 3: Full Braked Descent to Ground if (brakeHeight < speedHeight): # Phase 1: Free Fall: # y = y0 - 0.5*g*t^2 tSpeed = np.sqrt(2*(dropHeight - speedHeight) / g) # Phase 2: Perfect PWM to maintain the maxSpeed # y = y0 + maxSpeed * (t - tSpeed) tBrake = tSpeed + (speedHeight - brakeHeight) / maxSpeed # Otherwise, the vehicle skips combines phases 1 and 2 to reach the brake height # before it reaches max speed: else: # Phase 1 & 2: Free Fall to BrakeHeight: # y = y0 - g*t^2 tBrake = np.sqrt(2*(dropHeight - brakeHeight) / g) # For plotter to plot correctly tSpeed = tBrake # In this case, the speed that starts the exponential decay is no the max # speed of the vehicle but rather the speed achieved at the drop height maxSpeed = g * tBrake # Phase 3: Full Braked Descent to Ground (Exponential Decay of Speed) # See decayedDescent for eqn # Quick helper function to return error of the decayed descent def evalTime(t): return abs(decayedDescentPos(t)) bnds = ((0, None),) opt = minimize(evalTime, 1e-6, method = 'SLSQP', bounds = bnds, tol = 1e-8) tLand = tBrake + opt.x[0] # If the input didn't ask for anything, output the time to hit the ground if (flag == None): return tLand # The input requested the landing speed if (flag == 'landingSpeed'): return decayedDescentVel(opt.x[0]) # The input requested the piecewise time values if (flag == 'times'): return (tSpeed, tBrake, tLand[0]) else: tVals = np.linspace(0, tLand, 1000) yVals = [] yPrimeVals = [] for t in tVals: # Phase 1: if (t < tSpeed): yVals.append(dropHeight - 0.5*g*t**2) yPrimeVals.append(-g*t) # Phase 2: elif (t < tBrake): yVals.append(speedHeight - maxSpeed * (t-tSpeed)) yPrimeVals.append(-maxSpeed) # Phase 3: else: yVals.append(decayedDescentPos(t - tBrake)) yPrimeVals.append(decayedDescentVel(t - tBrake)) return (tVals, yVals, yPrimeVals) #----------------------------------------------------------------------------------# # Calculates peak to peak electric properties of the motor and resistor def brakeElecProps(Kv, Ra, gear, hub, res, speed): # Resistance of motor and external resistor act in series totalRes = Ra + res # Motor rotational speed at the given linear speed omega = gear * speed / hub # Total voltage generated at the motor rotational speed volt = omega / Kv # volts is [motor voltage, resistor voltage] volts = [volt * (Ra / (Ra + res)) * np.sqrt(2), volt * (res / (Ra+res)) * np.sqrt(2)] # Current generated at the control height curr = volt / totalRes * np.sqrt(2) # Power generated at the control height powers = [volts[0] * curr * 0.8, volts[1] * curr / 3] return [volts, curr, powers] #----------------------------------------------------------------------------------# # Calculates the fastest speed allowable and the lowest height to deploy the brake # TO DO: Make this work with the new variable hub model def brakeVals(Kv, Ra, gear, hub, res, maxElec): speed = 0 minSpeed = 0 # Twice the max speed achievable during the fall maxSpeed = 2 * np.sqrt(2 * dropHeight * g) convError = 1 lastValid = -1 # Calculate the min height that the brake can be applied in order to not # exceed the elctrical limits while (convError > 1e-6): speed_old = speed speed = (minSpeed + maxSpeed)/2 convError = abs(speed_old - speed) [volts, curr, powers] = brakeElecProps(Kv, Ra, gear, hub, res, speed) # If it is over the motor electrical limits, the speed is too fast # Voltage multiplied by sqrt(2) for peak to peak voltage # Current multiplied by sqrt(2) for peak to peak current # Power Multiplied by 2 for peak to peak power if (volts[0] > maxElec[0][0] or curr > maxElec[0][1] or powers[0] > maxElec[0][2]): maxSpeed = speed # If it is over the MOSFET electrical limits, the speed is too fast # Voltage multiplied by sqrt(2) for peak to peak voltage # Current multiplied by sqrt(2) for peak to peak current # Power Multiplied by 2 for peak to peak power elif (volts[1] > maxElec[1][0] or curr > maxElec[1][1] or powers[1] > maxElec[1][2]): lastValid = speed maxSpeed = speed else: minSpeed = speed speed = lastValid if (speed < landingSpeed): return [speed, -1] height = 0 minHeight = 0 maxHeight = dropHeight convError = 1 lastValid = -1 totalRes = Ra + res # Calculate the min height that the brake can be applied to reach the desired # speed while (convError > 1e-6): # Improve the hub guess height_old = height height = (minHeight + maxHeight)/2 convError = abs(height_old - height) finalSpeed = -analyticalDrop(height, speed, Kv, gear, hub, totalRes, flag = 'landingSpeed') finalSpeed = drop(height, speed, Kv, Ra, gear, hub, spoolWidth, res)[2][-1] # If the drop height slows down the UGV to within 0.5% of the desired speed by # the end, the height can be raised if (abs(finalSpeed - landingSpeed) < (0.005 * landingSpeed)): lastValid = height maxHeight = height # Otherwise it is not enough braking distance else: minHeight = height finalSpeed = -analyticalDrop(lastValid, speed, Kv, gear, hub, totalRes, flag = 'landingSpeed') finalSpeed = drop(lastValid, speed, Kv, Ra, gear, hub, spoolWidth, res)[2][-1] if (abs(finalSpeed - landingSpeed) > (0.005 * landingSpeed)): return [speed, -1] else: return [speed, lastValid] #----------------------------------------------------------------------------------# # Returns the height that the given speed with be achieved # Will return a negative number def speedHeightCalc(speed): dropDist = (speed**2) / (2*g) speedHeight = dropHeight - dropDist return speedHeight #----------------------------------------------------------------------------------# # Returns the largest hub possible with the given configuration # TO DO: make this work with the variable hub model def largestHub(Kv, gear, totalRes, maxElec): def evalHub(hub): # Force of gravity Fg = mass * g # Power of gravity Pg = Fg * landingSpeed # Motor speed at the given linear speed omega = gear * landingSpeed / hub # Voltage produced by the motor voltage = omega / Kv # Power across equivalent resistance Pr = voltage**2 / totalRes return abs(Pr - Pg) bnds = ((1e-6, None),) opt = minimize(evalHub, maxHub/2, method = 'L-BFGS-B', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] opt = minimize(evalHub, maxHub/2, method = 'TNC', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] opt = minimize(evalHub, maxHub/2, method = 'SLSQP', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] # At this point all of the methods that allow for boundaries have been used. # The solution was not found return -1 #----------------------------------------------------------------------------------# # Returns the hub radius that minimizes the descent time within the given constraints # This assumes that the hub is sized approriately such that at steady state with # full break the speed equals the max allowable landing speed. This does not # have to be the case as the system could be PWM'ed into disapating less power # TO DO: at the very least helper functions are broken due to the new variable hub # model. Fix those first def minimizeTime(Kv, Ra, gear, res, maxElec): maxHub = largestHub(Kv, gear, Ra + res, maxElec) # TO DO: Calculate a minimum hub size to stay within bounds # A spool with a 0.125" radius is the minimum we can tolerate if (maxHub < 0.125 * 0.0254): return -1 bnds = ((0.125 * 0.0254, maxHub),) def evalHub(hub): maxSpeed, brakeHeight = brakeVals(Kv, Ra, gear, hub, res, maxElec) t = analyticalDrop(brakeHeight, maxSpeed, Kv, gear, hub, Ra + res) return t opt = minimize(evalHub, maxHub/2, method = 'L-BFGS-B', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] opt = minimize(evalHub, maxHub/2, method = 'TNC', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] opt = minimize(evalHub, maxHub/2, method = 'SLSQP', bounds = bnds, tol = 1e-6) # If converged, return the result if (opt.success): return opt.x[0] # At this point all of the methods that allow for boundaries have been used. # The solution was not found return -1 #----------------------------------------------------------------------------------# # Returns the minimum time to descent for the given motor # This is basically useless def motorEvaluator(Kv, Ra, gear, res, maxElec): hub = minimizeTime(Kv, Ra, gear, res, maxElec) if (hub == -1): print 'hub error' return (-1, -1, np.inf) maxSpeed, brakeHeight = brakeVals(Kv, Ra, gear, hub, res, maxElec) print maxSpeed, brakeHeight if (maxSpeed == -1 or brakeHeight == -1): print 'brakeVal error' return (-1, -1, np.inf) t = analyticalDrop(brakeHeight, maxSpeed, Kv, gear, hub, Ra + res) if (t == -1): print 'drop error' return (-1, -1, np.inf) else: return (hub, t)
true
258e1c878555c9cf6d9b52e8c7001a650e0eeb8e
Python
youknowbaron/LearnPythonTheHardWay
/ex18.py
UTF-8
382
3.765625
4
[]
no_license
def print_three(*args): arg1, arg2, arg3 = args print(f"arg1: {arg1}, arg2: {arg2}, arg3: {arg3}") def print_two(arg1, arg2): print(f"arg1: {arg1}, arg2: {arg2}") def print_one(arg1): print(f"arg1: {arg1}") def print_none(): print("I got nothin'.") print_three("i", "am", "baron!") print_two("just", "4fun") print_one("haha") print_none() print_three(1,2,3)
true
246eec142e2cdb9c9c0f735df23e28f851c2e98c
Python
R4f4Lc/Programacion1Daw
/Segundo Trimestre/1- Primeros Ejercicios POO/Python/TestFraccion.py
UTF-8
2,312
4.59375
5
[]
no_license
# -*- coding: utf-8 -*- """ Crea una clase Fraccion (en Java yPython) de forma que podamos hacer las siguientes operaciones: Contruir un objeto Fraccion pasándole al constructor el numerador y el denominador. Obtener la fracción. Obtener y modificar numerador y denominador. No se puede dividir por cero. Obtener resultado de la fracción (número real). Multiplicar la fracción por un número. Multiplicar, sumar y restar fracciones. Simplificar la fracción. __author__ = Rafael López | RafaLpeC """ from Fraccion import * salir = True nu1 = float(input("Introduce el numerador de la primera fracción: ")) de1 = float(input("Introduce el denominador de la primera fracción: ")) frac1 = Fraccion(nu1, de1) while salir: print("1. Obtener la fracción.") print("2. Modificar numerador y denominador.") print("3. Resultado de la fracción. ") print("4. Multiplicar un número a la fracción. ") print("5. Multiplicar, sumar y restar dos fracciones.") print("6. Salir.") opcion = float(input("Elige una opción: (1-6)")) if opcion == 1: print("La fracción es " + str(frac1.getNum()) + "/" + str(frac1.getDen())) if (opcion == 2): nu1 = float(input("Introduce el numerador de la primera fracción: ")) de1 = float(input("Introduce el denominador de la primera fracción: ")) frac1.numerador = nu1 frac1.denominador = de1 if (opcion == 3): if(frac1.getFraccion() == 0): print("La fracción tiene que tener un denominador mayor que 0") else: print("La fracción es " + str(frac1.getFraccion())) if (opcion == 4): num = float(input("Introduce el número a multiplicar: ")) print("El resultado es " + str(frac1.MultiplicaNum(num))) if (opcion == 5): nu2 = float(input("Introduce el numerador de la segunda fracción: ")) de2 = float(input("Introduce el denominador de la segunda fracción: ")) frac2 = Fraccion(nu2, de2) print("La multiplicación de las dos fracciones es igual a " + str(frac1.MultiplicaFrac(frac2))) print("La suma de las dos fracciones es igual a " + str(frac1.SumaFrac(frac2))) print("La resta de las dos fracciones es igual a " + str(frac1.RestarFrac(frac2))) if (opcion == 6): salir = False
true
d8efef2976f32b6f34472d21a735827d763f9f34
Python
dimitymiller/cac-openset
/networks/openSetClassifier.py
UTF-8
5,065
2.796875
3
[ "BSD-3-Clause" ]
permissive
""" Network definition for our proposed CAC open set classifier. Dimity Miller, 2020 """ import torch import torchvision import torch.nn as nn class openSetClassifier(nn.Module): def __init__(self, num_classes = 20, num_channels = 3, im_size = 64, init_weights = False, dropout = 0.3, **kwargs): super(openSetClassifier, self).__init__() self.num_classes = num_classes self.encoder = BaseEncoder(num_channels, init_weights, dropout) if im_size == 32: self.classify = nn.Linear(128*4*4, num_classes) elif im_size == 64: self.classify = nn.Linear(128*8*8, num_classes) else: print('That image size has not been implemented, sorry.') exit() self.anchors = nn.Parameter(torch.zeros(self.num_classes, self.num_classes).double(), requires_grad = False) if init_weights: self._initialize_weights() self.cuda() def forward(self, x, skip_distance = False): batch_size = len(x) x = self.encoder(x) x = x.view(batch_size, -1) outLinear = self.classify(x) if skip_distance: return outLinear, None outDistance = self.distance_classifier(outLinear) return outLinear, outDistance def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode = 'fan_out', nonlinearity = 'relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def set_anchors(self, means): self.anchors = nn.Parameter(means.double(), requires_grad = False) self.cuda() def distance_classifier(self, x): ''' Calculates euclidean distance from x to each class anchor Returns n x m array of distance from input of batch_size n to anchors of size m ''' n = x.size(0) m = self.num_classes d = self.num_classes x = x.unsqueeze(1).expand(n, m, d).double() anchors = self.anchors.unsqueeze(0).expand(n, m, d) dists = torch.norm(x-anchors, 2, 2) return dists class BaseEncoder(nn.Module): def __init__(self, num_channels, init_weights, dropout = 0.3, **kwargs): super().__init__() self.dropout = nn.Dropout2d(dropout) self.relu = nn.LeakyReLU(0.2) self.bn1 = nn.BatchNorm2d(64) self.bn2 = nn.BatchNorm2d(64) self.bn3 = nn.BatchNorm2d(128) self.bn4 = nn.BatchNorm2d(128) self.bn5 = nn.BatchNorm2d(128) self.bn6 = nn.BatchNorm2d(128) self.bn7 = nn.BatchNorm2d(128) self.bn8 = nn.BatchNorm2d(128) self.bn9 = nn.BatchNorm2d(128) self.conv1 = nn.Conv2d(num_channels, 64, 3, 1, 1, bias=False) self.conv2 = nn.Conv2d(64, 64, 3, 1, 1, bias=False) self.conv3 = nn.Conv2d(64, 128, 3, 2, 1, bias=False) self.conv4 = nn.Conv2d(128, 128, 3, 1, 1, bias=False) self.conv5 = nn.Conv2d(128, 128, 3, 1, 1, bias=False) self.conv6 = nn.Conv2d(128, 128, 3, 2, 1, bias=False) self.conv7 = nn.Conv2d(128, 128, 3, 1, 1, bias=False) self.conv8 = nn.Conv2d(128, 128, 3, 1, 1, bias=False) self.conv9 = nn.Conv2d(128, 128, 3, 2, 1, bias=False) self.encoder1 = nn.Sequential( self.conv1, self.bn1, self.relu, self.conv2, self.bn2, self.relu, self.conv3, self.bn3, self.relu, self.dropout, ) self.encoder2 = nn.Sequential( self.conv4, self.bn4, self.relu, self.conv5, self.bn5, self.relu, self.conv6, self.bn6, self.relu, self.dropout, ) self.encoder3 = nn.Sequential( self.conv7, self.bn7, self.relu, self.conv8, self.bn8, self.relu, self.conv9, self.bn9, self.relu, self.dropout, ) if init_weights: self._initialize_weights() self.cuda() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode = 'fan_out', nonlinearity = 'relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def forward(self, x): x1 = self.encoder1(x) x2 = self.encoder2(x1) x3 = self.encoder3(x2) return x3
true
dc44fb896ceb55a200c7967e9bcd913ca5d76275
Python
bhyun/daily-algorithm
/2022/2022.06/Programmers_추석트래픽.py
UTF-8
1,194
3.109375
3
[]
no_license
def solution(lines): answer = 0 responses = [] for line in lines: date, time, t = line.split() t = float(t[:-1]) * 1000 hour, minute, second = time.split(":") endtime = (int(hour) * 3600 + int(minute) * 60 + float(second)) * 1000 responses.append((endtime - t + 1, endtime)) for standard_s, standard_e in responses: answer = max(answer, count(responses, standard_s, standard_s + 1000), count(responses, standard_e, standard_e + 1000)) return answer def count(responses, start, end): cnt = 0 for s, e in responses: if e >= start and s < end: cnt += 1 return cnt print(solution( [ "2016-09-15 01:00:04.001 2.0s", "2016-09-15 01:00:07.000 2s" ])) print(solution([ "2016-09-15 01:00:04.002 2.0s", "2016-09-15 01:00:07.000 2s" ])) print(solution( [ "2016-09-15 20:59:57.421 0.351s", "2016-09-15 20:59:58.233 1.181s", "2016-09-15 20:59:58.299 0.8s", "2016-09-15 20:59:58.688 1.041s", "2016-09-15 20:59:59.591 1.412s", "2016-09-15 21:00:00.464 1.466s", "2016-09-15 21:00:00.741 1.581s", "2016-09-15 21:00:00.748 2.31s", "2016-09-15 21:00:00.966 0.381s", "2016-09-15 21:00:02.066 2.62s" ]))
true
6a2442189f3934c7f79113a7b8b997d8328d22e3
Python
kathrynzav/DukeTIP2018Projects
/hangmangame.py
UTF-8
7,947
2.75
3
[]
no_license
import random ##big hangman print(" _ _ _ _ _____ __ __ _ _ ") print(" | | | | /\ | \ | |/ ____| | \/ | /\ | \ | |") print(" | |__| | / \ | \| | | __ | \ / | / \ | \| |") print(" | __ | / /\ \ | . ` | | |_ | | |\/| | / /\ \ | . ` |") print(" | | | |/ ____ \| |\ | |__| | | | | |/ ____ \| |\ |") print(" |_| |_/_/ \_\_| \_|\_____| |_| |_/_/ \_\_| \_|") print("Taylor Farley, Kathryn Zavadil, Myles Crockem, Colby DuHamel") print("") easyWords = ["shadowofthecolossus","leagueoflegends","grandtheftauto","supersmashbros","legendofzelda","supermarioodyssey","sonicthehedgehog","streetfighter","residentevil","undertale"] hardWords = ["fortnite","minecraft","pubg","cuphead","octodad","godofwar","titanfall","fallout","overwatch","darksouls","skyrim","splatoon","callofduty","pokemon","thesims","pacman","tetris","doom"] def isAlpha(char): if(char == "a" or char == "b" or char == "c" or char == "d" or char == "e" or char == "f" or char == "g" or char == "h" or char == "i" or char == "j" or char == "k" or char == "l" or char == "m" or char == "n" or char == "o" or char == "p" or char == "q" or char == "r" or char == "s" or char == "t" or char == "u" or char == "v" or char == "w" or char == "x" or char == "y" or char == "z"): return True uwuMode = False cheatMode = False difficulty = 0 selectedDifficulty = False lives = 6 victory = False def drawMan(): boiNum = 0 boiNum = random.randint(0,3) if(lives > 6 and boiNum <= 1): print("____. ") print("|_(._.)_ ") print("| \_|_/ ") print("| | ") print("| / \ ") print("| ") print("|_______ ") if(lives > 6 and boiNum == 2): print("____. ") print("| (._.) ") print("|___|___ ") print("| | ") print("| / \ ") print("| ") print("|_______ ") if(lives == 6): print("____. ") print("| ") print("| ") print("| ") print("| ") print("| ") print("|_______ ") if(lives == 5): print("____. ") print("| ( ) ") print("| ") print("| ") print("| ") print("| ") print("|_______ ") if(lives == 4): print("____. ") print("| ( ) ") print("| | ") print("| | ") print("| ") print("| ") print("|_______ ") if(lives == 3): print("____. ") print("| ( ) ") print("| /| ") print("| | ") print("| ") print("| ") print("|_______ ") if(lives == 2): print("____. ") print("| ( ) ") print("| /|\ ") print("| | ") print("| ") print("| ") print("|_______ ") if(lives == 1): print("____. ") print("| ( ) ") print("| /|\ ") print("| | ") print("| / ") print("| ") print("|_______ ") if(lives == 0): print("____. ") print("| ( ) ") print("| /|\ ") print("| | ") print("| / \ ") print("|_______ ") while(selectedDifficulty != True): press = input("Choose a difficulty. Type '0' for easy or '1' for hard ") if(press == "0"): difficulty = 0 print("Easy Mode Selected!") selectedDifficulty = True if(press == "1"): difficulty = 1 print("Hard Mode Selected!") selectedDifficulty = True if(press == "uwu"): print("what's this?") uwuMode = True if(press == "i am a cheater"): print("If it makes you happy, I guess.") difficulty = 0 cheatMode = True selectedDifficulty = True if(press == "upupdowndownleftrightleftrightba"): print("cool cool fam") difficulty = 1 lives = 999 selectedDifficulty = True item = 0 if(press == "lootbox"): print("oh boy what are ya goona get?") item = random.randint(0,22) if(item == 1): print("you got an apple") if(item == 2): print("you got a voice line for winston") if(item == 3): print("you got a broken game of tic tac toe") if(item == 4): print("you got a single macaroni noodle") if(item == 5): print("you got a nice shirt. Lookin good!") if(item == 6): print("you got a 100$ sharky's gift card") if(item == 7): print("you got a body pillow of your waifu") if(item == 8): print("you got a sense of pride and accomplishment") if(item == 9): print("you got a badly translated copy of a dating simulator") if(item == 10): print("you got a career of a master fortnite player") if(item == 11): print("you got a new and improved sense of humor") if(item == 12): print("you got too many bagels") if(item == 13): print("you got a duplicate (+5 coins tho)") if(item ==14): print("you got a wrinkled up pokemon card") if(item == 15): print("you got a hefty donation from the NRA") if(item == 16): print("you got burned. You feel incredibly insulted and your self confidence is down the drain") if(item == 17): print("you got a new understanding of the furry fandom") if(item == 18): print("you got a bag of various girlscout cookies but none of the flavor you like") if(item == 19): print("you got in trouble. Go to jaaiiiillll") if(item == 20): print("you got Todd Howard on your doorstep coming to take away your computer") if(item == 21): print("You got dead") currentWord = "" if(difficulty == 0): currentWord = easyWords[random.randint(0,9)] if(difficulty == 1): currentWord = hardWords[random.randint(0,17)] letters = list(currentWord) length = len(currentWord) usedLetters = [] wordBlank = [] for a in range(length): wordBlank.append("_") lettersguessed = 0 guessCorrect = False blanks = "_ " while(lives == 0 or victory != True): drawMan() if(cheatMode == True): print(currentWord) guessCorrect = False print("The word is " + str(length) + " letters long. [" + str(lives) + " lives left]") print(*wordBlank) text = input("Guess a letter!") text = text.lower() usedAgain = False #check if the letter is valid if(isAlpha(text) and len(text) == 1): for e in range(len(usedLetters)): if(text == usedLetters[e]): usedAgain = True for b in range(length): #correct guess if(text == letters[b-1]): wordBlank[b-1] = (str(text)) guessCorrect = True if(usedAgain != True): lettersguessed += 1 for c in range(length): #testing for a win if(lettersguessed == length): victory = True if(usedAgain != True): usedLetters.append(text) else: print('\033[1m' + "Invalid Response. Be sure your input is a letter and only one character long") guessCorrect = True if(victory == True): print("Victory!!! The word was \'" + currentWord + "\'!!") break print("Already used:" + str(list(usedLetters))) if(guessCorrect == False): if(usedAgain != True): lives -= 1 print('\033[1m' + "There are no " + text + "\'s in the word. Try again [-1 life]") if(lives == 0): print('\033[1m' + "Game Over. The word was \'" + currentWord + "\'") print("| ||") print("|||_") break if(usedAgain == True): print("already used that letter!") if(victory == True): if(uwuMode == False): print(" (:D)/ ") print(" /| ") print(" | ") print(" / \ ") if(uwuMode == True): print(" (uwu)/ ") print(" /| ") print(" | ") print(" / \ ") print("Thanks for playing!") pressedExit = False while(pressedExit == False): bloop = input("press any key to exit") if(len(bloop) > -1): pressedExit = True
true
97fa939fdfb592a3fd1d58392a25b01d71070319
Python
secpanel/rogue-ips-api-actionkit
/python/sample-python.py
UTF-8
1,339
2.984375
3
[]
no_license
#!/usr/bin/env python #Importing modules for HTTPS Connection import urllib import httplib #Importing modules for parsing JSON import json def getTheData(key,limit=10,offset=0): h = httplib.HTTPSConnection('apis.secpanel.com'); h.request('GET', '/rouge-ips-json.php?key='+str(key) +'&limit='+str(limit)+'&offest='+str(offset)) response = h.getresponse() return response.read() #Get the JSON Data json_response=getTheData("your-key") #Parse JSON String parsed_json = json.loads(json_response) #Create a blank Dictionary to store ip and respective #Geolocation attributes ips={} #Read the parsed JSON for keys in parsed_json: if keys=='limit': limit_used=parsed_json[keys] elif keys=='offset': offset_used=parsed_json[keys] elif keys=='total': total_records=parsed_json[keys] elif keys=='status': status=parsed_json[keys] elif keys=='status_code': status_code=parsed_json[keys] else: #Store the IPs ips[keys]=parsed_json[keys] #Process as per application logic if status_code==200: #data is good for and useful if total_records < 1: print "No records returned" else: for ip in ips: print ip,":",ips[ip],"\n" else: print "Something went bad : [",status_code,"] ",status,"\n"
true
104a5cb3a05e08a5c6711cbe1cb016390eda0337
Python
christopherjmedlin/discord-auto-responder
/autoresponder.py
UTF-8
1,495
2.546875
3
[]
no_license
#!/usr/bin/env python3.6 from discord import Client from discord.errors import LoginFailure import asyncio import configparser from getpass import getpass import os import json client = Client() message_map = {} default_message = "¯\_(ツ)_/¯" @client.event async def on_ready(): print('\033[92m\nLogged in as\033[92m\n\033[95m------\033[0m') print(client.user.name) print(client.user.id) print('\033[95m------\033[0m') @client.event async def on_message(message): mentioned = client.user.mention in message.content if (message.channel.is_private and message.author.id != client.user.id) or mentioned: response = message_map.get(str(message.author.id), default_message) await client.send_message(message.channel, response) if __name__ == "__main__": config = {"config": {}} if os.path.isfile('config.json'): config = json.load(open('config.json')) groups = config.get("groups", []) for group in groups: for num in group["ids"]: message_map[str(num)] = group["message"] email = config.get("email") if not email: email = input("Email: ") password = config.get("password") if not password: password = getpass() default_message = config.get("default_message") if not default_message: default_message = input("Default Message: ") try: client.run(email, password) except LoginFailure: print("\033[91mInvalid login.\033[0m")
true
036b6c1937c2ed7fcfbdd130ff5ca534de4bfea5
Python
mikkolaj/wdi
/zestaw2/elo.py
UTF-8
130
3.671875
4
[]
no_license
def pow(a, n): c=1 for i in range(1,n+1): c*=a return c tab = [1, 2, 3, 4] for i in tab: print(pow(i, 2))
true
d60bb5ca6f525b09635ce23c691fce60a0a0616d
Python
jumpjumpdog/CrawlAmazon
/learnRe.py
UTF-8
255
2.6875
3
[]
no_license
# -*- coding: utf-8 -*- import re def reFunc(str): matchObj = re.search(r'(.*?) *:(.*)' ,testStr) if matchObj: print matchObj.group(2) else: print "no match"+matchObj.group(0) if __name__ == "__main__": reFunc(testStr)
true
9f5755332f61e5252fb802631072cf5aebc0f25d
Python
ojhaanshu87/LeetCode
/139_word_break.py
UTF-8
3,540
3.875
4
[ "Unlicense" ]
permissive
""" Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words. Note: The same word in the dictionary may be reused multiple times in the segmentation. You may assume the dictionary does not contain duplicate words. Example 1: Input: s = "leetcode", wordDict = ["leet", "code"] Output: true Explanation: Return true because "leetcode" can be segmented as "leet code". Example 2: Input: s = "applepenapple", wordDict = ["apple", "pen"] Output: true Explanation: Return true because "applepenapple" can be segmented as "apple pen apple". Note that you are allowed to reuse a dictionary word. Example 3: Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"] Output: false """ #METHOD1 -> DFS with Memorization TC (O(n) with memoization, O(2^n) without) """ The basic idea is to use DFS to remove any possible word from the word dictionary that exists in the begining of the string, and then the remainder of each resultant string will have the same procedure recursively applied to it. At the end of the day, if there's one recusrion that returns True, when a input string "" is found, then there exists a possible wordBreak. Used a memo table to store previously seen postfix strings, so we don't have to go down the route of calculating already tabulated words. """ class Solution(object): def dfs(self, string, wordDict, found): if string == "": return True if string in found: return found[string] found_split = False for word in wordDict: if string .startswith(word): found_split = found_split or self.dfs(string[len(word):], wordDict, found) if found_split == True: return True found[string] = found_split return found_split def wordBreak(self, s, wordDict): found = {} return self.dfs(s, wordDict, found) #METHOD2 -> Trie With Memorization class Solution: def __init__(self): self.trie = [{}] # memoization cache self.found = {} def get_prefixes(self, word): prefixes = [] current_word = [] current = self.trie[0] for c in word: if "$" in current: prefixes.append(''.join(current_word)) if c in current: current_word.append(c) current = self.trie[current[c]] else: break if "$" in current: prefixes.append(''.join(current_word)) return prefixes def make_trie(self, wordDict): for word in wordDict: current = self.trie[0] for c in word + "$": if c in current: current = self.trie[current[c]] else: # make new node self.trie.append({}) current[c] = len(self.trie) - 1 current = self.trie[current[c]] def dfs(self, suffix): if suffix in self.found: return False if not suffix: return True for p in self.get_prefixes(suffix): if self.dfs(suffix[len(p):]): return True self.found[suffix] = False return False def wordBreak(self, s, wordDict): self.make_trie(wordDict) return self.dfs(s)
true
be1c504d5a8af1abda460520aea597d4a1221b08
Python
sam95/python-simple-tasks
/NewForms/app.py
UTF-8
1,809
2.828125
3
[]
no_license
from flask import Flask from flask import request from flask import render_template import re app = Flask(__name__) my_dict = {} @app.route('/') def hello_world(): return render_template('index.html') @app.route('/handle_data', methods=['POST']) def handle_data(): name = request.form['usrName'] email = request.form['email'] phone = request.form['phone'] print name, email, phone if name.isalpha(): if re.match("[^@]+@[^@]+\.[^@]+", email): if len(phone) == 10 and phone.isdigit(): my_dict["name"] = name my_dict["email"] = email my_dict["phone"] = phone return render_template('directions.html', name=name) return "Data not valid, Please enter again" @app.route('/quote_process', methods=['POST']) def quote_process(): my_from = request.form['myfrom'] my_to = request.form['myto'] birthday = request.form['bday'] print my_from, my_to, birthday if my_from and my_to and birthday: my_dict["from"] = my_from my_dict["to"] = my_to my_dict["birthday"] = birthday return render_template("laststep.html") return "Invalid data, Please enter again" @app.route('/last_process', methods=['POST']) def last_process(): min = request.form['minvalue'] max = request.form['maxvalue'] time = request.form['timeslot'] if float(min) < float(max): my_dict["min"] = min my_dict["max"] = max my_dict["time"] = time return render_template("data.html", **my_dict) print min, max, time, min.isdigit() and max.isdigit(), float(min) < float(max) return "Wrong data, Please enter again" if __name__ == '__main__': app.run(debug=True)
true
0c194ab3ebba4c6f3df6820712c7d67b523f663c
Python
worry1613/dongni-recommendation
/rec-engine/mining/nlp/word2v.py
UTF-8
1,833
2.859375
3
[]
no_license
# -*- coding: utf-8 -*- # @创建时间 : 19/2/2018 # @作者 : worry1613(549145583@qq.com) # GitHub : https://github.com/worry1613 # CSDN : http://blog.csdn.net/worryabout/ from optparse import OptionParser from gensim.models import word2vec import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # 使用gensim库中的word2vec类 class W2v(object): def __init__(self, fin=None): self.model = None self.file = fin def load(self, fmodel): self.model = word2vec.Word2Vec.load(fmodel) def process(self, size=300, window=5, min_count=5): import multiprocessing cpu_count = multiprocessing.cpu_count() workers = cpu_count sentences = word2vec.LineSentence(self.file) self.model = word2vec.Word2Vec(sentences, size=size, window=window, min_count=min_count, workers=workers) def save(self, fout): try: self.model.save(fout) except IOError: print(fout, "写文件取错误请检查!") exit(0) if __name__ == '__main__': ''' python word2v.py -f ../../../data/新闻min_cw.txt -m ../../../model/w2v.300.新闻min.model ''' parser = OptionParser() parser.add_option('-f', '--file', type=str, help='已经分了词的语料库文件', dest='wordsfile') parser.add_option('-m', '--model', type=str, help='训练完成了w2v模型文件', dest='modelfile') parser.add_option('-s', '--size', type=int, default=300, help='w2v向量维度') options, args = parser.parse_args() if not (options.wordsfile or options.modelfile): parser.print_help() exit() w = W2v(options.wordsfile) logging.info('<<<<<<<<<<<<<<<<') w.process() logging.info('>>>>>>>>>>>>>>>>') w.save(options.modelfile)
true
9ca6a66d91cc3f90549ecc4e94cf831c0d2a0932
Python
etmorefish/leetcode
/剑指offer/52_两个链表的第一个公共节点.py
UTF-8
967
3.71875
4
[]
no_license
""" 解题思路: 我们使用两个指针 node1,node2 分别指向两个链表 headA,headB 的头结点, 然后同时分别逐结点遍历,当 node1 到达链表 headA 的末尾时, 重新定位到链表 headB 的头结点;当 node2 到达链表 headB 的末尾时, 重新定位到链表 headA 的头结点。 这样,当它们相遇时,所指向的结点就是第一个公共结点。 """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def getIntersectionNode(self, headA, headB): ha, hb = headA, headB while ha != hb: # if ha: # ha = ha.next # else: # ha = headB # if hb: # hb = hb.next # else: # hb = headA ha = ha.next if ha else headB hb = hb.next if hb else headA return ha
true
fd38551e4c98de8cf7702aaaa3397d93f2cf3bee
Python
abulkairhamitov/TrainingInDataScience
/workWithData/oneDimensionalData.py
UTF-8
2,438
3.71875
4
[]
no_license
from typing import List, Dict from collections import Counter import math import matplotlib.pyplot as plt import random def bucketize(point: float, bucket_size: float) -> float: """Округлить точку до следующего наименьшего кратного размера интервала bucket_size""" return bucket_size * math.floor(point / bucket_size) def make_histogram(points: List[float], bucket_size: float) -> Dict[float, int]: """Разбивает точки на интервалы и подсчитывает их количество в каждом интервале""" return Counter(bucketize(point, bucket_size) for point in points) def plot_histogram(points: List[float], bucket_size: float, title: str = ""): histogram = make_histogram(points, bucket_size) plt.bar(list(histogram.keys()), list(histogram.values()), width=bucket_size) plt.title(title) plt.show() # Нормальное распределение def normal_cdf(x, mu=0, sigma=1): return (1 + math.erf((x - mu) / math.sqrt(2) / sigma)) / 2 # Обратная ИФР нормального распределения def inverse_normal_cdf(p, mu=0, sigma=1, tolerance=0.00001): # Используем двоичный поиск if mu !=0 or sigma != 1: return mu + sigma*inverse_normal_cdf(p, tolerance=tolerance) hi_z, low_z = 10, -10 while hi_z - low_z > tolerance: mid_z = (hi_z + low_z) / 2 mid_p = normal_cdf(mid_z) if mid_p < p: low_z = mid_z elif mid_p > p: hi_z = mid_z else: break return mid_z # Рассмотрим пример random.seed(0) # Рассмотрим два набора данных с одним и тем же среднеквадратичным отклонением и средним # но гистограммы показывают насколько они разные # Равномерное распределение между -100 и 100 uniform = [200 * random.random() - 100 for _ in range(10000)] # Нормальное со средним 0 и стандартным отклонением 57 normal = [57 * inverse_normal_cdf(random.random()) for _ in range(10000)] plot_histogram(uniform, 10, "Равномерная гистрограмма") plot_histogram(normal, 10, "Нормальная гистограмма")
true
c55c9171dda8e44ca6ef6fe6ff903b085c817658
Python
souhardya1/Single-LinkedList-in-python
/MergeSoort on LinkedList.py
UTF-8
1,594
3.640625
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Aug 23 19:47:35 2020 @author: Souhardya """ class Node: def __init__(self,data): self.data=data self.next=None class LinkedList: def __init__(self): self.head=None def push(self,new_data): new_node=Node(new_data) new_node.next=self.head self.head=new_node def printList(self): curr=self.head while curr!=None: print(curr.data,end='->') curr=curr.next print('None') def merge(self,a,b): r=None if a==None: return b if b==None: return a if a.data<=b.data: r=a r.next=self.merge(a.next,b) else: r=b r.next=self.merge(a,b.next) return r def sort(self,h): if h==None or h.next==None: return h mid=self.getMiddle(h) midN=mid.next mid.next=None l=self.sort(h) r=self.sort(midN) new=self.merge(l,r) return new def getMiddle(self,h): if h==None: return slow=h fast=h while fast.next!=None and fast.next.next!=None: slow=slow.next fast=fast.next.next return slow ll=LinkedList() ll.push(15) ll.push(10) ll.push(5) ll.push(20) ll.push(3) ll.push(2) print('Given List:') ll.printList() ll.head=ll.sort(ll.head) print('After Sorting') ll.printList()
true
693fa52ac2f688324e5f645886d28f4b56761e69
Python
ajinkyapuar/loonycorn-zero-to-one
/FizzBuzz.py
UTF-8
306
3.609375
4
[]
no_license
# % by 3 Fizz # % by 5 Buzz # % by 3 & 5 FizzBuzz # For instance, the result will look something like this for 1 to 20. # 1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14, 'FizzBuzz', 16, 17, 'Fizz', 19 ['Fizz' * (i % 3 == 0) + 'Buzz' * (i % 5 == 0) or i for i in range(1, 20)]
true
0e5d83bef70536fadaa679a85c45e5ee489856b1
Python
ucsd-cse-spis-2020/SPIS-Final-Project-Theodore-Nikunj
/python/card.py
UTF-8
411
3.140625
3
[]
no_license
import os import pygame class Card: def __init__(self, value, suit): self.value = value self.suit = suit self.face = pygame.image.load(os.path.join("assets", str(self.value) + self.suit + ".png")) self.back = pygame.image.load(os.path.join("assets", "Gray_back.jpg")) def __str__(self): return "Card value: " + str(self.value) + " suit: " + str(self.suit) + "\n"
true
d23e7dd1643136cea5688e69ac931443b446d4ba
Python
adison330/testdemo
/test013.py
UTF-8
177
3.5625
4
[]
no_license
#! /usr/bin/env python num_str = "1234567890" print(num_str[2:6]) print(num_str[2:]) print(num_str[:6]) print(num_str[ : ]) print(num_str[ : : 2]) print(num_str[1: : 2])
true
f3041393fc436eaa8369623c92d35454bec4ea12
Python
lanzo-siega/FooDD-classification
/preparation.py
UTF-8
2,456
2.890625
3
[]
no_license
import numpy as np import os from matplotlib import pyplot as plt import cv2 import random import pickle file_list = [] class_list = [] direct = '/path/to/dataset' cat = os.listdir('/path/to/dataset') # identifies the subfolders that contain the images we will use for category in cat: path = os.path.join(direct, category) for subdir, dirs, files in os.walk(path): for file in files: filepath = subdir if filepath.endswith('Environment'): end = filepath elif filepath.endswith('Net'): end = filepath elif filepath.endswith('images'): end = filepath else: pass for img in os.listdir(end): img_array = cv2.imread(os.path.join(end, img), cv2.IMREAD_GRAYSCALE) train_data = [] #setting the parameters in which the images will be resized to img_size = 50 # a function to convert image files into data that can be fed into the CNN model def create_train_data(): for category in cat: path = os.path.join(direct, category) class_num = cat.index(category) for subdir, dirs, files in os.walk(path): for file in files: filepath = subdir if filepath.endswith('Environment'): end = filepath elif filepath.endswith('Net'): end = filepath else: pass # each image in a folder are converted to grayscale and resized to a dimension of img_size by img_size. This image is then appended to the # train_data array with their encoded class for img in os.listdir(end): try: img_array = cv2.imread(os.path.join(end, img), cv2.IMREAD_GRAYSCALE) new_array = cv2.resize(img_array, (img_size, img_size)) train_data.append([new_array, class_num]) except Exception as e: pass create_train_data() #randomizes the order of the training data random.shuffle(train_data) X = [] y = [] # identifies the image array as the feature and the encoded class as the label for features, label in train_data: X.append(features) y.append(label) # converts X from a list to an array X = np.array(X).reshape(-1,img_size, img_size, 1) # serializes the X and y arrays so that they can be stored for later use by the CNN model pickle_out = open("X.pickle", "wb") pickle.dump(X, pickle_out) pickle_out.close() pickle_out = open("y.pickle", "wb") pickle.dump(y, pickle_out) pickle_out.close() pickle_in = open("X.pickle", "rb") X = pickle.load(pickle_in)
true
4415ccb6e30df451774e71035ac00e2b0c500d0f
Python
mh-rahman/Programming-Practice
/78. Subsets.py
UTF-8
594
2.78125
3
[]
no_license
class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: res = [[]] if not nums: return res res+=[[c] for c in nums] for _ in range(2**len(nums)): res+=[s+[c] for s in res for c in nums if s and c not in s and c>s[-1] and s+[c] not in res] # print(res) return res def fastersubsets(self, nums: List[int]) -> List[List[int]]: res = [[]] nums.sort() res+=[[c] for c in nums] for c in nums: res+=[s+[c] for s in res if s and c>s[-1] ] return res
true
3237fd9296bda93a3196eeecf039920b8a16a93c
Python
zggl/wax-ml
/wax/modules/gym_feedback.py
UTF-8
3,205
2.734375
3
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
# Copyright 2021 The WAX-ML Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gym feedback between an agent and a Gym environment.""" from collections import namedtuple from dataclasses import dataclass, field from typing import Any import haiku as hk @dataclass class GymOutput: """Dynamically define GymOutput namedtuple structure. Args: return_obs: if true, add 'obs' field to output structure. return_action: if true, action 'obs' field to output structure. """ return_obs: bool = False return_action: bool = False gym_output_struct: Any = field(init=False) def __post_init__(self): outputs = ["reward"] if self.return_obs: outputs += ["obs"] if self.return_action: outputs += ["action"] self.gym_output_struct = namedtuple("GymOutput", outputs) def format(self, reward, obs=None, action=None): outputs = [reward] if self.return_obs: outputs += [obs] if self.return_action: outputs += [action] return self.gym_output_struct(*outputs) class GymFeedback(hk.Module): """Gym feedback between an agent and a Gym environment.""" GymState = namedtuple("GymState", "action") def __init__( self, agent, env, return_obs=False, return_action=False, name=None, ): """Initialize module. Args: agent : Gym environment used to unroll the data and feed the agent. env : Gym environment used to unroll the data and feed the agent. return_obs : if true return environment observation return_action : if true return agent action name : name of the module """ super().__init__(name=name) self.agent = agent self.env = env self.return_obs = return_obs self.return_action = return_action self.GymOutput = GymOutput(self.return_obs, self.return_action) def __call__(self, raw_obs): """Compute Gym feedback loop. Args: raw_obs: raw observations. Returns: gym_output : reward. Use return_obs=True to also return env observations. Use return_action=True to aslo return agent actions. """ action = hk.get_state( "action", shape=[], init=lambda *_: self.GymState(self.agent(raw_obs)) ) rw, obs = self.env(action.action, raw_obs) action = self.agent(obs) outputs = self.GymOutput.format(rw, obs, action) state = self.GymState(action) hk.set_state("action", state) return outputs
true
baaeb53954f9968aa717c8bd46f1a735bed89b8e
Python
valar-m0rghulis/Python
/Infosys-Foundation-Program/MODULES/Module_3_Python_DB_Integration/Assignment_9.py
UTF-8
897
2.75
3
[]
no_license
import cx_Oracle # 3)Invalid Username #con = cx_Oracle.connect('infosysdb/admin@localhost/xe') #OUTPUT : #cx_Oracle.DatabaseError: ORA-01017: invalid username/password; logon denied con = cx_Oracle.connect('infosys/admin@localhost/xe') cur = con.cursor() # 1) Invalid Column Name #cur.execute("DELETE FROM users WHERE user_id = 2") #con.commit() # OUTPUT : # cx_Oracle.DatabaseError: ORA-00904: "USER_ID": invalid identifier # 2) Exception Handeling try: cur.execute("DELETE FROM users WHERE user_id = 2") con.commit() except cx_Oracle.DatabaseError as e: print("Error Details :: ",e) finally: print("Done.") # OUTPUT : # Error Details :: ORA-00904: "USER_ID": invalid identifier # Done. # 4) Wrong Table Name cur.execute("DELETE FROM user WHERE userid = 2") con.commit() # OUTPUT : # cx_Oracle.DatabaseError: ORA-00903: invalid table name con.close()
true
c6e9710a737653961fc1e9e46c1759b0a1a05198
Python
SabiKov/OpenCvPython
/chapter4_getting_and_setting/getting_and_setting.py
UTF-8
899
3.171875
3
[]
no_license
# import necessary packages from __future__ import print_function import argparse import cv2 # Read in CLI argument ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path to the image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) cv2.imshow("Original", image) # Access the first pixel of the image (b, g, r) = image[0, 0] print ("Default -> pixel at 0, 0 - Red: {}, Green: {}, Blue: {}" . format(r, g, b)) image[0:10, 0:10] = (0, 0, 255) (b, g, r) = image[0, 0] print ("Updated -> Pixel at 0, 0 - Red: {}, Green: {}, Blue: {}" . format(r, g, b)) # Manipulate and display 100 x 100 pixel region of the image corner = image[0:100, 0:100] cv2.imshow("Corner", corner) # replace the 100 x 100 region with green colour image[0:100, 0:100] = (0, 255, 0) cv2.imshow("Updated", image) cv2.waitKey(0)
true
a173d0e7723830d47161dc44165c340f37afe9be
Python
developyoun/AlgorithmSolve
/programmers/가장큰수.py
UTF-8
149
3.0625
3
[]
no_license
def solution(numbers): answer = ''.join(sorted(map(str, numbers), key=lambda x:x*3, reverse=True)) return '0' if answer[0] == '0' else answer
true
a914abb498757a720dd3ff0d04b4b790e1871a52
Python
loisks317/TitanicBlogCode
/LoisTitanic.py
UTF-8
1,688
3.21875
3
[]
no_license
# LoisTitanic.py # # # LKS, December 2016 # # # imports import pandas as pd import numpy as np # load in file into a pandas dataframe df=pd.read_csv('Titanic.csv') # # first, let's clean up our data set df=df.dropna() # then let's put the solution off to the side # and drop the labeled 'male/female' column in favor of the # sex code one (female = 1, male = 0) SolutionCol = df['Survived'] df=df.drop(['Survived', 'Sex', 'Name', 'Unnamed: 0'], axis=1) # # then we have to fix PClass from 1st, 2nd, etc. to just 1, 2, 3 # once again, we need numerical values df['PClass'] = df['PClass'].map(lambda x: str(x)[0]) # # now split up train-test data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( df, SolutionCol, test_size=0.25, random_state=2) # setup the model from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_train) predictions=clf.predict(X_test) # score the model # how accurate was the model overall from sklearn.metrics import accuracy_score acc=accuracy_score(y_test, predictions) # what was it's precision from sklearn.metrics import precision_score precision=precision_score(y_test, predictions) # what is the TP, FP, FN, TN rate? (true positive, false positive, etc.) from sklearn.metrics import confusion_matrix confusionMatrix=confusion_matrix(y_test, predictions) # print out the values print('accuracy is: ' + str(int(acc*100)) + '%') print('precision is: ' + str(precision)) print ('confusion matrix: '+ str(confusion_matrix(y_test, predictions))) # what were the most important features? list(zip(df.columns.values, clf.feature_importances_))
true
790bb70db4d56db1a08e677b5be6b4a6977974ec
Python
pablodarius/mod02_pyhton_course
/Python Exercises/ejercicios varios.py
UTF-8
655
3.921875
4
[]
no_license
# Ejercicio 6.1. Escribir un ciclo que permita mostrar los caracteres de una cadena del final al principio. word = "cagadutaz" wordRev = "" for l in range(len(word)-1, -1, -1): wordRev += word[l] print(wordRev) ######################################################### counterA = 0 counterE = 0 counterI = 0 counterO = 0 counterU = 0 for l in word: if l.upper() == 'A': counterA += 1 elif l.upper() == 'E': counterE += 1 elif l.upper() == 'I': counterI += 1 elif l.upper() == 'O': counterO += 1 elif l.upper() == 'U': counterU += 1 print([counterA, counterE, counterI, counterO, counterU])
true
9f89672c06c0abdda9fd420e187be2552e4360d4
Python
MICROBAO/cs61a
/disussion3.py
UTF-8
107
2.953125
3
[]
no_license
# # Discussion 2 # 1.1 def multiply(m, n): if m == 0 or n == 0: return 0 return m + multiply(m, n - 1)
true
cbcf116e84f1c58e411a2727a83cb7ca64ce247f
Python
chaocharliehuang/FlaskMySQLRESTfulUsers
/server.py
UTF-8
3,030
2.640625
3
[]
no_license
from flask import Flask, request, redirect, render_template, session, flash from mysqlconnection import MySQLConnector import re EMAIL_REGEX = re.compile(r'^[a-zA-Z0-9.+_-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]+$') app = Flask(__name__) app.secret_key = 'secret' mysql = MySQLConnector(app, 'semirestfulusersdb') @app.route('/users') def index(): query = "SELECT id, CONCAT_WS(' ', first_name, last_name) AS full_name, email, DATE_FORMAT(created_at, '%M %D, %Y') AS created_at FROM users" users = mysql.query_db(query) return render_template('users.html', users=users) @app.route('/users/<id>') def show(id): data = {'id': int(id)} query = "SELECT id, CONCAT_WS(' ', first_name, last_name) AS full_name, email, DATE_FORMAT(created_at, '%M %D, %Y') AS created_at FROM users WHERE id = :id LIMIT 1" user = mysql.query_db(query, data) return render_template('show.html', user=user[0]) @app.route('/users/<id>', methods=['POST']) def update(id): update_data = { 'id': int(id), 'first_name': request.form['first_name'], 'last_name': request.form['last_name'], 'email': request.form['email'] } update_query = "UPDATE users SET first_name = :first_name, last_name = :last_name, email = :email, updated_at = NOW() WHERE id = :id" mysql.query_db(update_query, update_data) return redirect('/users/' + id) @app.route('/users/<id>/edit') def edit(id): data = {'id': int(id)} query = "SELECT id, first_name, last_name, email FROM users WHERE id = :id LIMIT 1" user = mysql.query_db(query, data) return render_template('edit.html', user=user[0]) @app.route('/users/new') def new(): return render_template('new.html') @app.route('/users/create', methods=['POST']) def create(): first_name = request.form['first_name'] last_name = request.form['last_name'] email = request.form['email'] # FORM VALIDATION if len(first_name) < 2 or len(last_name) < 2 or not first_name.isalpha() or not last_name.isalpha(): flash('First and last names must be at least 2 characters and only contain letters!') return redirect('/users/new') if len(email) < 1: flash('Email cannot be blank!') return redirect('/users/new') elif not EMAIL_REGEX.match(email): flash('Invalid email address!') return redirect('/users/new') # INSERT NEW USER INTO DATABASE insert_data = { 'first_name': first_name, 'last_name': last_name, 'email': email } insert_query = "INSERT INTO users (first_name, last_name, email, created_at, updated_at) VALUES (:first_name, :last_name, :email, NOW(), NOW())" new_user_id = mysql.query_db(insert_query, insert_data) return redirect('/users/' + str(new_user_id)) @app.route('/users/<id>/destroy', methods=['POST']) def destroy(id): delete_data = {'id': int(id)} delete_query = "DELETE FROM users WHERE id = :id" mysql.query_db(delete_query, delete_data) return redirect('/users') app.run(debug=True)
true
f3c3896904ce6bf0ccb6e310afe9280978af1c30
Python
DongHuaLu/mdcom
/mdcom/MHLogin/analytics/forms.py
UTF-8
343
2.671875
3
[]
no_license
from django import forms months = ( (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (11, 11), (12, 12), ) years = ( (2009, 2009), (2010, 2010), (2011, 2011), ) class MonthForm(forms.Form): """MonthForm class """ month = forms.ChoiceField(months) year = forms.ChoiceField(years)
true
b971f72dd3a9890ce91c1fb533b3b8ad6bbeb687
Python
chenxiang97/study_base
/python_study/study_mooc/study_4.2.1.py
UTF-8
240
3.28125
3
[]
no_license
s = "PYTHON" while s != "": for c in s : if c == "T" : break print(c, end="") #去除最后一个字符串 s = s[:-1] """ for c in "PYTHON": if c == "T": break print(c, end="") """
true
27a7317d238d29d240d1dfabc7ebf6e6b3bb89a2
Python
wdudek82/sqlite_importer
/sqllite_importer.py
UTF-8
734
2.875
3
[]
no_license
from collections import Counter import sqlite3 import re import requests conn = sqlite3.connect('../../sql1.sqlite') cur = conn.cursor() trunkate_table = cur.execute('''DELETE FROM Counts;''') req = (requests.get('http://www.pythonlearn.com/code/mbox.txt').content).decode('utf8') emails = Counter(re.findall(r'From: \S.+@(\S.+)', req)) for email, count in emails.items(): cur.execute('''INSERT INTO Counts(org, count) VALUES ('{0}', {1})''' .format(email, int(count))) conn.commit() query = 'SELECT * FROM Counts ORDER BY count DESC LIMIT 10' # Pretty printed top 10 results rows = ['{:<20} {}'.format(row[0], row[1]) for row in cur.execute(query)] print('Counts:\n{}'.format('\n'.join(rows))) cur.close()
true
5670ed8dfcc50f803bd4283b2c654eb2092e92ce
Python
lin-zone/scrapyu
/scrapyu/utils.py
UTF-8
1,439
2.59375
3
[ "MIT" ]
permissive
import re from urllib.parse import urlparse from selenium import webdriver def get_base_url(url): result = urlparse(url) base_url = '{}://{}'.format(result.scheme, result.netloc) return base_url def get_domain(url): result = urlparse(url) return result.netloc _cookies = dict() def _get_firefox_cookies(url, **kwargs): options = webdriver.FirefoxOptions() options.add_argument('--headless') browser = webdriver.Firefox(options=options, **kwargs) browser.set_page_load_timeout(60) browser.get(url) cookies = browser.get_cookies() browser.quit() return cookies def _raw_cookies_to_scrapy_cookies(cookies): return {c['name']: c['value'] for c in cookies} def get_firefox_cookies(url, convert_scrapy_cookies=True, **kwargs): base_url = get_base_url(url) key = (base_url, convert_scrapy_cookies) if key not in _cookies: cookies = _get_firefox_cookies(base_url, **kwargs) if convert_scrapy_cookies: cookies = _raw_cookies_to_scrapy_cookies(cookies) _cookies[key] = cookies return _cookies[key] def re_match(pattern, string): if not isinstance(pattern, str): return False bound = r'\b' if not pattern.startswith(bound): pattern = bound + pattern if not pattern.endswith(bound): pattern += bound compile_pattern = re.compile(pattern) return bool(compile_pattern.match(string))
true
c984f7b15c5df08a0f85e6e56187b90fb81d4871
Python
dombrno/irbasis
/test/python/ref/make_unl_safe.py
UTF-8
3,262
2.546875
3
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
from __future__ import print_function import os import argparse import numpy import h5py import irlib import scipy.integrate as integrate from mpmath import * class BasisSet(object): def __init__(self, h5file, prefix_name): self._h5file = h5file self._prefix_name = prefix_name def _write_data(self, path, data): if path in self._h5file: del self._h5file[path] self._h5file[path] = data def set_info(self, Lambda, dim, statistics): self._write_data(self._prefix_name + "/info/Lambda", Lambda) self._write_data(self._prefix_name + "/info/dim", dim) self._write_data(self._prefix_name + "/info/statistics", \ 0 if statistics == "B" else 1) self._dim = dim self._Lambda = Lambda def set_unl(self, unl, l): dir = self._prefix_name str_dir = "leven" if l%2 == 0 else "lodd" self._write_data(dir + "/data/"+str_dir+"/unl", unl) self._write_data(dir + "/data/"+str_dir+"/l", l) self._write_data(dir + "/data/"+str_dir+"/unlmax", numpy.amax(abs(unl[:,1]))) if __name__ == '__main__': parser = argparse.ArgumentParser( prog='save.py', description='Output results to hdf5 file.', epilog='end', add_help=True, ) parser.add_argument('-o', '--output', action='store', dest='outputfile', default='irbasis.h5', type=str, choices=None, help=('Path to output hdf5 file.'), metavar=None) parser.add_argument('-i', '--input', action='store', dest='inputfile', type=str, choices=None, required=True, help=('Path to input file.'), metavar=None) parser.add_argument('-l', '--lambda', action='store', dest='lambda', required=True, type=float, choices=None, help=('Value of lambda.'), metavar=None) parser.add_argument('-p', '--prefix', action='store', dest='prefix', type=str, choices=None, default='/', help=('Data will be stored in this HF5 group.'), metavar=None) args = parser.parse_args() if os.path.exists(args.inputfile): b = irlib.loadtxt(args.inputfile) else: print("Input file does not exist.") exit(-1) h5file = h5py.File(args.outputfile, "a") irset = BasisSet(h5file, args.prefix) nl = b.dim() # set info irset.set_info(b.Lambda(), nl, b.get_statistics_str()) nvec_short = numpy.arange(100) nvec_long = numpy.array([10**3, 10**4, 10**5, 10**6, 10**7, 10**8]) nvec = numpy.append(nvec_short, nvec_long) Nodd_max = b.dim()-1 if b.dim()%2==0 else b.dim()-2 unl_odd = numpy.array([ (int(n), b.compute_unl_safe(int(n), Nodd_max)) for n in nvec]) irset.set_unl(unl_odd, Nodd_max) Neven_max = b.dim()-1 if b.dim()%2==1 else b.dim()-2 unl_even = numpy.array([ (int(n), b.compute_unl_safe(int(n), Neven_max)) for n in nvec]) irset.set_unl(unl_even, Neven_max)
true
64514ee6172616461fbc71ab5b05e29987b314f0
Python
alyssa1996/CodingExercise
/Algorithm/이진탐색/[이코테2021] 떡볶이 떡 만들기.py
UTF-8
346
3.140625
3
[]
no_license
import sys n,m=map(int,input().split()) rice=list(map(int,sys.stdin.readline().split())) rice.sort() start,end=0,rice[-1] result=0 while start<=end: mid=(start+end)//2 total=0 for i in rice: if i>mid: total+=i-mid if m<=total: result=mid start=mid+1 else: end=mid-1 print(result)
true
81d77d9ed24954a3cf75bed722c57fd1d2062983
Python
ishikalamba222/tathastu_week_of_code
/string.py
UTF-8
79
3.046875
3
[]
no_license
a=set([1,2,3,4]) b=set([6,7,8,3,1]) print(a.union(b)) print(a.intersection(b))
true
e717f32213e058c59888bd7d5e871e8669379d97
Python
TTheof/potential-winner-nome-randown-dado-pelo-site
/aaaaf.py
UTF-8
377
3.390625
3
[]
no_license
import random aa = [0,1] a= random.choice(aa) # de manha a tarde almoço= [['só arroz','miojo','carne','ovo cozido','ovo frito'],['maça','café','chá','bolo']] if a>0: print ('a tarde eu vou comer/beber') else: print ('de manha eu vou comer/beber') kk = random.choice(almoço[a]) print ('um/uma', kk)
true
096817ecc08b129bba7a6c972418d2739dfe137d
Python
dsmrt/web-crawler
/src/utils/test_parse.py
UTF-8
457
3.046875
3
[]
no_license
from parse import parse_html def test_parse_html(): html = ''' <!DOCTYPE html> <html> <body> <nav> <a href="/blog">Blog</a> <a href="/about">Here is my real website</a> <a href="https://dsmrt.com">Here is my real website</a> <a href="https://github.com/dsmrt">@dsmrt on github</a> </nav> <h1>Welcome</h1> <p>My awesome website.</p> </body> </html> ''' # there should only be 2 valid anchor tags assert len(parse_html(html)) == 2
true
296116a909bd45d76ec8a1d09c31290a5a30671a
Python
tiffanyposs/pythonNotes
/programs/listModifiers.py
UTF-8
137
3.375
3
[]
no_license
x = [1, 2, 3] print x.pop(1) #2 print x #[1,3] y = [1, 2, 3] print y.remove(1) #1 print y #[2,3] z = [1, 2, 3] del(z[1]) print z #[1,3]
true
27e47e409a8018f222157cacb16e39230821ded8
Python
theNicelander/advent-of-code-2020
/day03/day03.py
UTF-8
1,293
3.78125
4
[]
no_license
import numpy as np from utils.files import read_data_into_list class Slope: def __init__(self, input_path): self.slope = read_data_into_list(input_path) self.slope_length = len(self.slope) self.slope_width = len(self.slope[0]) def broaden_slope(self): self.slope = [line + line for line in self.slope] self.slope_width = len(self.slope[0]) def is_tree(self, x, y) -> bool: if self.slope[y][x] == "#": return True return False def count_trees(self, move_right=3, move_down=1): count = 0 x = move_right y = move_down while self.slope_length > y: if x >= self.slope_width: self.broaden_slope() if self.is_tree(x, y): count += 1 x += move_right y += move_down return count def count_trees_multiple(self, to_traverse): return [self.count_trees(right, down) for right, down in to_traverse] if __name__ == "__main__": slope = Slope("input.txt") print(f"Solution 1: {slope.count_trees()}") to_traverse = [[1, 1], [3, 1], [5, 1], [7, 1], [1, 2]] multiple_paths = slope.count_trees_multiple(to_traverse) print(f"Solution 2: {np.product(multiple_paths)}")
true
d3d9b6d22491850605907553895dc0396221843e
Python
roooooon/HW3_ABC
/code/complex_numbers.py
UTF-8
717
3.015625
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[1]: import import_ipynb from Random import Rand import math # In[2]: class ComplexNumber: def __init__(self): self.real = Rand() self.imaginary = Rand() def c_In(self, file): with open(f"{file}.txt", "a+") as f: f.write(f"Real: {self.real} Imaginary: {self.imaginary} Complex: {self.complex_calculation()} \n") def complex_calculation(self): return math.sqrt(self.real * self.real + self.imaginary * self.imaginary) def c_Out(self, file): with open(f"{file}.txt", "r") as f: print(f.read()) # In[ ]: # In[ ]: # In[ ]: # In[ ]:
true
ac7c2f43db21a9989f0d1d8b09fa0ce6368b8e50
Python
wysocki-lukasz/CODEME-homework
/02_Zmienne i typy/0_Zadanie_1.py
UTF-8
382
3.984375
4
[]
no_license
#Oblicz koszt wyprawy znając dystans, spalanie na 100km i cenę litra benzyny. # Załóżmy, że spalanie na 100km wynosi 6,4 l, trasa to 120km, litr benzyny kosztuje 5,04 zł. fuel_consumption = 6.4 distance = 120 price_per_litr = 5.04 travel_cost = round(float(distance/100 * fuel_consumption * price_per_litr),2) print(f'Koszt zaplanowanej trasy wyniesie: {travel_cost} ZL')
true
7371a4f2fb203dc923dc5fdeef7d84c3870f9678
Python
anujdutt9/Machine-Learning
/Linear Regression/LinearRegressionGradientDescent.py
UTF-8
3,273
4.1875
4
[]
no_license
# Linear Regression using Gradient Descent # In this tutorial, we will be writing the code from scratch for Linear Regression using the Second Approach that we studied i.e. using Gradient Descent and then we will move on to plotting the "Best Fit Line". # So, let's get started. # Import Dependencies import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') # Load the data using Pandas df = pd.read_csv('dataset/Insurance-dataset.csv') # Let's have a look at the data, what it looks like, how many data points are there in the data. print(df.head()) # Data is in the form of two columns, X and Y. X is the total number of claims and Y represents the claims in thousands of Swedish Kronor. # Now, let's describe our data. # Describe the Data df.describe() # Load the data in the form to be input to the function for Best Fit Line X = np.array(df['X'], dtype=np.float64) y = np.array(df['Y'], dtype=np.float64) # Cost Function def cost_Function(m,b,X,y): return sum(((m*X + b) - y)**2)/(2*float(len(X))) # Gradient Descent # X,y: Input Data Points # m,b: Initial Slope and Bias # alpha: Learning Rate # iters: Number of Iterations for which we need to run Gradient Descent. def gradientDescent(X,y,m,b,alpha,iters): # Initialize Values of Gradients gradient_m = 0 gradient_b = 0 # n: Number of items in a row n = float(len(X)) a = 0 # Array to store values of error for analysis hist = [] # Perform Gradient Descent for iters for _ in range(iters): # Perform Gradient Descent for i in range(len(X)): gradient_m = (1/n) * X[i] * ((m*X[i] + b) - y[i]) gradient_b = (1/n) * ((m*X[i] + b) - y[i]) m = m - (alpha*gradient_m) b = b - (alpha*gradient_b) # Calculate the change in error with new values of "m" and "b" a = cost_Function(m,b,X,y) hist.append(a) return [m,b,hist] # Main Function if __name__ == '__main__': # Learning Rate lr = 0.0001 # Initial Values of "m" and "b" initial_m = 0 initial_b = 0 # Number of Iterations iterations = 900 print("Starting gradient descent...") # Check error with initial Values of m and b print("Initial Error at m = {0} and b = {1} is error = {2}".format(initial_m, initial_b, cost_Function(initial_m, initial_b, X, y))) # Run Gradient Descent to get new values for "m" and "b" [m,b,hist] = gradientDescent(X, y, initial_m, initial_b, lr, iterations) # New Values of "m" and "b" after Gradient Descent print('Values obtained after {0} iterations are m = {1} and b = {2}'.format(iterations,m,b)) # Calculating y_hat y_hat = (m*X + b) print('y_hat: ',y_hat) # Testing using arbitrary Input Value predict_X = 76 predict_y = (m*predict_X + b) print('predict_y: ',predict_y) # Plot the final Outptu fig,ax = plt.subplots(nrows=1,ncols=2) ax[1].scatter(X,y,c='r') ax[1].plot(X,y_hat,c='y') ax[1].scatter(predict_X,predict_y,c='r',s=100) ax[0].plot(hist) ax[1].set_xlabel('X') ax[1].set_ylabel('y') ax[1].set_title('Best Fit Line Plot') ax[0].set_title('Cost Function Over Time') plt.show()
true
07b6e6d27d4dd0ff29f0f7a2035da654165c6334
Python
CasCard/FlappyBird
/flappybird.py
UTF-8
4,733
2.8125
3
[]
no_license
import pygame import os import time import neat import random WIN_WIDTH = 500 WIN_HEIGHT = 800 pygame.display.set_caption("Flappy Bird") BIRD_IMGS = [pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "bird1.png"))), pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "bird2.png"))), pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "bird3.png")))] PIPE_IMG = pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "pipe.png"))) BASE_IMG = pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "base.png"))) BG_IMG = pygame.transform.scale2x(pygame.image.load(os.path.join("imgs", "bg.png"))) class Bird: IMGS = BIRD_IMGS MAX_ROTATION = 25 ROT_VEL = 20 ANIMATION_TIME = 5 def __init__(self, x, y): self.x = x self.y = y self.tilt = 0 self.tick_count = 0 self.img_count=0 self.vel = 0 self.height = self.y self.img = self.IMGS[0] def jump(self): self.vel = -10.5 self.tick_count = 0 self.height = self.y def move(self): self.tick_count += 1 # s=ut+1.5t**2 d = self.vel * self.tick_count + 1.5 * self.tick_count ** 2 if d >= 16: d = 16 if d < 0: d -= 2 self.y = self.y + d if d < 0 or self.y < self.height + 50: if self.tilt < self.MAX_ROTATION: self.tilt = self.MAX_ROTATION else: if self.tilt > -90: self.tilt -= self.ROT_VEL def draw(self, win): self.img_count += 1 if self.img_count < self.ANIMATION_TIME: self.img = self.IMGS[0] elif self.img_count < self.ANIMATION_TIME * 2: self.img = self.IMGS[1] elif self.img_count < self.ANIMATION_TIME * 3: self.img = self.IMGS[2] elif self.img_count < self.ANIMATION_TIME * 4: self.img = self.IMGS[1] elif self.img_count == self.ANIMATION_TIME * 4 + 1: self.img = self.IMGS[0] self.img_count = 0 if self.tilt <= -80: self.img = self.IMGS[1] self.img_count = self.ANIMATION_TIME * 2 rotated_image = pygame.transform.rotate(self.img, self.tilt) new_rect = rotated_image.get_rect(center=self.img.get_rect(topleft=(self.x, self.y)).center) win.blit(rotated_image, new_rect.topleft) def get_mask(self): return pygame.mask.from_surface(self.img) class Pipe: GAP=200 VEL=5 # the heigth will be random def __init__(self,x): self.x=x self.height=0 self.gap=100 self.top=0 self.bottom=0 self.PIPE_TOP=pygame.transform.flip(PIPE_IMG,False,True) self.PIPE_BOTTOM=PIPE_IMG self.passed=False self.set_heigth() def set_heigth(self): self.height=random.randrange(50,450) self.top=self.height-self.PIPE_TOP.get_height() self.bottom=self.height+self.GAP def move(self): self.x -= self.VEL def draw(self,win): win.blit(self.PIPE_TOP,(self.x,self.top)) win.blit(self.PIPE_BOTTOM,(self.x,self.bottom)) def collide(self,bird): bird_mask=bird.get_mask() top_mask=pygame.mask.from_surface(self.PIPE_TOP) bottom_mask=pygame.mask.from_surface(self.PIPE_BOTTOM) top_offset=(self.x-bird.x,self.top-round(bird.y)) bottom_offset=(self.x-bird.x,self.bottom-round(bird.y)) b_point=bird_mask.overlap(bottom_mask,bottom_offset) t_point=bird_mask.overlap(top_mask,top_offset) if t_point or b_point: return True return False class Base: VEL=5 WIDTH=BASE_IMG.get_width() IMG=BASE_IMG def __init__(self,y): self.y=y self.x1=0 self.x2=self.WIDTH def move(self): self.x1-=self.VEL self.x2-=self.VEL if self.x1 + self.WIDTH<0: self.x1=self.x2+self.WIDTH if self.x2 + self.WIDTH<0: self.x2=self.x1+self.WIDTH def draw(self,win): win.blit(self.IMG,(self.x1,self.y)) win.blit(self.IMG,(self.x2,self.y)) def draw_window(win, bird): win.blit(BG_IMG, (0, 0)) bird.draw(win) pygame.display.update() def main(): bird = Bird(200, 200) win = pygame.display.set_mode((WIN_WIDTH, WIN_HEIGHT)) clock=pygame.time.Clock() run = True while run: clock.tick(30) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False # bird.move() draw_window(win, bird) pygame.quit() quit() main()
true
bf67e37c0a817c689b63d8e1beb3e794a6aa7ed0
Python
Antiger2005/mst
/tools/check_with_diff.py
UTF-8
2,473
2.9375
3
[]
no_license
#!/usr/bin/env python from check_output import extract_answer from mstutil import get_path_to_checker_binary, get_path_to_mst_binary, get_path_to_project_root from mstutil import die, quiet_remove, random_tmp_filename import os, sys def main(argv=sys.argv): if len(argv) != 2: die("""usage: check_with_diff.py INPUT_GRAPH Checks the current mst for a given input file and reports the diff, if any. It does not do anything smart in terms of caching the correctness checker's output, so it will be recomputed every time this is run. """) else: input_graph = argv[1] if not os.path.exists(input_graph): die("%s not found" % input_graph) # get our mst output mst = get_path_to_mst_binary(make_sure_it_exists=False) mst_out = random_tmp_filename(10) if os.system('%s %s > %s' % (mst, input_graph, mst_out)) != 0: quiet_remove(mst_out) die("failed to run mst (or exited with an error code)") # get the checker's output checker = get_path_to_checker_binary(make_sure_it_exists=True) checker_out = random_tmp_filename(10) if os.system('%s %s true > %s' % (checker, input_graph, checker_out)) != 0: quiet_remove(mst_out) quiet_remove(checker_out) die("failed to run checker (or exited with an error code)") # check just the MST weight first mst_w = extract_answer(mst_out) checker_w = extract_answer(checker_out) fmt = '%.1f' # tolerance to 1 decimal place str_mst_w = fmt % mst_w str_checker_w = fmt % checker_w if str_mst_w == str_checker_w: print 'Weights match! %s %s' % (str_mst_w, str_checker_w) quiet_remove(mst_out) quiet_remove(checker_out) return 0 else: print 'Weight mistmatch, comparing vertices!! (checker_mst (%s) - our_mst (%s) = %s)' % (str(checker_w), str(mst_w), str(checker_w - mst_w)) # sort them mst_out2 = random_tmp_filename(10) checker_out2 = random_tmp_filename(10) sort_and_order = get_path_to_project_root() + 'src/input/sort_and_order.py ' os.system(sort_and_order + mst_out + ' 1 > ' + mst_out2) os.system(sort_and_order + checker_out + ' 1 > ' + checker_out2) # compare them os.system('diff %s %s && echo Edges are the same!' % (checker_out2, mst_out2)) quiet_remove(mst_out) quiet_remove(mst_out2) quiet_remove(checker_out) quiet_remove(checker_out2) return 0 if __name__ == "__main__": sys.exit(main())
true
86d28f536aa7cba0f006c0d5912924a25c2e1ef4
Python
dixonaws/PowerCo
/PowerCoAPITest.py
UTF-8
2,581
2.875
3
[]
no_license
__author__ = 'dixonaws@amazon.com' # import statements from sys import argv import urllib2 import urllib import time import sys import json def getInvoice(invoiceNumber): invoiceUrl="http://localhost:8080/RESTTest/api/invoices/" + str(invoiceNumber) startTime=int(round(time.time() * 1000)) endTime=0; sys.stdout.write("GETting invoice... ") opener=urllib2.build_opener() # ask the API to return JSON opener.addheaders=[('Accept', 'application/json')] try: # our response string should result in a JSON object response = opener.open(invoiceUrl).read() endTime=int(round(time.time() * 1000)) print "done (" + str(endTime-startTime) + " ms)." except urllib2.HTTPError: print "Error in GET..." # decode the returned JSON response into JSONIaccount (a Python dict object) JSONinvoice = json.loads(str(response)) return(JSONinvoice) ### end getInvoice() def getAccount(accountNumber): accountUrl="http://localhost:8080/RESTTest/api/accounts/" startTime=int(round(time.time() * 1000)) endTime=0; sys.stdout.write(url + ": GETting account... ") opener=urllib2.build_opener() # ask the API to return JSON opener.addheaders=[('Accept', 'application/json')] response="" try: # our response string should result in a JSON object response=opener.open(url).read() endTime=int(round(time.time() * 1000)) print "done (" + str(endTime-startTime) + " ms)." except urllib2.HTTPError: print "Error in GET..." # decode the returned JSON response into JSONIaccount (a Python dict object) JSONaccount = json.loads(str(response)) return(JSONaccount) ### end getAccount() ## Main script, args0 = argv # take the fileName as the first argument, and the endpoint URL as the second argument baseurl=args0 print "PowerCo API Test, v1.1" url=baseurl # retrieve account ID 1 JSONaccount=getAccount(1) print JSONaccount # decode the invoices from the account JSONinvoices=JSONaccount['invoices'] # get the number of invoices associated with this account intNumberOfInvoices=len(JSONinvoices) # count the number of invoices in this account print("I found " + str(intNumberOfInvoices) + " invoices associated with this account") # loop through the invoices asspociated with this account and print out the amount due for invoices in JSONinvoices: invoice=getInvoice(invoices['id']) print("Invoice id " + str(invoice['id']) + ": " + "$" + str(invoice['amountDollars']) + "." + str(invoice['amountCents']))
true
ba9e0506e21dd573e17525591ee6e2a318392973
Python
ahmad307/NearestPlace
/NearestPlace/locations/views.py
UTF-8
3,375
2.625
3
[]
no_license
from django.shortcuts import render, HttpResponse from locations.gmaps import LocationFinder from locations.models import Session, Location from django.core.exceptions import ValidationError from django.core.exceptions import ObjectDoesNotExist import json import secrets import string from decimal import * def home(request): api_key = open('D:/Projects/secretkey/gmaps_key.txt', 'r').read() return render(request,'home/index.html', {'api_key': api_key}) def get_location(request): # TODO: Return 'Nothing found' if there is no returned data """Receives POST request and returns the 'Nearest Place'.""" if request.method == 'POST': code = request.POST.get('code') meeting = None try: meeting = Session.objects.get(code=code) except ObjectDoesNotExist: return HttpResponse(json.dumps({'message': 'Incorrect Code'}), content_type='application/json') location_finder = LocationFinder(meeting) result_place = location_finder.get_nearest_place() return HttpResponse(json.dumps({ 'name': result_place['name'], 'address': result_place['formatted_address'], 'rating': result_place['rating'] }), content_type='application/json') def create_session(request): """Creates a session for saving locations in the database.""" if request.method == 'POST': # Create pseudo-unique random string of numbers and capital letters code = ''.join(secrets.choice(string.ascii_uppercase + string.digits) for _ in range(6)) session = Session( name=request.POST.get('meeting_name'), code=code, place_type=request.POST.get('place_type'), city=request.POST.get('city') ) # Validate data before saving to Database try: session.full_clean() session.save() except ValidationError: return HttpResponse(json.dumps({'message': 'ValidationError'}), content_type='application/json') return HttpResponse(json.dumps({'message': 'success','code': code}), content_type='application/json') def add_location(request): """Adds a new location to the given meeting and saves it in DB.""" if request.POST: # Get request data code = request.POST.get('code') lat = round(Decimal(request.POST.get('lat')), 6) lng = round(Decimal(request.POST.get('lng')), 6) # Create object of location with the given session's code try: session = Session.objects.get(code=code) except ObjectDoesNotExist: return HttpResponse(json.dumps({'message': 'Incorrect Code'}), content_type='application/json') location = Location( longitude=lng, latitude=lat, session=session ) # Validate data before saving to Database try: location.full_clean() location.save() result = {'message': 'Success'} except ValidationError as e: result = {'message': 'Validation Error'} finally: return HttpResponse(json.dumps(result), content_type='application/json')
true
b4a5092ecafcd6304fd15774cf9369eef07b4ecb
Python
DenisPitsul/SoftServe_PythonCore
/video2/Task1.py
UTF-8
178
4.125
4
[]
no_license
fuelCapacity = float(input("Input fuel capacity: ")) fuelAmount = float(input("Input fuel amount: ")) if fuelCapacity*0.1 > fuelAmount: print("Red") else: print("Green")
true
9fb879e762bd95c6c858afc627988f3ad95643fd
Python
dlemvigh/GoogleCodeJam
/PythonCodeJam/PythonApplication1/rev_word.py
UTF-8
141
2.96875
3
[]
no_license
def solve(file): line = file.readline()[:-1] words = line.split(" ") words.reverse() line = ' '.join(words) return line
true
30a1a5cfad2832e3deaa83403f7c18ed47a677e8
Python
domtom1126/bail_flask
/app.py
UTF-8
1,886
2.625
3
[]
no_license
from flask import Flask, render_template from flask_wtf import FlaskForm from wtforms import StringField, SelectField, RadioField, SubmitField from wtforms.validators import InputRequired from bail import X_test, y_test, plea_list import joblib # SECTION Class for input form class BailForm(FlaskForm): class Meta: def render_field(self, field, render_kw): render_kw.setdefault('required', True) return super().render_field(field, render_kw) input_plea_orc = SelectField(choices=plea_list) input_race = RadioField('Race', choices=['White', 'Black', 'Hispanic', 'Asian', 'Other'], validators=[InputRequired()]) input_priors = StringField('Prior Cases', validators=[InputRequired()]) # !SECTION End form class # NOTE This is where the model for the bail should be loaded model = joblib.load('bail_model') app = Flask(__name__) # NOTE This needs to be here for FlaskForms app.config['SECRET_KEY'] = '_+aro@(rjwcan9*=l%&(l=cs7mzbh-&5w1g%7)c3*i3ms(vzvf' @app.route('/', methods=['GET', 'POST']) def home(): form = BailForm() plea_orc_list = plea_list return render_template('index.html', form=form, plea_orc_list=plea_list) @app.route('/predict', methods=['GET', 'POST']) def predict(): form = BailForm() # TODO Import unique plea list plea_orc_list = plea_list # SECTION Race transform # TODO Find out what races are transformed as (ex if White: white = 4) # !SECTION user_input = [[form.input_plea_orc.data, form.input_race.data, form.input_priors.data]] # SECTION predict output and show accuracy score output = model.predict(user_input) score = model.score(X_test, y_test) # !SECTION return render_template('index.html', prediction_text ='Bail: {}'.format(output), accuracy='Algorithm accuracy: {:.0%}'.format(score), form=form, plea_orc_list=plea_list) app.run(debug=True)
true
fe2c90c5adaf7286499a451e83292fcbd08355e5
Python
srisaimacha13/rg_assignments
/Assign_2/avg_of_positive_int_instring.py
UTF-8
886
3.796875
4
[]
no_license
class MyError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) import re try: input_string = raw_input('Enter a String:\n') if not input_string: raise MyError('String is empty.') list_of_integers = re.findall('-?\d+',input_string) if not list_of_integers: raise MyError('String contains all characters or special characters.') list_of_integers = list(map(float,list_of_integers)) def avg(list_of_integers): count=0 sum=0 for x in list_of_integers: if x>0: count=count+1 sum=sum+x if count == 0: raise MyError('No positive integers in string') return sum/count print avg(list_of_integers) except MyError as e: print e
true
137d289a6de9926bf66ba5775034d2fb18a1e7f6
Python
shine914/mutual_fund_network
/3.3-stock_status_summary.py
UTF-8
3,213
2.5625
3
[]
no_license
# -*- coding: utf-8 -*- #avoid chinese mess import sys reload(sys) sys.setdefaultencoding('utf8') import glob,os import xlrd import networkx as nx from networkx.algorithms import bipartite import numpy as np import pandas as pd import pandas as pd import numpy as np import glob,os import math from math import log10 import collections from collections import Counter import matplotlib.pyplot as plt import scipy from scipy import stats, integrate #draw density line import seaborn as sns """ delete rows that contain n NaN values """ def drop_emptycell(df): print 'original data row number', df.shape[0] #Count_Row df.replace('', np.nan, inplace=True)#删除原始数据中的空白单元格,不是NaN df.dropna(axis=0, inplace=True) print 'after delete missing data, row number is', df.shape[0] #Count_Row return df def drop_duplicate(df): #after drop empty cells df = df.drop_duplicates() #df.drop_duplicates(subset[]) print 'after delete duplicate data, row number is', df.shape[0] #Count_Row #print df return df """ label stock status """ def stock_status(df, col_name1, col_name2): if df[col_name1] == 1: return 'upper_limit' if df[col_name1] == -1: return 'lower_limit' if df[col_name1] == 0: if df[col_name2] == u'停牌一天': return 'suspension' else: return 'other' """ run """ os.chdir('/Users/shine/work_hard/financial_network/data/status_wind_612_710') FileList = glob.glob('*.xlsx') #for workingfile in filelist print FileList print "FileList length is", len(FileList) #共20个文件 df_len = pd.DataFrame() summary_lower = pd.DataFrame() summary_sus = pd.DataFrame() summary_lower_sus = pd.DataFrame() labels = list() #boxplot的横轴,即交易日 length = pd.DataFrame() for workingfile in FileList: print workingfile,'is working now' filename = workingfile.split('0150')[1] filename = filename .split('.')[0]#只保留日期,不然plot出来的图都重叠了 print 'filename is', filename os.chdir('/Users/shine/work_hard/financial_network/data/status_wind_612_710') status = pd.ExcelFile(workingfile) status = pd.read_excel(status, 'Wind资讯'.decode('utf-8')) status = pd.DataFrame(status) status.columns = ['source', 'stock_name', 'limit_ori', 'sus_reason', 'sus_days', 'sus_ori'] status['limit'] = status.apply (lambda df: stock_status(df, 'limit_ori', 'sus_ori'), axis=1) #print len(status) ##经过drop_emptycell和drop_duplicate验证,status中有很多missing data, 如果只提取分析用的几列数可能会改善 status = status[['source', 'stock_name','limit']] #print '------------' df = drop_emptycell(status) df = drop_duplicate(df) df_lower = df[df.limit == 'lower_limit'] #print df_lower.iloc[1:20,:] df_sus = df[df.limit == 'suspension'] #print df_sus.iloc[1:20,:] df_lower_sus = df[df.limit == 'lower_limit'].append(df[df.limit == 'suspension']) #print df_lower_sus.iloc[1:20,:] length1 = pd.DataFrame(data={'date': [filename], 'total': [len(df)], 'lower': [len(df_lower)], 'sus': [len(df_sus)], 'lower_sus': [len(df_lower_sus)] }) length = length.append(length1) length.to_excel('status_ratio.xlsx', sheet_name='Sheet1')
true
fdf86d8b3c982927ca16c6684f4711034e5d4261
Python
autasi/tensorflow_examples
/tools/mnist_dump.py
UTF-8
1,341
2.53125
3
[]
no_license
# -*- coding: utf-8 -*- from tensorflow.examples.tutorials.mnist import input_data import numpy as np import pickle import os from config import mnist_data_folder def convert(imgs, img_size, data_format="channels_first"): if data_format == "channels_first": data = np.reshape(imgs, [imgs.shape[0], 1, img_size, img_size]) else: data = np.reshape(imgs, [imgs.shape[0], img_size, img_size, 1]) return data def main(out_folder = "/home/ucu/Work/git/mnist/data/", data_format = "channels_first"): mnist = input_data.read_data_sets(out_folder, one_hot=True) img_size = 28 tr_x = convert(mnist.train.images, img_size, data_format=data_format) tr_y = mnist.train.labels te_x = convert(mnist.test.images, img_size, data_format=data_format) te_y = mnist.test.labels val_x = convert(mnist.validation.images, img_size, data_format=data_format) val_y = mnist.validation.labels data = {'train': (tr_x, tr_y), 'test': (te_x, te_y), 'validation': (val_x, val_y)} if data_format == "channels_first": suf = "nchw" else: suf = "nhwc" fname = os.path.join(out_folder, "data_" + suf + ".pkl") with open(fname, "wb") as f: pickle.dump(data, f) if __name__ == "__main__": main(out_folder=mnist_data_folder, data_format="channels_last")
true
642aedb66a4aaac409a40e5ae1a3c85b4b84fe7a
Python
Anthonymcqueen21/Algorithms-in-Python
/Python Interview Questions/Reverse_string.py
UTF-8
558
3.9375
4
[]
no_license
# Here you are given a string as an input and you have to return the input and make sures its reversed # Python Implementation class Solutiion(object): def reverseString(self,s): string = list(s) i, j = 0, len(string) - 1 while i - j: string[i], string[j] = string[j] = string[i] i += 1 j -= 1 return "".join(string) # Time: O(n) # Space 0(n) class Solution2(object): def reverseString(self, s): return s[::-1]
true
7bf704c5f68aa33cc56c80004fb92bb1bccfb09d
Python
Jenkins-manager/Jenkins
/Server/q_and_a_script.py
UTF-8
4,660
2.8125
3
[]
no_license
""" run this file to create and implmenet a new question / answer pair. enter the following details to create a complete pair: - question body - answer body (should be a function ideally) - question keywords (at least one) """ import sys import ast import django django.setup() from model.file_processor import FileProcessor from questions.models import Question from answers.models import Answer HELP_STRING = ("run this file to create and implmenet a new question" + "answer pair.\n enter the following details to create a" + "complete pair:\n" + " - question body\n" + " - answer body (should be a function ideally)\n" + " - question keywords (at least one)\n") ORG_TRAIN_SET = FileProcessor.read_file('machine_learning/data/value_set.jenk') ORG_IN_SET = FileProcessor.read_file('machine_learning/data/output_set.jenk') ORG_KEY_SET = ast.literal_eval(FileProcessor.read_file('./key_words/keywords.jenk')) ORG_Q_LIST = FileProcessor.read_file('db/question_list.jenk').split('|') ORG_Q_LIST = map(lambda w: ast.literal_eval(w), ORG_Q_LIST) ORG_A_LIST = FileProcessor.read_file('db/answer_list.jenk').split('|') ORG_A_LIST = map(lambda w: ast.literal_eval(w), ORG_A_LIST) def revert_data_to_reset(): FileProcessor.write_file('key_words/keywords.jenk', str(ORG_KEY_SET), 'w') FileProcessor.write_file('machine_learning/data/value_set.jenk', str(ORG_TRAIN_SET), 'w') FileProcessor.write_file('machine_learning/data/output_set.jenk', str(ORG_IN_SET), 'w') FileProcessor.write_file('db/question_list.jenk', str(ORG_Q_LIST), 'w') FileProcessor.write_file('db/answer_list.jenk', str(ORG_A_LIST), 'w') def write_keyword_data(q_keyword, q_address): key_arr = q_keyword.split(" ") key_arr = map(lambda w: w.replace('_', ' '), key_arr) new_keywords = ORG_KEY_SET try: for word in key_arr: new_keywords[word] = q_address except Exception, e: raise e finally: FileProcessor.write_file('key_words/keywords.jenk', str(keywords), 'w') def add_new_data_to_db_files(q_new, a_new): q_new_list = ORG_Q_LIST a_new_list = ORG_A_LIST q_new_list.append({'body': q_new.body, 'address': q_new.address}) a_new_list.append({'body': a_new.body, 'address': a_new.address}) FileProcessor.write_file('db/question_list.jenk', "|".join(str(x) for x in q_new_list), 'w') FileProcessor.write_file('db/answer_list.jenk', "|".join(str(x) for x in a_new_list), 'w') def add_to_training_set(q_address, a_address): training_set = ORG_TRAIN_SET.split(",") input_set = ORG_IN_SET.split(",") training_set.append(float(q_address)) input_set.append(float(a_address)) input_set = ",".join(str(x) for x in input_set) training_set = ",".join(str(x) for x in training_set) FileProcessor.write_file('machine_learning/data/value_set.jenk', str(training_set), 'w') FileProcessor.write_file('machine_learning/data/output_set.jenk', str(input_set), 'w') def q_and_a_creation(q_body, a_body): length = len(Question.objects.all()) q_new = Question(body=q_body, address=(length + 1)) a_new = Answer(body=a_body, address=(length + 1)) add_new_data_to_db_files(q_new, a_new) q_new.save() a_new.save() return [q_new.address, a_new.address] print("This is the runner for adding questions and answers to the application\n" + "Please read the included instructions for more infomation, this can be done"+ "by entering HELP! at any time, press QQQ to close the script at any time\n"+ "Enter a question to begin:") while True: try: command = sys.stdin.readline().rstrip() if command == "QQQ": break elif command == "HELP!": print(HELP_STRING) next q_body = command print("Now enter an answer please:") command = sys.stdin.readline().rstrip() a_body = command print("now enter your keywords:") command = sys.stdin.readline().rstrip() keywords = command if q_body == "" or a_body == "" or keywords == "": raise Exception("you must enter all three fields to continue") address_pair = q_and_a_creation(q_body, a_body) write_keyword_data(keywords, address_pair[0]) add_to_training_set(address_pair[0], address_pair[1]) print("saved sucessfully") break except Exception, e: print("an error occured, resetting files..") revert_data_to_reset() print("your error message is:") raise e
true
bb1ac084fd16c1c817496113db8820741c65205c
Python
Chris-Quant/TeamCo
/7. Machine Learning Prediction/main_ml.py
UTF-8
6,539
3.015625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Nov 7 16:07:34 2016 @author: ZFang """ from datetime import datetime import pandas_datareader.data as wb import pandas as pd import numpy as np from sklearn import svm def cal_return(p): daily_return = (p['Adj Close'] - p['Adj Close'].shift(1))/p['Adj Close'] return daily_return def get_etf(stocklist, start): ''' Pull the data using Yahoo Fiannce API, given ticker(could be a list) and start date ''' start = datetime.strptime(start, '%m/%d/%Y') # end = datetime.strptime(end, '%m/%d/%Y') end = datetime.today() p = wb.DataReader(stocklist,'yahoo',start,end) p['Return'] = cal_return(p) return p def gen_ind(dataframe, n=10): ''' Generate the technical indicator from price ''' dataframe['SMA_10'] = dataframe['Adj Close'].rolling(window=n).mean() mo_arr = dataframe['Adj Close'][9:].values - dataframe['Adj Close'][:-9].values dataframe['Momentum'] = np.zeros(len(dataframe.index)) dataframe.ix[9:,'Momentum'] = mo_arr dataframe['LL'] = dataframe['Adj Close'].rolling(window=n).min() dataframe['HH'] = dataframe['Adj Close'].rolling(window=n).max() dataframe['stoch_K'] = 100 * (dataframe['Adj Close']- dataframe['LL'])/(dataframe['HH']- dataframe['LL']) for i in range(9,len(dataframe.index)): dataframe.ix[i,'WMA_10'] = (10*dataframe.ix[i,'Adj Close']+9*dataframe.ix[i-1,'Adj Close']+ 8*dataframe.ix[i-2,'Adj Close']+7*dataframe.ix[i-3,'Adj Close']+ 6*dataframe.ix[i-4,'Adj Close']+5*dataframe.ix[i-5,'Adj Close']+ 4*dataframe.ix[i-6,'Adj Close']+3*dataframe.ix[i-7,'Adj Close']+ 2*dataframe.ix[i-8,'Adj Close']+dataframe.ix[i-9,'Adj Close'])/sum(range(1,11,1)) dataframe['EMA_12'] = dataframe['Adj Close'].ewm(span=12).mean() dataframe['EMA_26'] = dataframe['Adj Close'].ewm(span=26).mean() dataframe['DIFF'] = dataframe['EMA_12'] - dataframe['EMA_26'] dataframe['MACD'] = np.zeros(len(dataframe.index)) dataframe['A/D'] = np.zeros(len(dataframe.index)) for i in range(1,len(dataframe.index)): dataframe.ix[i,'MACD'] = dataframe.ix[i-1,'MACD'] + 2/(n+1)*(dataframe.ix[i,'DIFF']-dataframe.ix[i-1,'MACD']) dataframe.ix[i,'A/D'] = (dataframe.ix[i,'High']-dataframe.ix[i-1,'Adj Close'])/(dataframe.ix[i,'High']-dataframe.ix[i,'Low']) return dataframe def gen_op_df(dataframe): ''' Generate binary indicator based on technical indicator value ''' op_df = pd.DataFrame(np.zeros((len(dataframe),10)), columns=['SMA_10', 'Momentum', 'stoch_K', 'WMA_10', 'MACD', 'A/D', 'Volume', 'Adj Close', 'Adj Close Value', 'Return']) op_df.index = dataframe.index op_df['Adj Close Value'] = dataframe['Adj Close'] op_df['Return'] = dataframe['Return'] op_df['Year'] = dataframe.index.year for i in range(10,len(dataframe.index)-1): op_df.ix[i,'SMA_10']=1 if (dataframe.ix[i,'Adj Close']>dataframe.ix[i,'SMA_10']) else -1 op_df.ix[i,'WMA_10']=1 if (dataframe.ix[i,'Adj Close']>dataframe.ix[i,'WMA_10']) else -1 op_df.ix[i,'MACD']=1 if (dataframe.ix[i,'MACD']>dataframe.ix[i-1,'MACD']) else -1 op_df.ix[i,'stoch_K']=1 if (dataframe.ix[i,'stoch_K']>dataframe.ix[i-1,'stoch_K']) else -1 op_df.ix[i,'Momentum']=1 if (dataframe.ix[i,'Momentum']>0) else -1 op_df.ix[i,'A/D']=1 if (dataframe.ix[i,'A/D']>dataframe.ix[i-1,'A/D']) else -1 op_df.ix[i,'Volume']=1 if (dataframe.ix[i,'Volume']>dataframe.ix[i-1,'Volume']) else -1 op_df.ix[i,'Adj Close']=1 if (dataframe.ix[i+1,'Adj Close']/dataframe.ix[i,'Adj Close']>1) else -1 # drop first 10 columns due to nan op_df = op_df[10:] return op_df def tune_para(dataframe, i): # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: columns = ['SMA_10','Momentum','stoch_K','WMA_10','MACD','A/D','Volume'] X = dataframe[columns].as_matrix() y = dataframe['Adj Close'].as_matrix() X_train = X[i-200:i] y_train = y[i-200:i] X_test = X[i:i+1] y_test = y[i:i+1] ### Train four kinds of SVM model C = 1 # SVM regularization parameter svc = svm.SVC(cache_size = 1000, kernel='linear', C=C).fit(X_train, y_train) rbf_svc = svm.SVC(cache_size = 1000, kernel='rbf', gamma=0.7, C=C).fit(X_train, y_train) poly_svc = svm.SVC(cache_size = 1000, kernel='poly', degree=3, C=C).fit(X_train, y_train) lin_svc = svm.LinearSVC(loss='squared_hinge', penalty='l1', dual=False, C=C).fit(X_train, y_train) Y_result = y_test ### Make the prediction for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): pred = clf.predict(X_test) Y_result = np.vstack((Y_result, np.array(pred))) # append prediction on Y_result return Y_result.T def svm_result(op_df): result_arr = np.zeros((1,5)) for i in range(200, len(op_df.index)): Y_result = tune_para(op_df, i) result_arr = np.append(result_arr, Y_result, axis=0) Y_result_df = pd.DataFrame(result_arr, columns = ['True value', 'SVC with linear kernel','LinearSVC (linear kernel)', 'SVC with RBF kernel','SVC with polynomial']) Y_result_df['Return'] = op_df.ix[199:,'Return'].values return Y_result_df if __name__ == '__main__': new_file_name = 'appl_op.csv' price_df = get_etf('AMZN','12/05/2010') indicator_df = gen_ind(price_df, n=10) op_df = gen_op_df(indicator_df) # Save the file and read it next time op_df.to_csv(new_file_name, index=True, header=True, index_label='index') op_df = pd.read_csv(new_file_name, index_col='index') Y_result_df = svm_result(op_df) ### Calculate the return based on the strategy Accuracy = pd.DataFrame(np.zeros((2,5)), columns = ['True value','SVC with linear kernel','LinearSVC (linear kernel)', 'SVC with RBF kernel','SVC with polynomial']) for i in range(5): Accuracy.iloc[0,i] = sum(Y_result_df.iloc[:,0]==Y_result_df.iloc[:,i])/len(Y_result_df.iloc[:,0]) if i==0: Accuracy.iloc[1,i] = np.prod(1+ Y_result_df['Return'][2:].values) else: Accuracy.iloc[1,i] = np.prod(1+ Y_result_df.iloc[1:-1,i].values*Y_result_df['Return'][2:].values) # bol = 1+ Y_result_df.iloc[1:-1,i] * Y_result_df['Return'].shift(1)[2:] # bol.prod()
true
867f3dae4e7945b3f3613e6ac51a6fec665ce5cf
Python
elenarangelova/Phyton-course-in-Softuni
/lesson2/5task.py
UTF-8
3,686
3.4375
3
[]
no_license
#Да си направим програмка за запознанства. #В едно list-че сме си съчинили малко информация за момиченца и момченца. # От данните, програмата трябва да изведе резултати кои хора биха си паснали, # съгласно следните правила: #момиченце с момченце; ако сте по-свободомислещи, можете да комбинирате # и момченце с момченце, но все пак да има някакво правило :о); #трябва да имат поне един общ интерес; #Примерен резултат: #Мария и Георги - общ интерес: плуване people = [ { 'name': "Мария", 'interests': ['пътуване', 'танци', 'плуване', 'кино'], 'gender': "female", }, { 'name': "Диана", 'interests': ['мода', 'спортна стрелба', 'четене', 'скандинавска поезия'], 'gender': "female", }, { 'name': "Дарина", 'interests': ['танци', 'покер', 'история', 'софтуер'], 'gender': "female", }, { 'name': "Лилия", 'interests': ['покер', 'автомобили', 'танци', 'кино'], 'gender': "female", }, { 'name': "Галя", 'interests': ['пътуване', 'автомобили', 'плуване', 'баскетбол'], 'gender': "female", }, { 'name': "Валерия", 'interests': ['плуване', 'покер', 'наука', 'скандинавска поезия'], 'gender': "female", }, { 'name': "Ина", 'interests': ['кино', 'лов със соколи', 'пътуване', 'мода'], 'gender': "female", }, { 'name': "Кирил", 'interests': ['баскетбол', 'автомобили', 'кино', 'наука'], 'gender': "male", }, { 'name': "Георги", 'interests': ['автомобили', 'футбол', 'плуване', 'танци'], 'gender': "male", }, { 'name': "Андрей", 'interests': ['футбол', 'скандинавска поезия', 'история', 'танци'], 'gender': "male", }, { 'name': "Емил", 'interests': ['летене', 'баскетбол', 'софтуер', 'наука'], 'gender': "male", }, { 'name': "Димитър", 'interests': ['футбол', 'лов със соколи', 'автомобили', 'баскетбол'], 'gender': "male", }, { 'name': "Петър", 'interests': ['пътуване', 'покер', 'баскетбол', 'лов със соколи'], 'gender': "male", }, { 'name': "Калоян", 'interests': ['история', 'покер', 'пътуване', 'автомобили'], 'gender': "male", }, ] girls = [] boys = [] for person in people: if person.get('gender', None) == 'male' : boys.append(person) else: girls.append(person) for boy in boys: for girl in girls: boy_interests = set(boy['interests']) girl_interests = set(girl['interests']) if boy_interests & girl_interests: print("{} и {} - интереси: {}".format(boy['name'], girl['name'], boy_interests & girl_interests)) break
true
1267d97b762caaa0bbebbfe53d5452cbb07d19e3
Python
tecWang/knowledges-for-cv
/剑指offer/Codes/31_把数组排成最小的数_贪心.py
UTF-8
331
3.515625
4
[ "Apache-2.0" ]
permissive
# -*- coding:utf-8 -*- class Solution: def PrintMinNumber(self, numbers): # write code here arr = [num for num in numbers] arr.sort() print(arr) return "".join([str(a) for a in arr]) print(Solution().PrintMinNumber([1, 12, 123])) print(Solution().PrintMinNumber([3, 32, 321]))
true
391ecaf2c5a2c6cb7d0bdfbedd386c7c3f624daa
Python
BishuPoonia/coding
/Python/diagonal_difference.py
UTF-8
506
3.84375
4
[]
no_license
def diagonal_difference(arr): r1, r2 = 0, 0 for i in range(n): T = list(map(int, arr[i])) r1 += T[i] r2 += T[-i -1] return abs(r1-r2) n = 3 arr = [[11, 2, 4], [4, 5, 6], [10, 8, -12]] result = diagonal_difference(arr) print(result) '''' a = [] result = 0 for i in range(int(input("value of n: "))): a = list(map(int, input().split())) result += a[i] - a[-1 -i] print("diagonal difference is", abs(result)) '''
true
b9fbb46514e0cfe298833e764053b5812239a883
Python
tarcisioLima/learnpython
/oo/class-attributes.py
UTF-8
544
3.96875
4
[]
no_license
class A: vc = 123 # Inicializa logo quando instancia, caso não seja instanciado, não altera a variavel da classe. def __init__(self): self.vc = 111 a1 = A() a2 = A() # Muda para todas as instancias A.vc = 321 # Muda apenas para a instancia a1.vc = 9090 # R: {'vc': 9090} print(a1.__dict__) # R: {'vc': 111} print(a2.__dict__) ''' Primeiro o compilador do python vai procurar na instancia, se ele n encontra na instancia, ele procura na classe. ''' print(A.__dict__) print() print(a1.vc) print(a2.vc) print(A.vc)
true
b7d804c2e51e897e67ceaa18a3dd085979fac964
Python
Binny-bansal/PYTHON
/day1.py
UTF-8
1,085
3.6875
4
[]
no_license
# print("Binny!", end=" ") # print("Riya") # # num = int(input("Enter a number: ")) # # print(num) # # print(2**5) # money = 100 # item = 90 # chocolate = 20 # if(money-item >= chocolate): # print("Yes! We can buy chocolate.") # elif(money-item < 20): # print("You're low on money!") # n = int(input("Enter a Number: ")) # if (n%2==0): # if (n>2 and n<5): # print("Not Weird") # if(n>6 and n<20): # print("Weird") # if (n>20): # print("Not Weird") # else: # print("Not Success!") # n = int(input("Enter a Number: ")) # for i in range(n): # print(i**2) # sum = 0 # n = int(input("Enter a Number: ")) # i=0 # while i<=n: # sum+=i # i+=1 # print(sum) # n=7 # print(n**3) # i=1 # while i<10: # if i==5: # continue # print(i)10 # i+=1 n = int(input("Enter any Number: ")) sum=0 for i in range(1,n+1): sum+=i*i print(sum)
true
5196a37332132bd2147c4f43a4ac0f59bd27e37d
Python
josehuillca/Analise_de_Imagens
/help_functions/canny.py
UTF-8
4,611
2.875
3
[]
no_license
import numpy as np import sys sys.path.append('/usr/local/lib/python3.6/site-packages') import cv2 def create_image(shape, dtype, nchanels): img = np.zeros([shape[0], shape[1], nchanels], dtype=dtype) r, g, b = cv2.split(img) img_bgr = cv2.merge([b, g, r]) return img_bgr def single_band_representation(img): img_r = create_image(img.shape, img.dtype, 3) w = img.shape[1] h = img.shape[0] color_titles = ('Banda Vermelha(Red)') for x in range(0, w): for y in range(0, h): cor = img[y, x] img_r[y, x] = [cor[0], cor[0], cor[0]] #imshow(img_r) #show() return img_r # imagen a escala de grises def get_canny(path, image, low=71): src = cv2.imread(path + image) img_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) lowThreshold = low # 66/45 max_lowThreshold = lowThreshold*3 # 198/135 kernel_size = 3 # Reduce noise with a kernel 3x3 detected_edges = cv2.blur(img_gray, (3, 3)) # Canny detector detected_edges = cv2.Canny(detected_edges, lowThreshold, max_lowThreshold, kernel_size) return detected_edges def my_get_canny(image, low=71, max_=71*3): img_gray = image #cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) lowThreshold = low # 66/45 max_lowThreshold = max_ # 198/135 kernel_size = 3 # Reduce noise with a kernel 3x3 detected_edges = cv2.bilateralFilter(img_gray, 5, 7, 7) detected_edges = cv2.blur(detected_edges, (3, 3)) # Canny detector detected_edges = cv2.Canny(detected_edges, lowThreshold, max_lowThreshold, kernel_size) return detected_edges # ------------------------------------------- def empty(x): pass def main_canny(path, image, l_limiar=0): src, src_gray = [], [] dst, detected_edges = [], [] edgeThresh = 1 lowThreshold = l_limiar max_lowThreshold = 100 ratio = 3 kernel_size = 3 window_name = "Edge Map" # ---------- src = cv2.imread(path + image) if not src.data: return -1 # src = single_band_representation(src) # cv2.imshow("Original", src) # Create a matrix of the same type and size as src(for dst) # dst = create_image(src.shape, src.dtype, 3) # Convert the image to grayscale src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE) # Create a Trackbar for user to enter threshold cv2.createTrackbar("Min Threshold:", window_name, lowThreshold, max_lowThreshold, empty) #CannyThreshold() while True: # Reduce noise with a kernel 3x3 detected_edges = cv2.blur(src_gray, (3, 3)) # Canny detector detected_edges = cv2.Canny(detected_edges, lowThreshold, lowThreshold * ratio, kernel_size) lowThreshold = cv2.getTrackbarPos("Min Threshold:", window_name) cv2.setTrackbarPos("Min Threshold:", window_name, lowThreshold) dst = detected_edges cv2.imshow(window_name, dst) if cv2.waitKey(1) == 27: # 27 is the key 'esc' break cv2.destroyAllWindows() print("lowThreshold:", lowThreshold) print("lowThreshold * ratio:", lowThreshold * ratio) def auto_canny(image, sigma=0.33): # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv2.Canny(image, lower, upper) # return the edged image return edged def auto_canny_(path, image): # load the image, convert it to grayscale, and blur it slightly image = cv2.imread(path + image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (3, 3), 0) # apply Canny edge detection using a wide threshold, tight # threshold, and automatically determined threshold wide = cv2.Canny(blurred, 10, 200) tight = cv2.Canny(blurred, 225, 250) auto = auto_canny(blurred) # show the images #cv2.imshow("Original", image) cv2.imshow("Edges", np.hstack([wide, tight, auto])) cv2.waitKey(0) cv2.destroyAllWindows() #imshow(tight, cmap="gray") #show() def my_auto_canny(image): if len(image.shape)==2: gray = image else: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Bilateral filtering has the nice property of removing noise # in the image while still preserving the actual edges. gray = cv2.bilateralFilter(gray, 5, 7, 7) blurred = cv2.GaussianBlur(gray, (7, 7), 0) return auto_canny(blurred)
true
2e81257ce1118b2c93aa128e8f9c17d042176eb6
Python
tiagodrehmer/TCC
/util.py
UTF-8
28,635
2.515625
3
[]
no_license
import cv2 import numpy as np import math from sklearn.cluster import KMeans import operator w = 1280 h = 720 amarelo = (0,255,255) vermelho = (0,0,255) azul = (255,0,0) branco = (255,255,255) preto = (0, 0, 0) font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (640,360) fontScale = 1 fontColor = (255,255,255) lineType = 2 globalErro = 0 acerto = 0 globalJogadores = 0 erroBola = 0 #cv2.putText(img, str(total) + " " + str(len(self.listaJAux)), bottomLeftCornerOfText, font, fontScale, fontColor, lineType) class Jogador: def __init__(self, x1, x2, y1, y2, time, ide): self.y1 = y1 self.y2 = y2 self.cont=1 if time >= 0: self.mediaTime = time self.contTime = 6 self.time = time + 1 else: self.mediaTime = 0 self.contTime = 0 self.time = 0 self.vel = 0 self.histVel = [] self.histAltura = [] self.flagAlt = True self.flagVel = True self.colisao = 0 self.x2 = x2 self.x1 = x1 self.altura = x2 - x1 self.id = ide self.pred = 0 self.lastTime = 0 self.colisor = None def atualiza(self, x1, x2, y1, y2, time, flag): self.atualiza_vel(y2) self.y1 = y1 self.y2 = y2 self.cont+=1 self.atualiza_altura(x2, x1) if flag: self.time = time + 1 self.lastTime = time + 1 self.colisor = None else: if self.time == 0 and time >= 0 and self.colisao == 0: if self.contTime <= 7: self.mediaTime += time self.contTime += 1 else: self.time = math.ceil(self.mediaTime/self.contTime) + 1 print(str(self.id), str(self.time)) #x = input() # if x == "1": # self.time = (self.time%2) + 1 # global globalErro # globalErro += 1 # elif x == "2": # self.time = (self.time%2) + 1 # elif x != "3": # global acerto # acerto += 1 # if self.colisor: # self.colisor.time = (self.time%2) + 1 # self.colisor.lastTime = (self.time%2) + 1 # self.colisor = None global acerto acerto += 1 self.lastTime = self.time if self.contTime == 7 and not self.lasTime: global globalJogadores globalJogadores += 1 self.pred = 0 self.colisao = 0 def atualiza_altura(self, x2, x1): altura = x2-x1 if self.flagAlt: self.histAltura.append(altura) qtd_alt = len(self.histAltura) if qtd_alt == 10: self.flagAlt = False self.altura = math.ceil(sum(self.histAltura)/qtd_alt) else: del self.histAltura[9] self.histAltura.insert(0, altura) self.altura = math.ceil(sum(self.histAltura)/10) if (abs(self.x2 - x2) > 15) != (abs(self.x1 - x1) > 15): if abs(self.x2 - x2) > 15: self.x2 = self.x1 + (self.altura - 15) elif abs(self.x1 - x1) > 15: self.x1 = self.x2 - (self.altura - 15) else: self.x1 = x1 self.x2 = x2 self.altura = x2 - x1 def quebra(self, colisor, time): #self.x1 = self.x2 - self.altura self.colisao += colisor.colisao if colisor.time != self.time and self.colisao >= 2: self.time = 0 self.contTime = 0 self.mediaTime = 0 if time != 0: self.colisor = colisor def atualiza_vel(self, y2): if self.flagVel: self.histVel.append(y2 - self.y2) qtd_vel = len(self.histVel) if qtd_vel == 10: self.flagVel = False self.vel = math.ceil(sum(self.histVel)/qtd_vel) else: del self.histVel[9] self.histVel.insert(0, y2 - self.y2) self.vel = math.ceil(sum(self.histVel)/10) def ajusta(self, colisor): #self.atualiza_vel(y2) #self.atualiza_vel(y2) #self.x1 = x1 self.colisao += 1 if self.colisao >= 2: self.y1 = colisor.y1 self.y2 = colisor.y2 if colisor.time != self.time: self.time = 0 self.contTime = 0 self.mediaTime = 0 if colisor.time != 0: self.colisor = colisor #else: #self.predict() def testa_borda(self): if (self.y2 < 40) or (self.y1 > w - 40): return True else: return False def predict(self): # if flag: # self.x1 = self.x1+self.vel[0] # self.x2 = self.x2+self.vel[0] self.y1 = self.y1+self.vel self.y2 = self.y2+self.vel self.pred+=1 #self.time = 2 #return self.testa_borda() def getTuple1(self): return(self.y1, self.x1) def getTuple2(self): return(self.y2, self.x2) class Goleira: def __init__(self): self.dist = [0, 0] self.x1 = [0, 0] self.x2 = [0, 0] self.y1 = [0, 0] self.y2 = [0, 0] self.mantem = False self.numTrave = 0 def atualiza(self, x1, x2, y1, y2): self.mantem = True self.x1[self.numTrave] = x1 self.x2[self.numTrave] = x2 self.y1[self.numTrave] = y1 self.y2[self.numTrave] = y2 self.numTrave = (self.numTrave+1)%2 def resetTraves(self): self.numTrave = 0 self.mantem = False self.x1 = [0, 0] self.x2 = [0, 0] self.y1 = [0, 0] self.y2 = [0, 0] def getTuple1T1(self): return(self.y1[0], self.x1[0]) def getTuple2T1(self): return(self.y2[0], self.x2[0]) def getTuple1T2(self): return(self.y1[1], self.x1[1]) def getTuple2T2(self): return(self.y2[1], self.x2[1]) class Bola: def __init__(self): self.dist = 0 self.vel = [0, 0] self.mantem = False self.pred = 0 self.x1 = 0 self.x2 = 0 self.y1 = 0 self.y2 = 0 self.dominio = False self.ok = 0 self.predTotal = 0 #self.detect = True def reset(self): self.dist = 0 self.vel = [0, 0] self.mantem = False self.pred = 0 self.x1 = 0 self.x2 = 0 self.y1 = 0 self.y2 = 0 self.dominio = False def atualiza(self, x1, x2, y1, y2): if self.x1: disx1, disx2, disy2, disy1 = abs(x1 - self.x1), abs(x2 - self.x2), abs(y2 - self.y2), abs(y1 - self.y1) if not (disx1 < 100 and disx2 < 100 and disy2 < 100 and disy1 < 100) and self.pred < 6: self.predict() return self.mantem = True self.vel = [x2 - self.x2, y2 - self.y2] # if self.detect: self.pred = 0 #self.detec = True self.x1 = x1 self.x2 = x2 self.y1 = y1 self.y2 = y2 self.ok += 1 def predict(self): self.predTotal += 1 if self.dominio < 4: if self.pred == 0: self.lastPosition = [self.x2, self.y2] else: self.x1 += self.vel[0] self.x2 += self.vel[0] self.y1 += self.vel[1] self.y2 += self.vel[1] if self.x1 < 0 or self.y1 < 0 or self.x2 > h or self.y2 > w: global erroBola erroBola += 1 self.pred += 1 self.mantem = True def getTuple1(self): return(self.y1, self.x1) def getTuple2(self): return(self.y2, self.x2) class Objects: def __init__(self): self.listaJogadores = [] self.listaJAux = [] self.vago = 0 self.bola = Bola() self.goleira = Goleira() self.CLUSTERS = 2 self.listColors = [] self.colorTimes = [np.array(3)]*2 self.totalJogadores = 0 #video 3 #self.colorTimes = [[54, 49, 43], [165, 158, 134]] #video 1 #self.colorTimes = [[79, 61, 46], [230, 220, 193]] self.contFrame = 0 #self.colorTimes = [[191, 162, 138], [97, 49, 26]] self.ids = 0 self.nReconhecidos = 0 self.aglu = 0 def kmeansColors(self, x1, x2, y1, y2, img): distY = y2 - y1 distX = x2 - x1 #tuple1 = (y1 + math.ceil(0/6 * distY), x1 + math.ceil(1/5 * distX)) #tuple2 = (y1 + math.ceil(2/6 * distY), x1 + math.ceil(1/2 * distX)) #tuple3 = (y1 + math.ceil(3/6 * distY), x1 + math.ceil(1/5 * distX)) #tuple4 = (y1 + math.ceil(4/6 * distY), x1 + math.ceil(1/2 * distX)) #tuple5 = (y1 + math.ceil(5/6 * distY), x1 + math.ceil(1/5 * distX)) #tuple6 = (y1 + math.ceil(6/6 * distY), x1 + math.ceil(1/2 * distX)) tuplet1 = (y1 + math.ceil(3/9 * distY), x1 + math.ceil(1/2 * distX)) tuplet2 = (y1 + math.ceil(6/9 * distY), x1 + math.ceil(4/7 * distX)) kmeans = KMeans(n_clusters = self.CLUSTERS) img2 = img[tuplet1[1]:tuplet2[1], tuplet1[0]:tuplet2[0]] img2 = img2.reshape((img2.shape[0] * img2.shape[1], 3)) kmeans.fit(img2) COLORS = kmeans.cluster_centers_ COLORS.astype(int) cv2.rectangle(img, tuplet1, tuplet2, amarelo, 2) #cv2.rectangle(img, tuple3, tuple4, np.ceil(COLORS[0]), 2) #cv2.rectangle(img, tuple4, tuple5, np.ceil(COLORS[1]), 2) #COLORS.sort(key = operator.itemgetter(0, 1, 2)) return sorted(COLORS, key = operator.itemgetter(0, 1, 2)) def update_list(self, COLORS): aux_best = -1 for j, resultColor in enumerate(COLORS): best = -1 aux = 80 for i, color in enumerate(self.listColors): b = math.ceil(color[0][0]/color[1]) g = math.ceil(color[0][1]/color[1]) r = math.ceil(color[0][2]/color[1]) b, g, r = abs(b - resultColor[0]), abs(g- resultColor[1]), abs(r - resultColor[2]) if b < 40 and g < 40 and r < 40 and i != aux_best: result = b + g + r if aux > result: aux = result best = i if best != -1: b = math.ceil(self.listColors[best][0][0]/self.listColors[best][1]) g = math.ceil(self.listColors[best][0][1]/self.listColors[best][1]) r = math.ceil(self.listColors[best][0][2]/self.listColors[best][1]) self.listColors[best][1] += 1 self.listColors[best][0][0] += resultColor[0] self.listColors[best][0][1] += resultColor[1] self.listColors[best][0][2] += resultColor[2] aux_best = best else: self.listColors.append([resultColor, 1]) def escolhe_time(self, COLORS): aux = 80 valueT = 0 testeBg = False #print("jogador:") for resultColor in COLORS: b1 = abs(self.colorTimes[0][0] - resultColor[0]) g1 = abs(self.colorTimes[0][1] - resultColor[1]) r1 = abs(self.colorTimes[0][2] - resultColor[2]) b2 = abs(self.colorTimes[1][0] - resultColor[0]) g2 = abs(self.colorTimes[1][1] - resultColor[1]) r2 = abs(self.colorTimes[1][2] - resultColor[2]) if b1 < 30 and g1 < 30 and r1 < 30: result1 = b1 + g1 + r1 else: result1 = 100 if b2 < 30 and g2 < 30 and r2 < 30: result2 = b2 + g2 + r2 else: result2 = 100 if result2 < result1: if result2 < aux: aux = result2 valueT = 0 break elif result1 < result2: if result1 < aux: aux = result1 valueT = 1 #print(valueT) #print("\n\n\n") #if testeBg: return valueT #else: # return -1 def testa_time(self, x1, x2, y1, y2, img): COLORS = np.ceil(self.kmeansColors(x1, x2, y1, y2, img)) if self.contFrame <= 20: self.update_list(COLORS) if self.contFrame == 20 or self.contFrame == 15: self.listColors.sort(key = lambda x: x[1], reverse=True) for color, qtd in self.listColors: print(np.ceil(color/qtd), qtd) #self.bg = np.ceil(self.listColors[0][0]/self.listColors[0][1]) self.colorTimes[0] = np.ceil(self.listColors[0][0]/self.listColors[0][1]) self.colorTimes[1] = np.ceil(self.listColors[1][0]/self.listColors[1][1]) else: return self.escolhe_time(COLORS) return -1 def reset(self): self.listaJogadores = [] self.bola.reset() self.goleira = Goleira() self.research = True def ajusta_objects(self): # for jogador in self.listaJAux: # print(jogador.x2) for jogador in self.listaJogadores: if not jogador.testa_borda(): if jogador.cont >= 5: if jogador.pred < 10: # and jogador.colisao < 10: colisor = False #jogador.predict() for i, jogadorTest in enumerate(self.listaJAux): if jogadorTest.x1 - jogador.x1 < 20: if jogador.x1 < jogadorTest.x2 and jogador.x2 > jogadorTest.x1 and jogador.y1 < jogadorTest.y2 and jogador.y2 > jogadorTest.y1: if not colisor or jogadorTest.x2 > colisor.x2: colisor = jogadorTest self.aglu += 1 if colisor: time = jogador.time jogador.ajusta(colisor) colisor.quebra(jogador, time) colisor.predict() else: jogador.colisao = 0 self.nReconhecidos += 1 self.listaJAux.append(jogador) jogador.predict() else: self.nReconhecidos += 1 self.listaJogadores = self.listaJAux self.listaJAux = [] if not self.bola.mantem: self.bola.predict() # for jogador in self.listaJogadores: # print(jogador.x2) def draw_objects(self, img, frame_count): cv2.putText(img, str(frame_count), bottomLeftCornerOfText, font, fontScale, fontColor, lineType) self.contFrame+=1 if self.listaJAux: self.ajusta_objects() for jogador in self.listaJogadores: if jogador.time == 1: cv2.rectangle(img, jogador.getTuple1(), jogador.getTuple2(), vermelho, 2) cv2.putText(img, str(jogador.id), jogador.getTuple1(), font, fontScale/2, fontColor, lineType) elif jogador.time == 2: cv2.rectangle(img, jogador.getTuple1(), jogador.getTuple2(), azul, 2) cv2.putText(img, str(jogador.id), jogador.getTuple1(), font, fontScale/2, fontColor, lineType) else: cv2.rectangle(img, jogador.getTuple1(), jogador.getTuple2(), branco, 2) cv2.putText(img, str(jogador.id), jogador.getTuple1(), font, fontScale/2, fontColor, lineType) if self.bola.mantem: cv2.rectangle(img, self.bola.getTuple1(), self.bola.getTuple2(), amarelo, 2) self.bola.mantem = False if self.goleira.mantem: cv2.rectangle(img, self.goleira.getTuple1T1(), self.goleira.getTuple2T1(), preto, 2) if self.goleira.numTrave == 0: cv2.rectangle(img, self.goleira.getTuple1T2(), self.goleira.getTuple2T2(), preto, 2) self.goleira.mantem = False self.contJog = len(self.listaJogadores) def testa_borda(self, y1, y2): #print(y1, y2) if (y1 < 50) or (y2 > w - 50): return True else: return False def atualizaJogador(self, x1, x2, y1, y2, i, cont, img): jogador = self.listaJogadores[i-cont] if self.contFrame <= 20 or jogador.time or self.testa_borda(y1, y2): jogador.atualiza(x1, x2, y1, y2, -1, False) else: time = self.testa_time(x1, x2, y1, y2, img) jogador.atualiza(x1, x2, y1, y2, time, False) self.totalJogadores += 1 self.listaJAux.append(self.listaJogadores.pop(i-cont)) def atualiza_list(self, lista_atualiza, img, research): #print(lista_atualiza) total = len(self.listaJogadores) #print(len(lista_atualiza), len(lista_classe)) #lista_atualiza.sort(key = operator.itemgetter(1), reverse = True) #print(total) if research: self.reset() l_possiveis1 = [[[-1, 1000], [-1, 1000]] for i in range(total)] l_possiveis2 = [[-1, 1000] for i in range(len(lista_atualiza))] for j, detect in enumerate(lista_atualiza): x1, x2, y1, y2, classe = detect #cv2.imwrite('frames/img_j3_'+str(x1) +".png",img[x1: x2, y1:y2]) #print(x1, x2, y1, y2) melhor = -1 if classe == 1.: if x2 - x1 > 50: if self.contFrame <= 20: time = self.testa_time(x1, x2, y1, y2, img) flag = True for i, jogador in enumerate(self.listaJogadores): disx1, disx2, disy2, disy1 = abs(x1 - jogador.x1), abs(x2 - jogador.x2), abs(y2 - jogador.y2), abs(y1 - jogador.y1) #disP1 = abs(x1 - jogador.x1) + abs(y1 - jogador.y1) erro = 10 * jogador.colisao erroAlt = 10 * jogador.colisao if (disx1 < 50 or disx2 < 50 + erroAlt) and disy2 < 50 + erro and disy1 < 50 +erro : dist = 2*disx2+disy2+disx1+disy1 if l_possiveis1[i][0][1] > dist: l_possiveis1[i][1] = l_possiveis1[i][0].copy() l_possiveis1[i][0] = [j, dist] elif l_possiveis1[i][1][1] > dist: l_possiveis1[i][1] = [j, dist] if l_possiveis2[j][1] > dist: l_possiveis2[j] = [i, dist] flag = False if flag: self.listaJAux.append(Jogador(x1, x2, y1, y2, -1, self.ids)) self.totalJogadores += 1 self.ids += 1 elif classe == 2.: #if abs(x1 - self.bola.x1) < 20 or abs(x2 - self.bola.x2) < 20 or abs(y2 - self.bola.y2) < 20 or abs(y1 - self.bola.y1) < 20 or : self.bola.atualiza(x1, x2, y1, y2) else: if x2 - x1 > 50: self.goleira.atualiza(x1, x2, y1, y2) cont = 0 for i, possiveis in enumerate(l_possiveis1): testIndex, testDist = possiveis[0] pIndex, pDist = possiveis[1] if testIndex != -1 and i == l_possiveis2[testIndex][0]: x1, x2, y1, y2, _ = lista_atualiza[testIndex] self.atualizaJogador(x1, x2, y1, y2, i, cont, img) cont+=1 elif pIndex != -1 and testIndex == l_possiveis1[l_possiveis2[pIndex][0]][0][0]: x1, x2, y1, y2, _ = lista_atualiza[pIndex] self.atualizaJogador(x1, x2, y1, y2, i, cont, img) cont+=1 # if total - len(self.listaJogadores) < 4: # return False # else: # self.ajusta_objects() # return True class Event_detect(Objects): def __init__(self): #eventos Objects.__init__(self) self.posses = [0, 0] self.passesCE = [[0,0], [0,0]] self.passesInt = [0, 0] self.roubadas = [0, 0] self.dribles = [0, 0] self.jDominio = [None, 1] self.jDisputa = [None, 1] self.listaIndefinidos = [] self.listPassesCorrige = [] self.corrigeDisputaPR = [] self.corrigeDisputaDR = [] self.lastDominio = [0, None] self.lastDisputaID = -1 self.lastEstado = 0 self.listLancesA = [] self.estado = 0 self.flagDisputa = True # 0 = Bola livre # 1 = dominio # 2 = Disputa # 3 = Disputa Intensa self.totalDominios = 0 #with open("checkPoint.txt", "r") as auxFile: #self.ids, self.posses[0], self.posses[1] = list(map(int, auxFile.read().split("\n"))) def resetDetect(self, frame_count): self.jDominio = [None, 1] self.jDisputa = [None, 1] self.listaIndefinidos = [] self.listPassesCorrige = [] self.corrigeDisputaPR = [] self.corrigeDisputaDR = [] self.lastDominio = [0, None] self.lastDisputaID = -1 self.lastEstado = 0 self.estado = -1 self.flagDisputa = True def detect(self, img, frame_count, research): if research: self.resetDetect(frame_count) aux = 60 aux2 = 80 jogadorDominio = None jogadorDisputa = None for i, jogador in enumerate(self.listaJogadores): distBolax2 = abs(self.bola.x2 - jogador.x2) distBolay1 = distBolax2 + abs(self.bola.y1 - jogador.y1) distBolay2 = distBolax2 + abs(self.bola.y2 - jogador.y2) if distBolay2 < distBolay1: if distBolay2 < aux: jogadorDisputa = jogadorDominio aux2 = aux jogadorDominio = jogador aux = distBolay2 elif distBolay2 <= aux2: aux2 = distBolay2 jogadorDisputa = jogador else: if distBolay1 < aux: jogadorDisputa = jogadorDominio aux2 = aux jogadorDominio = jogador aux = distBolay1 elif distBolay1 <= aux2: aux2 = distBolay1 jogadorDisputa = jogador if jogadorDisputa and not jogadorDominio: jogadorDisputa = None elif jogadorDisputa and jogadorDominio and jogadorDisputa.time == jogadorDominio.time: jogadorDisputa = None self.defineEstado(jogadorDominio, jogadorDisputa, frame_count) self.defineEvento(frame_count) self.bolaBaseJogador() self.draw_Dominios(img) #self.printResult(frame_count) def defineEstado(self, jogadorDominio, jogadorDisputa, frame_count): if self.jDominio[0] and jogadorDominio: if jogadorDominio.id == self.jDominio[0].id: self.bola.dominio += 1 self.jDominio[1] += 1 if self.jDominio[1] >= 6: self.estado = 1 else: if self.jDisputa[0] and jogadorDisputa: if self.jDisputa[0].id == jogadorDominio.id and self.jDominio[0].id == jogadorDisputa.id: aux = self.jDominio.copy() self.jDominio = self.jDisputa self.jDisputa = aux self.jDisputa[1] += 1 self.jDominio[1] += 1 self.estado = 2 else: if self.jDominio[1] >= 5: self.jDisputa = self.jDominio.copy() self.estado = 2 else: self.jDisputa = self.jDominio.copy() self.estado = 0 self.jDominio[0] = jogadorDominio self.jDominio[1] = 1 self.bola.dominio = 1 elif jogadorDominio: if self.lastDominio[1] and jogadorDominio.id == self.lastDominio[1].id: self.jDominio[1] = 3 else: self.jDominio[1] = 1 self.jDominio[0] = jogadorDominio self.ajustaJogadorDisputa(jogadorDisputa) self.bola.dominio = 1 elif self.jDominio[0]: self.jDominio = [None, 1] self.bola.dominio = 0 self.estado = 0 else: self.jDominio[1] += 1 self.estado = 0 if self.estado != 2: self.ajustaJogadorDisputa(jogadorDisputa) if self.jDominio[0] and self.jDisputa[0]: if self.jDominio[0].colisao >= 2: self.listLancesA.append(frame_count) def defineEvento(self, frame_count): if self.jDominio[0]: print(self.lastDominio[0], self.jDominio[0].time, self.estado, self.lastEstado) else: print(self.lastDominio[0], -1, self.estado, self.lastEstado) self.corrigeLances() self.checkLastDominio() if self.estado == 1: if self.lastEstado == 0: if self.lastDominio[1]: self.checkPasse(frame_count) elif self.lastEstado == 5: if self.lastDominio[1] and self.jDominio[0].id != self.lastDominio[1].id: self.checkRoubada(frame_count) elif self.lastEstado == 2: if self.lastDominio[1]: if self.jDominio[0].id == self.lastDominio[1].id or self.jDominio[0].id == self.lastDisputaID: self.checkDribleRoubada(frame_count) else: self.checkPasseRoubada(frame_count) elif self.lastEstado == 4: if self.aux < 3: self.checkPasse(frame_count) else: self.checkPasseRoubada(frame_count) if self.lastDominio != self.jDominio: self.totalDominios += 1 if self.lastDisputaID: self.lastDisputaID = 0 self.checkPosse() self.lastDominio = [self.jDominio[0].time, self.jDominio[0]] elif self.estado == 2: if self.lastEstado == 0 or self.lastEstado == 5: self.estado = 4 self.aux = 1 elif self.lastEstado == 4: self.estado = 4 self.aux += 1 if self.jDisputa[0] and not self.lastDisputaID: self.lastDisputaID = self.jDisputa[0].id elif self.estado == 0: if self.lastEstado == 1: self.lastEstado = self.estado return else: return self.lastEstado = self.estado def ajustaJogadorDisputa(self, jogadorDisputa): if self.jDisputa[0] and jogadorDisputa: if self.jDisputa[0].id == jogadorDisputa.id: self.jDisputa[1] += 1 if self.jDisputa[1] >= 2: self.estado = 2 else: self.jDisputa[0] = jogadorDisputa self.jDisputa[1] = 1 self.flagDisputa = True elif jogadorDisputa: self.jDisputa[0] = jogadorDisputa self.jDisputa[1] = 1 elif self.jDisputa[0] and self.flagDisputa: self.flagDisputa = False if self.jDisputa[1] >= 5: self.estado = 2 else: self.jDisputa = [None, 1] def corrigeLances(self): self.corrigePasseRoubada() self.corrigeDribleRoubada() self.corrigePasse() self.corrigePosse() def checkRoubada(self, frame_count): if self.lastDominio[0] != 0 and self.jDominio[0].time != 0: if self.lastDominio[0] == self.jDominio[0].time: print(str(frame_count) + ": Passe certo") self.passesCE[self.jDominio[0].time - 1][0] += 1 elif self.lastDominio[0] != self.jDominio[0].time: print(str(frame_count) + ": Roubada") self.roubadas[self.jDominio[0].time - 1] += 1 elif self.lastDominio[0] != 0: self.corrigeDisputaDR.append([self.lastDominio[0], self.jDominio[0], frame_count]) def corrigePasseRoubada(self): aux = [] for time1, jogador, frame_count in self.corrigeDisputaPR: if jogador.time != 0: if time1 == jogador.time: self.passesCE[time1 - 1][0] += 1 self.dribles[time1 - 1] += 1 print(str(frame_count) + ": Passe certo e drible [Correcao]") elif time1 != jogador.time: self.roubadas[jogador.time - 1] += 1 self.passesCE[jogador.time - 1][0] += 1 print(str(frame_count) + ": Roubada e passe certo [Correcao]") else: aux.append([time1, jogador, frame_count]) self.corrigeDisputaPR = aux def checkPasseRoubada(self, frame_count): if self.lastDominio[0] != 0 and self.jDominio[0].time != 0: if self.lastDominio[0] == self.jDominio[0].time: self.passesCE[self.jDominio[0].time - 1][0] += 1 self.dribles[self.jDominio[0].time - 1] += 1 print(str(frame_count) + ": Passe certo e individual") elif self.lastDominio[0] != self.jDominio[0].time: self.roubadas[self.jDominio[0].time - 1] += 1 self.passesCE[self.jDominio[0].time - 1][0] += 1 print(str(frame_count) + ": Roubada e passe certo") elif self.lastDominio[0] != 0: self.corrigeDisputaPR.append([self.lastDominio[0], self.jDominio[0], frame_count]) def corrigeDribleRoubada(self): aux = [] for time1, jogador, frame_count in self.corrigeDisputaDR: if jogador.time != 0: print(jogador.time, time1) if time1 == jogador.time: self.dribles[time1 - 1] += 1 print(str(frame_count) + ": Drible [Correcao]") elif time1 != jogador.time: self.roubadas[jogador.time - 1] += 1 print(str(frame_count) + ": Roubada [Correcao] ") else: aux.append([time1, jogador, frame_count]) self.corrigeDisputaDR = aux def checkDribleRoubada(self, frame_count): if self.lastDominio[0] != 0 and self.jDominio[0].time != 0: if self.lastDominio[0] == self.jDominio[0].time: self.dribles[self.jDominio[0].time - 1] += 1 print(str(frame_count) + ": Drible") elif self.lastDominio[0] != self.jDominio[0].time: self.roubadas[self.jDominio[0].time - 1] += 1 print(str(frame_count) + ": Roubada") elif self.lastDominio[0] != 0: self.corrigeDisputaDR.append([self.lastDominio[0], self.jDominio[0], frame_count]) def checkLastDominio(self): if not self.lastDominio[0]: if self.lastDominio[1] and self.lastDominio[1].time: self.lastDominio[0] = self.lastDominio[1].time def corrigePasse(self): aux = [] for jogador, lastJogador, frame_count in self.listPassesCorrige: if jogador and lastJogador and jogador.time and lastJogador.time: if jogador.time == lastJogador.time: self.passesCE[lastJogador.time - 1][0] += 1 print(str(frame_count) + ": Passe certo [Correcao]") else: self.passesCE[lastJogador.time - 1][1] += 1 self.passesInt[lastJogador.time %2] += 1 print(str(frame_count) + ": Passse errado [Correcao]") else: aux.append([jogador, lastJogador, frame_count]) self.listPassesCorrige = aux def checkPasse(self, frame_count): if self.lastDominio[0] != 0 and self.jDominio[0].time != 0: if self.lastDominio[1].id != self.jDominio[0].id: if self.lastDominio[0] == self.jDominio[0].time: self.passesCE[self.lastDominio[0] - 1][0] += 1 print(str(frame_count) + ": Passe certo") else: self.passesCE[self.lastDominio[0] - 1][1] += 1 self.passesInt[self.lastDominio[0] %2] += 1 print(str(frame_count) + ": Passse errado") else: self.posses[self.jDominio[0].time - 1] += 2 else: self.listPassesCorrige.append([self.jDominio[0], self.lastDominio[1], frame_count]) def corrigePosse(self): aux = [] for jogador, qtd in self.listaIndefinidos: if jogador.time != 0: self.posses[jogador.time - 1] += qtd else: aux.append([jogador, qtd]) self.listaIndefinidos = aux def checkPosse(self): if self.jDominio[0].time != 0: self.posses[self.jDominio[0 ].time - 1] += 1 else: self.somaDominioIndef() def draw_Dominios(self, img): if self.jDominio[0]: cv2.rectangle(img, self.jDominio[0].getTuple1(), self.jDominio[0].getTuple2(), preto, 2) if self.jDisputa[0]: cv2.rectangle(img, self.jDisputa[0].getTuple1(), self.jDisputa[0].getTuple2(), amarelo, 2) def printResult(self, frame_count): totalPosse = sum(self.posses) if totalPosse: print ("Time 1:") print ("Passes Certos: " + str(self.passesCE[0][0])) print ("Passes Errados: " + str(self.passesCE[0][1])) print ("Posse de bola: " + str(self.posses[0]/totalPosse*100)) print ("Interceptacoes: " + str(self.passesInt[0])) print ("Roubo de bola: " + str (self.roubadas[0])) print ("Lance Individual: " + str(self.dribles[0])) print ("Time 2:") print ("Passes Certos: " + str(self.passesCE[1][0])) print ("Passes Errados: " + str(self.passesCE[1][1])) print ("Posse de bola: " + str(self.posses[1]/totalPosse*100)) print ("Interceptacoes: " + str(self.passesInt[1])) print ("Roubo de bola: " + str (self.roubadas[1])) print ("Lance Individual: " + str(self.dribles[1])) print ("-----------------------------") print ("Lances para serem avaliados: ") for frame_count in self.listLancesA: print(str(frame_count)) def bolaBaseJogador(self): if self.jDominio[0] and self.bola.pred > 3: self.bola.x2 = self.jDominio[0].x2 self.bola.x1 = self.jDominio[0].x2 - math.ceil(1/5*(self.jDominio[0].altura)) self.bola.y1 = self.jDominio[0].y1 + math.ceil(2/5*(self.jDominio[0].y2 - self.jDominio[0].y1)) self.bola.y2 = self.jDominio[0].y1 + math.ceil(4/5*(self.jDominio[0].y2 - self.jDominio[0].y1)) self.bola.domino = True def somaDominioIndef(self): for i, jogador in enumerate(self.listaIndefinidos): if self.jDominio[0].id == jogador[0].id: self.listaIndefinidos[i][1] += 1 return self.listaIndefinidos.append([self.jDominio[0], 1])
true
99fd77bb00149b104ff5d79d0ce09d66a8c25348
Python
Sneha-singh-pal/simple-linear-regression-ML-model
/model.py
UTF-8
310
2.890625
3
[]
no_license
import pandas import sklearn.linear_model from LinearRegression db = pandas.read_csv("dataset.csv") X= db["hrs"].values.reshape(-1,1) Y= db["marks"] mind = LinearRegression() mind.fit(X,Y) hours= int(input("enter the no of hours you study :" )) print("your marks wil be approx :" ,mind.predict([[hours]]))
true
bc94346808f3594db3765b392e5e70638399d2a5
Python
TheAlgorithms/Python
/project_euler/problem_107/sol1.py
UTF-8
4,211
4.15625
4
[ "CC-BY-NC-4.0", "CC-BY-NC-SA-4.0", "MIT" ]
permissive
""" The following undirected network consists of seven vertices and twelve edges with a total weight of 243.  The same network can be represented by the matrix below. A B C D E F G A - 16 12 21 - - - B 16 - - 17 20 - - C 12 - - 28 - 31 - D 21 17 28 - 18 19 23 E - 20 - 18 - - 11 F - - 31 19 - - 27 G - - - 23 11 27 - However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected. The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 - 93 = 150 from the original network. Using network.txt (right click and 'Save Link/Target As...'), a 6K text file containing a network with forty vertices, and given in matrix form, find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. Solution: We use Prim's algorithm to find a Minimum Spanning Tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm """ from __future__ import annotations import os from collections.abc import Mapping EdgeT = tuple[int, int] class Graph: """ A class representing an undirected weighted graph. """ def __init__(self, vertices: set[int], edges: Mapping[EdgeT, int]) -> None: self.vertices: set[int] = vertices self.edges: dict[EdgeT, int] = { (min(edge), max(edge)): weight for edge, weight in edges.items() } def add_edge(self, edge: EdgeT, weight: int) -> None: """ Add a new edge to the graph. >>> graph = Graph({1, 2}, {(2, 1): 4}) >>> graph.add_edge((3, 1), 5) >>> sorted(graph.vertices) [1, 2, 3] >>> sorted([(v,k) for k,v in graph.edges.items()]) [(4, (1, 2)), (5, (1, 3))] """ self.vertices.add(edge[0]) self.vertices.add(edge[1]) self.edges[(min(edge), max(edge))] = weight def prims_algorithm(self) -> Graph: """ Run Prim's algorithm to find the minimum spanning tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm >>> graph = Graph({1,2,3,4},{(1,2):5, (1,3):10, (1,4):20, (2,4):30, (3,4):1}) >>> mst = graph.prims_algorithm() >>> sorted(mst.vertices) [1, 2, 3, 4] >>> sorted(mst.edges) [(1, 2), (1, 3), (3, 4)] """ subgraph: Graph = Graph({min(self.vertices)}, {}) min_edge: EdgeT min_weight: int edge: EdgeT weight: int while len(subgraph.vertices) < len(self.vertices): min_weight = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: min_edge = edge min_weight = weight subgraph.add_edge(min_edge, min_weight) return subgraph def solution(filename: str = "p107_network.txt") -> int: """ Find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. >>> solution("test_network.txt") 150 """ script_dir: str = os.path.abspath(os.path.dirname(__file__)) network_file: str = os.path.join(script_dir, filename) edges: dict[EdgeT, int] = {} data: list[str] edge1: int edge2: int with open(network_file) as f: data = f.read().strip().split("\n") adjaceny_matrix = [line.split(",") for line in data] for edge1 in range(1, len(adjaceny_matrix)): for edge2 in range(edge1): if adjaceny_matrix[edge1][edge2] != "-": edges[(edge2, edge1)] = int(adjaceny_matrix[edge1][edge2]) graph: Graph = Graph(set(range(len(adjaceny_matrix))), edges) subgraph: Graph = graph.prims_algorithm() initial_total: int = sum(graph.edges.values()) optimal_total: int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
true
f20273465bac34792f2557e7d1d541c3cddba586
Python
harshsd/NUS-Intern
/Codes/Final_Codes_Folder/svm.py
UTF-8
4,971
3.09375
3
[]
no_license
from sklearn import svm import os import numpy as np import matplotlib.pyplot as plt def accuracy_svm (data_set1 , data_set2 , cc , gg): '''Returns average accuracy of a svm after doing 5 fold validation on the given datasets.Uses rbf kernel. To edit change on line 53 Args: data_set1 : The first data_set. All the inputs should have same number of features. Also each of them should belong to the same class. data_set2 : The second data_set. All inputs should have same number of features. Each should belong to same class other than that of data_set1. Also, lenght of the dataset must be same as the previous data_set. cc: C for kernal gg: gamma for kernel More datasets can be easily added for multiclass svm. See next function (commented) for an example. Returns: Tuple containing mean accuracy of selected svm and standard deviation of the included accuracies.''' accuracy = [] l = len(data_set1) if l != len (data_set2): print ("error") print (l) print (len(data_set2)) for i in range (0,5): fatigue_train1 = [] fatigue_train2 = [] fatigue_test1 = [] fatigue_test2 = [] test1 = data_set1[int(i*l/5):int((i+1)*l/5)] test2 = data_set2[int(i*l/5):int((i+1)*l/5)] #print(type(test1)) if i == 0: train1 = data_set1[int(l/5):l] train2 = data_set2[l//5:l] elif i == 4 : train1 = data_set1[0:4*l//5] train2 = data_set2[0:4*l//5] else: train1 = data_set1[0:i*l//5] train1 = np.concatenate((train1,data_set1[(i+1)*l//5:l]),axis = 0) train2 = data_set2[0:i*l//5] train2 = np.concatenate((train2 ,data_set2[(i+1)*l//5:l]) , axis =0) test1 = np.concatenate((test1,test2),axis=0) train1 = np.concatenate((train1,train2), axis=0) #print (test1.shape) #print (len(test1[0])) for k in range (0,int(4*l//5)): fatigue_train1.append(0) fatigue_train2.append(1) if(k<int(l//5)): fatigue_test1.append(0) fatigue_test2.append(1) #print (len(fatigue_train1)) fatigue_train1 += fatigue_train2 fatigue_train = np.array(fatigue_train1) #print (len(fatigue_train)) fatigue_test1 += fatigue_test2 fatigue_test = np.array(fatigue_test1) #print (len(fatigue_test)) clf = svm.SVC(kernel='rbf', C=cc, gamma = gg ) clf.fit (train1 , fatigue_train1) fatigue_result = clf.predict(test1) y = 0 n = 0 for i in range (0,len(fatigue_result)): if (fatigue_result[i] == fatigue_test1[i]): y=y+1 else: n=n+1 accuracy_curr = y/(y+n) accuracy.append (float(100*accuracy_curr)) accuracy = np.array(accuracy) #print (accuracy) mean = accuracy.mean() std = accuracy.std() return (mean , std) ''' def accuracy_svm (data_set1 , data_set2 , data_set3 , cc , gg): accuracy = [] l = len(data_set1) if l != len (data_set2): print ("error") print (l) print (len(data_set2)) elif l != len(data_set3): print ("error") print (l) print (len(data_set3)) for i in range (0,5): fatigue_train1 = [] fatigue_train2 = [] fatigue_train3 = [] fatigue_test1 = [] fatigue_test2 = [] fatigue_test3 = [] test1 = data_set1[int(i*l/5):int((i+1)*l/5)] test2 = data_set2[int(i*l/5):int((i+1)*l/5)] test3 = data_set3[int(i*l/5):int((i+1)*l/5)] if i == 0: train1 = data_set1[int(l/5):l] train2 = data_set2[l//5:l] train3 = data_set3[l//5:l] elif i == 4 : train1 = data_set1[0:4*l//5] train2 = data_set2[0:4*l//5] train3 = data_set3[0:4*l//5] else: train1 = data_set1[0:i*l//5] train1 = np.concatenate((train1,data_set1[(i+1)*l//5:l]),axis = 0) train2 = data_set2[0:i*l//5] train2 = np.concatenate((train2 ,data_set2[(i+1)*l//5:l]) , axis =0) train3 = data_set3[0:i*l//5] train3 = np.concatenate((train3 ,data_set3[(i+1)*l//5:l]) , axis =0) test_final = np.concatenate((test1,test2,test3),axis=0) train_final = np.concatenate((train1,train2,train3), axis=0) # print (len(train1)) # print (len(train2)) # print (len(train3)) # print (len(train_final)) for k in range (0,int(4*l//5)): fatigue_train1.append(0) fatigue_train2.append(1) fatigue_train3.append(2) if(k<int(l//5)): fatigue_test1.append(0) fatigue_test2.append(1) fatigue_test3.append(2) fatigue_train1 += fatigue_train2 fatigue_train1 += fatigue_train3 fatigue_train = np.array(fatigue_train1) fatigue_test1 += fatigue_test2 fatigue_test1 += fatigue_test3 fatigue_test = np.array(fatigue_test1) # print(l) # print (np.array(train_final).shape) # print(fatigue_train.shape) clf = svm.SVC(kernel='rbf', C=cc, gamma = gg ,decision_function_shape='ovo') clf.fit (train_final , fatigue_train) fatigue_result = clf.predict(test_final) y = 0 n = 0 for i in range (0,len(fatigue_result)): if (fatigue_result[i] == fatigue_test1[i]): y=y+1 else: n=n+1 accuracy_curr = y/(y+n) accuracy.append (float(100*accuracy_curr)) accuracy = np.array(accuracy) #print (accuracy) mean = accuracy.mean() std = accuracy.std() return (mean , std) '''
true
43b894b28b62f5eafaadb23ce4a531dfeb9bec70
Python
zeeking786/BSCIT_PYTHON_PRACTICAL
/PRACTICAL-6/Pract_3.py
UTF-8
206
3.609375
4
[]
no_license
""" Write a Python program to read last n lines of a file. """ def read_lastnlines(fname,n): with open('file.txt') as f: for line in (f.readlines() [-n:]): print(line) read_lastnlines('file.txt',2)
true
16137fd90e2e3200aced5322f2ca4e2fa43195d9
Python
simonecampisi97/Voiced-Unvoiced_Speech_Detection
/frontend/GUI.py
UTF-8
4,714
2.75
3
[ "Apache-2.0" ]
permissive
import tkinter as tk import tkinter.ttk as ttk from tkinter import font as tkfont from frontend.HomePage import HomePage from frontend.GraphicPage import GraphicPage from frontend.NeuralNetworkPage import NeuralNetworkPage from frontend.Settings import * from frontend.Tooltip import ToolTip class App(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) self.title('VUV SPEECH DETECTION') self.resizable(RESIZABLE, RESIZABLE) self.geometry(str(WIDTH_WINDOW) + 'x' + str(HEIGHT_WINDOW)) self.configure(bg=BACK_GROUND_COLOR) self.title_font = tkfont.Font(family='Helvetica', size=18, weight="bold", slant="italic") self.iconbitmap(default='frontend/icons/speech1.ico') # self.iconwindow(pathName=tk.PhotoImage('frontend/icons/speech1.ico')) # the container is where we'll stack a bunch of frames # on top of each other, then the one we want visible # will be raised above the others container = tk.Frame(self, bg=BACK_GROUND_COLOR, borderwidth=0, highlightbackground="black", highlightcolor="black", highlightthickness=1) container.pack(side="top", fill="both", expand=True) container.grid_rowconfigure(0, weight=1) container.grid_columnconfigure(0, weight=1) # --------------MENU BAR--------------------------- self.menu_frame = tk.LabelFrame(master=self, height=HEIGHT_WINDOW, width=50, borderwidth=2, relief='flat', highlightbackground="black", highlightcolor="black", highlightthickness=1, bg=SIDE_BAR_COLOR).place(x=0, y=0) # Home Button self.home_img = tk.PhotoImage(file='frontend/icons/home.png') self.home_button = tk.Button(master=self.menu_frame, image=self.home_img, height=25, width=25, bg=SIDE_BAR_COLOR, command=self.go_home, activebackground=SIDE_BAR_COLOR, relief='flat') self.tooltip_home = ToolTip(self.home_button, 'Home Page') self.home_button.place(x=10, y=15) # Back Button self.back_img = tk.PhotoImage(file='frontend/icons/back.png') self.back_button = tk.Button(master=self.menu_frame, image=self.back_img, height=25, width=25, bg=SIDE_BAR_COLOR, relief='flat', command=lambda: self.show_frame("HomePage"), activebackground=SIDE_BAR_COLOR) self.tooltip_back = ToolTip(self.back_button, 'Back') self.back_button.place(x=10, y=56) s = ttk.Style() s.configure('TSeparator', foreground='black', background='black') self.separator = ttk.Separator(master=self.menu_frame, orient=tk.HORIZONTAL).place(x=0.3, y=100, relwidth=0.05) self.button_graphics_img = tk.PhotoImage(file='frontend/icons/graphic.png') self.button_graphic = tk.Button(master=self.menu_frame, relief='flat', activebackground=SIDE_BAR_COLOR, image=self.button_graphics_img, height=25, width=25, bg=MENU_COLOR, command=lambda: self.show_frame("GraphicPage")) self.tooltip_graphic = ToolTip(self.button_graphic, 'Plot Results and\nModel Evaluation') self.button_graphic.place(x=10, y=127) self.neural_img = tk.PhotoImage(file='frontend/icons/neural.png') self.button_neural = tk.Button(master=self.menu_frame, relief='flat', activebackground=SIDE_BAR_COLOR, image=self.neural_img, height=25, width=25, bg=MENU_COLOR, command=lambda: self.show_frame("NeuralNetworkPage")) self.tooltip_neural = ToolTip(self.button_neural, 'Neural Network Architecture') self.button_neural.place(x=10, y=180) self.frames = {} for F in (HomePage, GraphicPage, NeuralNetworkPage): page_name = F.__name__ frame = F(parent=container, controller=self) self.frames[page_name] = frame # put all of the pages in the same location; # the one on the top of the stacking order # will be the one that is visible. frame.grid(row=0, column=0, sticky="nsew") frame.configure(bg=BACK_GROUND_COLOR) self.show_frame("HomePage") def show_frame(self, page_name): """Show a frame for the given page name""" frame = self.frames[page_name] frame.tkraise() def go_home(self): self.show_frame('HomePage')
true
cc6e6d007b5795082fb99b378b4cb3e60380cb68
Python
Xg2Acte1Train/01.dl_nithya
/14_softmax_classifier.py
UTF-8
1,848
2.6875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from random import randint mnist = input_data.read_data_sets("MNIST_data/data", one_hot=True) print (mnist.train.images.shape) print (mnist.train.labels.shape) print (mnist.test.images.shape) print (mnist.test.labels.shape) X = tf.placeholder(dtype = tf.float32, shape = (None,784), name='input') Y = tf.placeholder(dtype = tf.float32, shape = ([None,10])) W = tf.Variable(initial_value=tf.zeros([784, 10]), dtype = tf.float32) b = tf.Variable(initial_value=tf.zeros([10], dtype=tf.float32)) XX = tf.reshape(X, [-1, 784]) Z = tf.nn.softmax(tf.matmul(XX, W) + b, name="output") cost = -tf.reduce_mean(Y * tf.log(Z)) * 1000.0 GD = tf.train.GradientDescentOptimizer(0.005).minimize(cost) correct_prediction = tf.equal(tf.argmax(Z, 1),tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter('log_mnist_softmax',graph=tf.get_default_graph()) for epoch in range(10): batch_count = int(mnist.train.num_examples/100) for i in range(batch_count): batch_x, batch_y = mnist.train.next_batch(100) c = sess.run([GD, cost], feed_dict={X: batch_x, Y: batch_y})[1] print ("Epoch: ", epoch) print ("Accuracy: ", accuracy.eval(feed_dict={X: mnist.test.images,Y: mnist.test.labels})) print ("done") num = randint(1, mnist.test.images.shape[1]) img = mnist.test.images[num] classification = sess.run(tf.argmax(Z, 1), feed_dict={X: [img]}) print('Neural Network predicted', classification[0]) print('Real label is:', np.argmax(mnist.test.labels[num]))
true
25c569ad8eefe42a118ce61812f1a34f40af6ca0
Python
sowrd299/AccountantsFriend
/taped_adding_machine.py
UTF-8
1,547
3.234375
3
[]
no_license
from adding_machine import AddingMachine, CharOp ''' A class to represent an entry on the tape ''' class TapeEntry(): fstr = "{0} {1}\n" def __init__(self, number, op): self.number = number self.op = op def __str__(self): return self.fstr.format(self.number, self.op) class TextTapeEntry(TapeEntry): def __init__(self, text): self.fstr = "{0}\n".format(text) super().__init__(0, CharOp("+")) BLANK_TAPE_ENTRY = TextTapeEntry("") ''' A class to represent the tape output of an adding machine ''' class AddingMachineTape(): def __init__(self): self.entries = [] def append(self, *args, **kwargs): self.entries.append(TapeEntry(*args, **kwargs)) def new_line(self): self.entries.append(BLANK_TAPE_ENTRY) def __str__(self): r = "".join(map(str, self.entries)) if len(r) > 0 and r[-1] == "\n": r = r[:-1] return r ''' An adding machine that records all its operations to a tape ''' class TapedAddingMachine(AddingMachine): def __init__(self): super().__init__() self.tape = AddingMachineTape() def get_tape(self): return self.tape def do_op(self, op): self.tape.append(self.get_number(), op) return super().do_op(op) def cache_op(self, op): self.tape.new_line() self.tape.append(op.a, op) return super().cache_op(op) def do_cached_op(self): self.tape.new_line() return super().do_cached_op()
true
5f53b8b4507a3c51d2e608ed7098ad749428b27e
Python
Danbrose/CV_in_Squash
/code/centroid_tracker_video.py
UTF-8
2,671
2.765625
3
[]
no_license
#!/usr/bin/env python3 from centroidtracker import CentroidTracker import json import itertools import numpy as np import cv2 import time import glob import os import sys from frame_draw import frame_draw ct = CentroidTracker() # collects key point files files and puts them in to an ordered list files = [] for filepath in glob.glob('results/mamatch_1_rally_2_1080_60fps_BODY_25_MaxPeople.json/*.json'): files.append(filepath) files = sorted(files) # enumerates throught the key points calculating metrics related to bounding # boxes and keypoint centroids returns a list of dicts in the form # [{0:[box_origin, width, height, centroid, box_colour]}, {1: [...]}] where dict # entries '0' and '1' are players 1 and 2 repectively clip_data = [] for i, key_points in enumerate(files): with open(key_points) as json_file: data = json.load(json_file) frame_data = frame_draw(data) clip_data.append(frame_data) start = time.time() pathOut = "center-point_tracking_2.avi" # Read video video = cv2.VideoCapture("match_1_rally_2_1080_60fps.mp4") # Exit if video not opened. if not video.isOpened(): print( "Could not open video" ) sys.exit() frame_array = [] n = 0 while True: # Read a new frame ok, frame = video.read() if not ok: break rects = [] centroids = [] # loop over both players for x in clip_data[n][0].values(): # Ploting bounding box from XY start and ends # p1 = (x[0][0], x[0][1]) # p2 = (x[0][0]+x[1] , x[0][1]+x[2]) # cv2.rectangle(frame, p1, p2, (0, 255, 0), 2, 1) # box = (x[0][0], x[0][1], x[0][0]+x[1] , x[0][1]+x[2]) # rects.append(box) # returning centroid coordinates centroid = x[3] centroids.append(centroid) objects = ct.update(centroids) # loop over the tracked objects for (objectID, centroid) in objects.items(): # draw both the ID of the object and the centroid of the # object on the output frame text = "ID {}".format(objectID) cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.circle(frame, (centroid[0], centroid[1]), 8, (0, 255, 0), -1) #inserting the frames into an image array frame_array.append(frame) n += 1 height, width, layers = frame.shape size = (width,height) out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), 60, size) for i in range(len(frame_array)): # writing to a image array out.write(frame_array[i]) # Release everything if job is finished out.release() end = time.time() duration = end - start
true
f5d1ea38dd1cdd4402fde9a4a1406f11f063f600
Python
PyLamGR/PyLam-Edu
/Workshops/11.03.2018 - Python. The Basics - Volume 2 -/Python Codes/8. Αντικειμενοστρεφής Προγραμματισμός/3_another_hierarchy_example.py
UTF-8
250
3.515625
4
[ "MIT" ]
permissive
class Wolf: def __init__(self, name, color): self.name = name self.color = color def bark(self): print("Grr...") class Dog(Wolf): def bark(self): print("Woof!") husky = Dog("Max", "grey") husky.bark()
true
2f5c47cfb175172e04550310d99cbeea8e18c483
Python
montoyamoraga/ai-rapper
/script.py
UTF-8
2,183
2.609375
3
[ "MIT" ]
permissive
# import libraries # time for delays import time # os for sending commands to bash terminal import os # midi library # pip3 install mido import mido # midi library # pip3 install python-rtmidi import rtmidi # read .txt files and strip new line characters textLil = [line.rstrip("\n") for line in open('lil-wayne.txt')] textKendrick = [line.rstrip("\n") for line in open('kendrick-lamar.txt')] # pick voices and rate for terminal voiceLil = " -v Alex -r 200 " voiceKendrick = " -v Fred -r 200 " # calculate the length of shortest lengthShortest = min(len(textKendrick), len(textLil)) # init counter counter = 0 # create midi outputs midiProcessing = rtmidi.MidiOut() midiVocoder = rtmidi.MidiOut() # check available ports to pick vocoder available_ports = midiProcessing.get_ports() print(available_ports) vocoderIndex = 0 outProcessing = midiProcessing.open_virtual_port("python-midi") outVocoder = midiVocoder.open_port(vocoderIndex) # create messages for showing different # 0x90 means 144 in decimal # 144 is note on channel 1 midiLil = [0x90, 60, 112]; midiKendrick = [0x90, 61, 112]; # midi cc control of tune in roland vp-03 vocoder tuneCC = 79 tuneLil = 0 tuneKendrick = 127 ccLil = [0xb0, 79, 0] ccKendrick = [0xb0, 79, 127] os.system("clear") # infinite loop while True: # get next lyrics lineLil = textLil[counter] lineKendrick = textKendrick[counter] # change tune via midi cc midiVocoder.send_message(ccLil) time.sleep(0.1) # send lil wayne midi message midiProcessing.send_message(midiLil); # say lil wayne lyric os.system("clear") print("[Lil Wayne]: " + lineLil) os.system("say " + voiceLil + "\"" + str(lineLil) + "\"") # wait time.sleep(1.0) # change tune via midi cc midiVocoder.send_message(ccKendrick) time.sleep(0.1) # send kendrick lamar midi message midiProcessing.send_message(midiKendrick); # say kendrick lamar lyric os.system("clear") print("[Kendrick Lamar]: " + lineKendrick) os.system("say " + voiceKendrick + "\"" + str(lineKendrick) + "\"") # wait time.sleep(1.0) # update counter counter = counter + 1 counter = counter % lengthShortest
true
d390c40f7ba739fc393d514ba8b37961548f720a
Python
pktangyue/LeetCode
/python/1535_FindTheWinnerOfAnArrayGame_test.py
UTF-8
649
3.421875
3
[]
no_license
import unittest class TestSolution(unittest.TestCase): def test_getWinner(self): Solution = __import__('1535_FindTheWinnerOfAnArrayGame').Solution self.assertEqual( 5, Solution().getWinner(arr=[2, 1, 3, 5, 4, 6, 7], k=2) ) self.assertEqual( 3, Solution().getWinner(arr=[3, 2, 1], k=10) ) self.assertEqual( 9, Solution().getWinner(arr=[1, 9, 8, 2, 3, 7, 6, 4, 5], k=7) ) self.assertEqual( 99, Solution().getWinner(arr=[1, 11, 22, 33, 44, 55, 66, 77, 88, 99], k=1000000000) )
true
f26751d82b370db73e16e73402391096c3454446
Python
eclubiitk/Li-Fi-E-Club
/Old Codes/FTP v1.0/pyLi-Fi.py
UTF-8
5,297
2.703125
3
[]
no_license
import serial import time import os recport=input('{:<25}'.format("Input Receiver Port : ")) traport=input('{:<25}'.format("Input Transmitter Port : ")) ser = serial.Serial() ser.baudrate=230400 ser.port=recport #Receiver-(Slave/Master) ser.open() serftr = serial.Serial() serftr.baudrate=9600 serftr.port=traport #Transmitter-(Master-Slave) serftr.open() queue = [0,0,0,0,0,0,0,0,0,0] start_seq = [1,1,0,0,0,1,0,0,0,1] end_seq=[0,1,1,0,1,0,0,1,1,1] x2={'11110':0, '01001':1, '10100':2, '10101':3, '01010':4, '01011':5, '01110':6, '01111':7, '10010':8, '10011':9, '10110':10, '10111':11, '11010':12, '11011':13, '11100':14, '11101':15} def queuecomp(queue1, queue2) : if(queue1!=queue2): return False return True ch=input("(T)ransmitter or (R)eceiver : ") if(ch[0]=='T' or ch[0]=='t'): print("Initialising Transmitter. Please Wait ...") time.sleep(5) fl=input("Text File Path (Leave it empty for text transfer) : ") lines = [] if(fl!=''): if(os.path.exists(fl) and os.path.isfile(fl)): if(os.name=='nt'): fname=fl.split('\\') else: fname=fl.split('/') fname=fname[-1] lines.append('file') lines.append(fname) fl=open(fl, 'r') for x in fl: lines.append(x) fl.close() print("File Loaded Successfully.") else: print("File Specified doesn't exist.") else: lines.append('gentext') print("Start Entering Input") while True: line = input() if line: lines.append(line) else: break lines.append('endtrans') print("Sending ...") response="" flag=0 trans='' ind=0 t1=0 t2=0 while (ind<len(lines)): trans=lines[ind]+'\n' serftr.write(trans.encode()) t1=time.time() while True : t2=time.time() if(t2-t1>1): serftr.write(trans.encode()) t1=t2 while queuecomp(queue, start_seq) == False : val = int(ser.readline().decode('ascii')[0]) queue.pop(0) queue.append(val) t2=time.time() if(t2-t1>0.5): serftr.write(trans.encode()) t1=t2 while True: q=[] for i in range(10): queue.pop(0) val = (ser.readline().decode('ascii')[0]) queue.append(int(val)) q.append(val) if(queuecomp(queue, end_seq)==True): flag=1 break queuex=''.join(q) q1=x2[queuex[0:5]] q2=x2[queuex[5:]] num=q1*16+q2 response=response+chr(num) if(flag==1): if(response[0]=='N'): response='' break elif(response[0]=='Y'): response='' ind+=1 break else: flag=0 print("Sending Successful.") elif(ch[0]=='R' or ch[0]=='r'): print("Waiting to Receive ...") st1='' st2='' flag=0 typef=0 fname='' lnx=0 fobj=open('none','w') while True : while queuecomp(queue, start_seq) == False : val = int(ser.readline().decode('ascii')[0]) queue.pop(0) queue.append(val) while True: q=[] for i in range(10): queue.pop(0) val = (ser.readline().decode('ascii')[0]) queue.append(int(val)) q.append(val) if(queuecomp(queue, end_seq)==True): if(st1!=st2): flag=1 st1=st2 break else: flag=2 break queuex=''.join(q) q1=x2[queuex[0:5]] q2=x2[queuex[5:]] num=q1*16+q2 st2=st2+chr(num) if(flag==1): st1=st2 if(st2[:len(st2)-1]=='endtrans'): if(fname!=''): fobj.close() serftr.write('Y\n'.encode()) break if(typef==2): print(st2[:len(st2)-1]) if(typef==1): if(fname==''): fname=st2[:len(st2)-1] fobj=open(fname,'w') else: if(lnx==0): lnx+=1 fobj.write(st2[:len(st2)-1]) fobj.write('\r') else: fobj.write(st2[1:]) # print(st2[:len(st2)-1]) if(typef==0): if(st2=='file\n'): typef=1 else: typef=2 st2='' serftr.write('Y\n'.encode()) if(flag==2): st2='' serftr.write('Y\n'.encode()) print("Reception Complete!") else: print("Wrong Choice. Start pyLi-Fi again.")
true
a591f1679b7cf70f4b7b759cd7f7beec999bee3b
Python
garbhitjain/problem-statement
/date to day converter.py
UTF-8
1,712
3.3125
3
[]
no_license
import calendar import datetime as dt import pandas as pd start = dt.datetime(1970,1,1) End = dt.datetime(2100,1,1) dates = pd.date_range(start,End) def solution(D): out={'Mon':0,'Tue':0,'Wed':0,'Thu':0,'Fri':0,'Sat':0,'Sun':0} lis = [] for i,j in D.items(): a,b,c=i.split('-') y,m,d=int(a),int(b),int(c) dayNumber = calendar.weekday(y,m,d) days =["Mon", "Tue", "Wed", "Thu","Fri", "Sat", "Sun"] day = days[dayNumber] if day in lis: a = out[day] a+=j out[day] = a else: out[day] = j lis.append(day) days =["Mon", "Tue", "Wed", "Thu","Fri", "Sat", "Sun"] for i in range(len(days)): if days[i] in lis: pass else: out[days[i]]=int((out[days[i-1]]+out[days[(i+1)%7]])/2) if days[i <= 100000] in lis : return out else: return "Enter Integer value between given range (range = 1 to 100000)" inp={} print('How many keys you want to Enter : ') n = int(input()) for i in range(n): print('Enter the date: ') date=input() if date in inp: print('Do you want to overwrite previous value (y for yes) : ') answer=(input()) if(answer == 'y'): print('Enter the integer value of date : ') inp[date]=int(input()) else: i-=1 else: print('Enter the integer value of date : ') inp[date]=int(input()) for d in date==dates : if d: print(inp) out=solution(inp) print(out) break else : print("Enter the date between the given range(range = 1970-01-01 to 2100-01-01)")
true
e2e4b619de107749b5761b6a78a3473002de7169
Python
wjdrkfka3/Valorant_Team_Maker_Python
/main.py
UTF-8
11,092
3.015625
3
[]
no_license
# PyQT 5.0 버전과, 아나콘다 Python 3.6 버전을 사용했습니다. # PyCharm을 사용하는 경우 File->Settings->Project Interpreter 를 아나콘다 Python 3.6으로 설정해줘야 코드가 올바르게 동작합니다. import sys import random from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * class MyApp(QWidget): def __init__(self): super().__init__() # ----- 위젯 생성 시작 ----- self.player_list = [] global listWidget listWidget = QListWidget() # 리스트박스 listWidget.setFixedSize(150, 250) # 사이즈조절 global nickNameBox nickNameBox = QLineEdit() # 닉네임박스 nickNameBox.setFixedSize(130, 20) # 사이즈조절 nickNameBox.returnPressed.connect(self.moveToListWidget) # 엔터 칠때 함수 moveToListWidget에 연결 global btn_add btn_add = QPushButton('추 가') # 추가 버튼 btn_add.clicked.connect(self.moveToListWidget) # 버튼 누를 때 함수 btn_add_Function에 연결 global btn_delete btn_delete = QPushButton('삭 제') # 삭제 버튼 btn_delete.clicked.connect(self.btn_delete_Function) # 버튼 누를 때 함수 btn_delete_Function에 연결 global txt_setNum txt_setNum = QLabel('참여 인원 :') # 참여 인원 선택 텍스트 global txt_memberCount txt_memberCount = QLabel(str(listWidget.count())+' 명') # 참여 인원 텍스트 global btn_makeTeam btn_makeTeam = QPushButton('팀 생성하기') # 팀 생성하기 버튼 btn_makeTeam.clicked.connect(self.makeTeamOK) # 버튼 기능 함수로 연결 btn_makeTeam.setFixedSize(120, 50) # 사이즈 조절 btn_makeTeam.setCheckable(True) # 선택 가능하게 하기 btn_makeTeam.setChecked(True) # 선택 되어있게 하기 global btn_exit btn_exit = QPushButton('종료') # 종료 버튼 btn_exit.clicked.connect(QCoreApplication.instance().quit) # 종료 기능 동작 global items items = [] # 팀 리스트를 섞기 위한 임시 배열 global m_items m_items = [0, 1, 2, 3] # 맵 리스트륵 섞기 위한 임시 배열 global lbl_maps lbl_maps = [QLabel('1경기 : 스플릿'), QLabel('2경기 : 바인드'), QLabel('3경기 : 헤이븐'), QLabel('4경기 : 어센트')] global num num = [] for i in range(40): num.append(QLabel()) self.player_list = list(range(1, 41)) global lbl_imgmaps lbl_imgmaps = [QLabel(), QLabel(), QLabel(), QLabel()] global img_split img_split = QPixmap('split.jpg') # 스플릿 이미지 경로 설정 global img_haven img_haven = QPixmap('haven.jpg') # 헤이븐 이미지 경로 설정 global img_ascent img_ascent = QPixmap('ascent.jpg') # 어센트 이미지 경로 설정 global img_bind img_bind = QPixmap('bind.jpg') # 바인드 이미지 경로 설정 lbl_imgmaps[0].setPixmap(QPixmap(img_split.scaledToWidth(150))) lbl_imgmaps[1].setPixmap(QPixmap(img_haven.scaledToWidth(150))) lbl_imgmaps[2].setPixmap(QPixmap(img_bind.scaledToWidth(150))) lbl_imgmaps[3].setPixmap(QPixmap(img_ascent.scaledToWidth(150))) pixmap = QPixmap('logo_civil_war.png') # 상단 로고 설정 lbl_logo = QLabel() # 레이블 활용하여 로고 설정 lbl_logo.setPixmap(QPixmap(pixmap.scaledToWidth(600))) # 사이즈 조절 (비율에 맞춰서) # ----- 위젯 생성 끝 ----- # ----- 레이아웃 세부 설정 ----- layout_top_right_high = QHBoxLayout() layout_top_right_high.addWidget(self.mapBox1()) layout_top_right_high.addWidget(self.mapBox2()) layout_top_right_low = QHBoxLayout() layout_top_right_low.addWidget(self.mapBox3()) layout_top_right_low.addWidget(self.mapBox4()) layout_top_right = QVBoxLayout() layout_top_right.addLayout(layout_top_right_high) layout_top_right.addLayout(layout_top_right_low) layout_top_left = QVBoxLayout() layout_top_left.addWidget(self.executeBox()) layout_top_left.addWidget(self.modifyBox()) # layout_top layout_top = QHBoxLayout() layout_top.addWidget(listWidget) # 리스트박스 추가 layout_top.addLayout(layout_top_left) layout_top.addLayout(layout_top_right) # layout_mid layout_mid = QHBoxLayout() layout_mid.addStretch(1) for i in range(4): layout_mid.addWidget(self.team_groupbox(i+1)) if (i+1) % 2 == 0: layout_mid.addStretch(1) # layout_bottom layout_bottom = QHBoxLayout() layout_bottom.addStretch(1) for i in range(4): layout_bottom.addWidget(self.team_groupbox(i+5)) if (i+5) % 2 == 0: layout_bottom.addStretch(1) # layout_main layout_main = QVBoxLayout() layout_main.addWidget(lbl_logo) # 세로 첫줄 로고 추가 layout_main.addLayout(layout_top) layout_main.addStretch(1) layout_main.addLayout(layout_mid) layout_main.addLayout(layout_bottom) layout_main.addStretch(1) # ----- 레이아웃 세부 설정 끝 ----- # 기본 설정들 self.setLayout(layout_main) # 레이아웃 설정 self.setWindowTitle('sVeT clan 발로란트 내전 팀 생성기') # 프로그램 제목 설정 self.setWindowIcon(QIcon('icon_svet.ico')) # sVeT 클랜 아이콘 설정 self.setFixedSize(600, 900) # 창 사이즈 조절 self.center() # 창 가운데 함수 실행 self.show() def center(self): # 창 가운데 함수 qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def btn_delete_Function(self): # 삭제 버튼 함수 removeItemText = listWidget.currentRow() listWidget.takeItem(removeItemText) txt_memberCount.setText(str(listWidget.count()) + ' 명') def moveToListWidget(self): # 엔터 버튼 함수 if not nickNameBox.text(): reply = QMessageBox.warning(self, '경고', '닉네임을 네모칸에 입력 후<br>추가버튼을 눌러 추가해주세요.') elif (listWidget.count()>39): reply = QMessageBox.warning(self, '경고', '최대 인원인 40명을 초과할 수 없습니다.') else: addItemText = nickNameBox.text() listWidget.addItem(addItemText) nickNameBox.clear() txt_memberCount.setText(str(listWidget.count()) + ' 명') def makeTeamOK(self): if (listWidget.count()==0): reply = QMessageBox.warning(self, '경고', '추가된 인원이 없어 팀을 생성할 수 없습니다.') else: reply = QMessageBox.warning(self, '팀 생성 완료', '팀 생성이 완료되었습니다.') self.suffleTeam() self.insertTeam() self.suffleMap() def suffleTeam(self): items.clear() for index in range(listWidget.count()): items.append(listWidget.item(index).text()) random.shuffle(items) def suffleMap(self): random.shuffle(m_items) for i in range(0, 4): if (m_items[i] == 0): # 스플릿 lbl_maps[i].setText(str(i + 1) + '경기 : 스플릿') lbl_imgmaps[i].setPixmap(QPixmap(img_split.scaledToWidth(150))) elif (m_items[i] == 1): # 바인드 lbl_maps[i].setText(str(i + 1) + '경기 : 바인드') lbl_imgmaps[i].setPixmap(QPixmap(img_bind.scaledToWidth(150))) elif (m_items[i] == 2): # 헤이븐 lbl_maps[i].setText(str(i + 1) + '경기 : 헤이븐') lbl_imgmaps[i].setPixmap(QPixmap(img_haven.scaledToWidth(150))) elif (m_items[i] == 3): # 어센트 lbl_maps[i].setText(str(i + 1) + '경기 : 어센트') lbl_imgmaps[i].setPixmap(QPixmap(img_ascent.scaledToWidth(150))) def insertTeam(self): for i in range(len(items)): self.player_list[i] = items[i] num[i].setText(self.player_list[i]) for i in range(len(items), 40): num[i].clear() def team_groupbox(self, team_num): end_idx = team_num * 5 start_idx = end_idx - 5 groupbox = QGroupBox('Team #'+str(team_num)) vbox = QVBoxLayout() for i in range (start_idx, end_idx): vbox.addWidget(num[i]) groupbox.setLayout(vbox) groupbox.setFixedSize(130, 180) return groupbox def modifyBox(self): groupbox = QGroupBox() grid = QGridLayout() grid.addWidget(txt_setNum, 0, 0) # 현재 참여 인원 텍스트 추가 grid.addWidget(txt_memberCount, 0, 1) # 현재 참여 인원 카운트 추가 grid.addWidget(nickNameBox, 1, 0) # 닉네임박스 추가 grid.addWidget(btn_add, 2, 0) # 추가 버튼 추가 grid.addWidget(btn_delete, 2, 1) # 삭제 버튼 추가 groupbox.setLayout(grid) groupbox.setFixedSize(150, 120) # 사이즈 조절 return groupbox def executeBox(self): groupbox = QGroupBox() grid = QGridLayout() version = QLabel('Ver 2.0') grid.addWidget(btn_makeTeam, 0, 0) grid.addWidget(version, 1, 0) grid.addWidget(btn_exit, 1, 3) groupbox.setLayout(grid) groupbox.setFixedSize(150, 120) # 사이즈 조절 return groupbox def mapBox1(self): groupbox = QGroupBox() grid = QGridLayout() grid.addWidget(lbl_imgmaps[0], 0, 0) grid.addWidget(lbl_maps[0], 1, 0) groupbox.setLayout(grid) groupbox.setFixedSize(120, 120) return groupbox def mapBox2(self): groupbox = QGroupBox() grid = QGridLayout() grid.addWidget(lbl_imgmaps[1], 0, 0) grid.addWidget(lbl_maps[1], 1, 0) groupbox.setLayout(grid) groupbox.setFixedSize(120, 120) return groupbox def mapBox3(self): groupbox = QGroupBox() grid = QGridLayout() grid.addWidget(lbl_imgmaps[2], 0, 0) grid.addWidget(lbl_maps[2], 1, 0) groupbox.setLayout(grid) groupbox.setFixedSize(120, 120) return groupbox def mapBox4(self): groupbox = QGroupBox() grid = QGridLayout() grid.addWidget(lbl_imgmaps[3], 0, 0) grid.addWidget(lbl_maps[3], 1, 0) groupbox.setLayout(grid) groupbox.setFixedSize(120, 120) return groupbox if __name__ == '__main__': app = QApplication(sys.argv) ex = MyApp() sys.exit(app.exec_())
true
1d2ea1012518151e6549e8b681270fda57f14804
Python
1205-Sebas/TALLERCV-GOMEZ-DIAZ
/Ejercicio6.py
UTF-8
926
3.90625
4
[]
no_license
""" 6. Elaborar un algoritmo que permita realizar el inventario de una tienda, es decir cuántas unidades de cada tipo de producto existen actualmente en la tienda. Se debe imprimir una lista ordenada de productos de menor a mayor cantidad. """ import operator a=int(input("Cantidad Aceite:")) b=int(input("Cantidad Arroz:")) c=int(input("Cantidad Cerveza:")) d=int(input("Cantidad Gaseosa:")) e=int(input("Cantidad Panela:")) f=int(input("Cantidad Azucar:")) g=int(input("Cantidad Cafe:")) nombres={"Aceite:":a,"Arroz:":b,"Cerveza:":c,"Gaseosa:":d,"Panela:":e,"Azucar:":f,"Cafe:":g} clients_sort = sorted(nombres) clients_sort clients_sort = sorted(nombres.items()) clients_sort clients_sort = sorted(nombres.items(), key=operator.itemgetter(1), reverse=False) print("INVENTARIO") for name in enumerate(clients_sort): print(name[1][0],nombres[name[1][0]]) t=int(input("Ingrese el promedio: ",i))
true
65b6944385052d0871663a9f4e1a28e6b5331e10
Python
tmu-nlp/NLPtutorial2017
/bambi/tutorial13/beam.py
UTF-8
3,019
2.640625
3
[]
no_license
from collections import defaultdict import math file = "../../data/wiki-en-test.norm" emission = defaultdict(int) transition = defaultdict(lambda: 1) # 1 to prevent log(0) raise math domain error and the log(1) == 0 possible_tags = defaultdict(int) def key(*names): return " ".join(map(str,names)) def cal_score(best_score,transition,score_key,trans_key,emis_key): ''' PT(yi|yi-1) = PML(yi|yi-1) PE(xi|yi) = λ PML(xi|yi) + (1-λ) 1/N ''' lamb_ = 0.95 V = 1000000 P_emit = math.log(lamb_ * emission[emis_key] + ((1.0-lamb_)/V),2) return float(best_score[score_key]) - float(math.log(transition[trans_key],2)) - float(P_emit) for line in open("model_hmm.txt"): word_type, context, word, prob = line.strip("\n").split(" ") possible_tags[context] = 1 # enumerate all tags if word_type == "T": transition["{} {}".format(context,word)] = float(prob) else: emission["{} {}".format(context,word)] = float(prob) B = 10 def beam(line): words = line.strip("\n").split() l = len(words) best_score = {} best_edge = {} active_tags = [] active_tags.append(["<s>"]) best_score["0 <s>"] = 0 # Start with <s> best_edge["0 <s>"] = None for i in range(0, len(words)): my_best = {}#add from previous hmm for prev in active_tags[i]: #add from previous hmm for next_tag in possible_tags.keys(): if key(i,prev) in best_score and key(prev,next_tag) in transition: score = cal_score(best_score,transition,key(i,prev),key(prev,next_tag),key(next_tag, words[i])) if key(i+1,next_tag) not in best_score or best_score[key(i+1,next_tag)] > score: best_score[key(i+1,next_tag)] = score best_edge[key(i+1,next_tag)] = key(i,prev) my_best[next_tag] = score #add from previous hmm my_best_B_elements = [k for k, v in sorted(my_best.items(), key = lambda x:x[1])[:B]]# small v is better active_tags.append(my_best_B_elements) for prev in active_tags[i]:#add from previous hmm score_key = "{} {}".format(l, prev) trans_key = "{} </s>".format(prev) emis_key = trans_key last_score_key = "{} </s>".format(l+1) if score_key in best_score: score = cal_score(best_score,transition,score_key,trans_key,emis_key) if last_score_key not in best_score or best_score[last_score_key] > score: best_score[last_score_key] = score best_edge[last_score_key] = score_key tags = [] next_edge = best_edge["{} </s>".format(l+1)] while next_edge != "0 <s>": position, tag = next_edge.split() tags.append(tag) next_edge = best_edge[next_edge] tags.reverse() answer = " ".join(tags) print(answer) return answer with open("beam.pos","w") as output: for line in open(file): print(beam(line), file=output) print("finished")
true
9d260d8f40d3fc5766021687182d98bffa53be91
Python
alisonflint/urban-data-challenge-sf
/sf-urban-transit/extract_d3_graph.py
UTF-8
1,193
2.671875
3
[]
no_license
import csv import json import gzip import sys STOPID = 1 ON = 3 OFF = 4 LOAD = 5 MONTH = 6 DAY = 7 YEAR = 8 TIMESTOP = 15 TIMEDOORCLOSE = 16 TIMEPULLOUT = 17 TRIPID = 18 DATE_FMT = "%H:%M:%S" def getGraphJson(passenger_count_file): csv_file = csv.reader(gzip.open(passenger_count_file, 'rb')) csv_lines = list(csv_file) node_map = {} link_set = set() node_index = 0 for i in xrange(1, len(csv_lines)-1): if (csv_lines[i][TRIPID] != csv_lines[i+1][TRIPID]): continue; base_stopid = int(csv_lines[i][STOPID]) next_stopid = int(csv_lines[i+1][STOPID]) if base_stopid not in node_map: node_map[base_stopid] = node_index; node_index += 1; if next_stopid not in node_map: node_map[next_stopid] = node_index; node_index += 1; link_set.add((node_map[base_stopid], node_map[next_stopid])) links = [] for source, target in link_set: links.append({"source": source, "target": target, "value": 1.0}) nodes = [] for node in node_map: nodes.append({"name": node}) return {"nodes": list(nodes), "links": links} if __name__ == "__main__": graph = getGraphJson(sys.argv[1]) print json.dumps(graph, indent=2)
true
631121e112aa5e21fa8052c693dbe555c3632c53
Python
jonathan-carvalho/Modelagem-ARIMA
/code/main.py
UTF-8
2,231
2.5625
3
[]
no_license
from identificacao import * from estimacao import * from diagnostico import * from graficos_resultado import * import sys from pandas import Series from itertools import product class Modelo: p = 0 d = 0 q = 0 pesos_autoregressivos = [] pesos_medias_moveis = [] ruidos_estimados = [] autocorrelacoes_ruidos = [] Q_valor_portmanteau = 0 p_valor_portmanteau = 0 arquivo_serie = sys.argv[1] caminho = '..\Datasets\\' + arquivo_serie + '.csv' serie_temporal = Series.from_csv(caminho, index_col=None) serie_temporal.index = range(1, serie_temporal.size+1) d, serie_diferenciada = diffs_estacionariedade(serie_temporal.values) print('Estimação dos parâmetros:') modelos_ajustados = [] for quantidades_pesos in product(range(5), repeat=2): p = quantidades_pesos[0] q = quantidades_pesos[1] print('Modelo ARIMA(' + str(p) + ',' + str(d) + ',' + str(q) + ')') modelo = Modelo() modelo.p = p modelo.d = d modelo.q = q modelo = estimacao_parametros(modelo, serie_diferenciada, d) modelos_ajustados.append(modelo) print('\nDiagnosticando os modelos ...') maximo_p = 0 for modelo in modelos_ajustados: resultado_portmanteau = portmanteau_teste(modelo) modelo.Q_valor_portmanteau = round(resultado_portmanteau.estatistica_Q, 2) modelo.p_valor_portmanteau = round(resultado_portmanteau.valor_p, 2) modelo.autocorrelacoes_ruidos = resultado_portmanteau.autocorrelacoes if modelo.p_valor_portmanteau > maximo_p: maximo_p = modelo.p_valor_portmanteau modelo_selecionado = modelo print('\nModelo Selecionado: ARIMA(' + str(modelo_selecionado.p) + ',' + str(modelo_selecionado.d) + ',' + str(modelo_selecionado.q) + ')') print('Pesos AR:') print(modelo_selecionado.pesos_autoregressivos) print('Pesos MA:') print(modelo_selecionado.pesos_medias_moveis) print('Estatística Q: ' + str(modelo_selecionado.Q_valor_portmanteau)) print('Valor p: ' + str(modelo_selecionado.p_valor_portmanteau)) exibir_fac_ruido(modelo_selecionado.autocorrelacoes_ruidos, modelo_selecionado.ruidos_estimados.size) comparacao_esperado_obtido(serie_temporal, modelo_selecionado)
true
d9990cf65a3159d27605298d48406ec611699755
Python
anastasiia-l/rateskill-backend
/api/utils/twitter_manager.py
UTF-8
1,131
2.765625
3
[]
no_license
import os import re import tweepy class TwitterManager(object): def __init__(self): self.consumer_key = os.environ.get('CONSUMER_KEY', '') self.consumer_key_secret = os.environ.get('CONSUMER_KEY_SECRET', '') self.access_token = os.environ.get('ACCESS_TOKEN', '') self.access_token_secret = os.environ.get('ACCESS_TOKEN_SECRET', '') self.auth = tweepy.OAuthHandler(self.consumer_key, self.consumer_key_secret) self.auth.set_access_token(self.access_token, self.access_token_secret) self.api = tweepy.API(self.auth) def get_user_tweets(self, screen_name, count=20): return self.api.user_timeline(screen_name=screen_name, count=count, tweet_mode='extended') def get_tweet_content(self, tweet): return tweet.retweeted_status.full_text if 'retweeted_status' in tweet._json else tweet.full_text def clean_tweet(self, tweet): ''' Cleans tweet text by removing links, special characters - using regex statements. ''' return ' '.join(re.sub("([^0-9A-Za-z.,!:%’ \t])|(\w+:\/\/\S+)", " ", tweet).split())
true
f6f2f6fe96d8848c3d975c68dddca68d9698a9c1
Python
ArtemKurchakov/git_home_project
/artem_boxer.py
UTF-8
218
3.40625
3
[]
no_license
class Boxer(): def __init__(self, age, weight, height): self.age = age self.weight = weight self.height = height artem = Boxer(34, 100, 187) print(artem.age, artem.weight, artem.height)
true
c77e50903a278db96db61c4ebcea3c2e8ed7ca9e
Python
Aakash-kaushik/machine-learning
/multivariate_linear_regression_normal_equation/multivariate_linear_regression_normal_equation.py
UTF-8
855
3.015625
3
[ "Unlicense" ]
permissive
import pandas as pd import numpy as np from mpl_toolkits import mplot3d import matplotlib.pyplot as plt data=pd.read_csv("data2.txt") nor_data=data#(data-data.mean())/data.std() nor_data=np.array(nor_data) x=np.array(nor_data[:,0:2]) y=np.array(nor_data[:,2]) x_one=np.append(np.ones([np.size(x,0),1]),x,axis=1) #plotting the data fig=plt.figure() ax=plt.axes(projection='3d') ax.scatter3D(x[:,0],x[:,1],y) plt.show() #solving with normal equation y=y.reshape(-1,1) theta=np.zeros([np.size(x,1)+1,1]) theta=np.matmul(np.matmul(np.linalg.inv(np.matmul(x_one.transpose(),x_one)),x_one.transpose()),y) print("the values of theta are "+str(theta)) y_pred=np.inner(theta.transpose(),x_one).transpose() fig=plt.figure() ax=plt.axes(projection='3d') ax.scatter3D(x[:,0],x[:,1],y,color='green') ax.scatter3D(x[:,0],x[:,1],y_pred,color='red') plt.show()
true
d277d7e51cb7a846811b1a4d9b1a3516e206aa55
Python
jonathantsang/CompetitiveProgramming
/binarysearchio/contest10/2.py
UTF-8
930
3.15625
3
[]
no_license
from collections import defaultdict, deque # class Tree: # def __init__(self, val, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def solve(self, root): leaves = defaultdict(int) # node # -> depth for leaves q = deque([(root, 0, "")]) while q: node, d, part = q.popleft() if node.left: q.append((node.left, d+1, part + str(node.val))) if node.right: q.append((node.right, d+1, part + str(node.val))) if node.left == None and node.right == None: leaves[part] = d # get second highest value m1 = -1 m2 = -1 for l in leaves: if leaves[l] > m1: m2 = m1 m1 = leaves[l] elif leaves[l] > m2: m2 = leaves[l] return m2
true
0182597bbef24e7ae027802d3a768517b5c24cac
Python
AreebsUddinSiddiqui/OOADActivities
/Vehicle.py
UTF-8
360
2.53125
3
[]
no_license
#!/usr/bin/python #-*- coding: utf-8 -*- class Vehicle: def __init__(self): self.regNo = None self.Year = None self.LicenseNo = None def Forward(self, ): pass def Backward(self, ): pass def Stop(self, ): pass def TurnRight(self, ): pass def Turn Left(self, ): pass
true
cb460913396929324a2ced58b7a29bc4d9459da5
Python
sibowi/equivariant-spherical-deconvolution
/generate_data/5_nii_to_mif.py
UTF-8
2,436
2.6875
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This file convert a nii file into a mif file. If you find bugs and/or limitations, please email axel DOT elaldi AT nyu DOT edu. """ import argparse import os if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--path', default='data', help='The root path to the gradients directory (default: data)', type=str ) parser.add_argument( '--path_bvals_bvecs', help='The root path to the bvals and bvecs directory (default: None)', type=str ) parser.add_argument( '--mask', action='store_true', help='Transform the max (default: False)' ) # Parse the arguments args = parser.parse_args() path = args.path path_bvals_bvecs = args.path_bvals_bvecs mask = args.mask if not os.path.exists(path): print("Path doesn't exist: {0}".format(path)) raise NotADirectoryError # Check if directory exist if mask: gradient_nii_path = os.path.join(path, 'mask.nii') gradient_mif_path = os.path.join(path, 'mask.mif') cmd = "mrconvert {0} {1}".format(gradient_nii_path, gradient_mif_path) else: gradient_nii_path = os.path.join(path, 'features.nii') gradient_mif_path = os.path.join(path, 'features.mif') bvecs_path = os.path.join(path_bvals_bvecs, 'bvecs.bvecs') bvals_path = os.path.join(path_bvals_bvecs, 'bvals.bvals') cmd = "mrconvert {0} {1} -fslgrad {2} {3}".format(gradient_nii_path, gradient_mif_path, bvecs_path, bvals_path) if not os.path.exists(bvecs_path): print("Path doesn't exist: {0}".format(bvecs_path)) raise NotADirectoryError if not os.path.exists(bvals_path): print("Path doesn't exist: {0}".format(bvals_path)) raise NotADirectoryError print('Load bvals file from: {0}'.format(bvals_path)) print('Load bvecs file from: {0}'.format(bvecs_path)) if not os.path.exists(gradient_nii_path): print("Path doesn't exist: {0}".format(gradient_nii_path)) raise NotADirectoryError print('Load nii file from: {0}'.format(gradient_nii_path)) print('Write mif file to: {0}'.format(gradient_mif_path)) print('Run command: {0}'.format(cmd)) os.system(cmd)
true
23b07f6c6945667965fdcce7fbc129766448679a
Python
veronicarose27/plaaaa
/aaac.py
UTF-8
153
3.34375
3
[]
no_license
p=input() count=0 for i in p: if(i!='a' and i!='b'): count=count+1 if(count==1 or count==0): print('yes') else: print('no')
true
556c5e31acd4927d9f586c42907cb37a2c760474
Python
louay-075/CyberBlindTech-python-lessons
/lesson-2.py
UTF-8
107
3.203125
3
[]
no_license
name = "louay" last_name = "eloudi" age = "26" print "I am " + name + last_name + "and I am" + age
true
11765e8f0974e8976174b81f0638699d4912e5ed
Python
hegangmas/MySourceLib
/CppCallPy/mymod.py
UTF-8
217
2.875
3
[]
no_license
import random def a(): print "func a" def square(a): return a**2 def add(a,b): return a+b def addString(a,b): return a*b def normal(a,b): return random.normalvariate(a,b);
true
887f6cd9b5d3e9b78c77de00e6d2c5009a8d8d70
Python
juarezpaulino/coderemite
/problemsets/Codeforces/Python/B227.py
UTF-8
232
2.921875
3
[ "Apache-2.0" ]
permissive
""" * * Author: Juarez Paulino(coderemite) * Email: juarez.paulino@gmail.com * """ n=int(input()) a=[0]*(n+1) for i,x in enumerate(map(int,input().split())): a[x]=i x=y=0 input() for u in map(int,input().split()): x+=a[u]+1 y+=n-a[u] print(x,y)
true
3c46dc823b79445c287858cfc2f64f238e5b3e3e
Python
chenzw93/python
/python/python_demo/first/typeOfData.py
UTF-8
1,806
4.28125
4
[]
no_license
''' 数据类型 整数 浮点数 字符串 list tuple dict set 1. set、dict 只能是不可变类型数据,{} 2. tuple 即为数组,元素个数确定 () 3. list 可变集合 [] 条件判断: if 条件:执行语句 if 条件: 执行语句 elif 条件: 执行语句 else:执行语句 循环: while for xxx in xxx continue break ''' # name = 10 # print(name) # # name = 1.1 # print(name) # # name = 'dd' # print(name) # # print('''ffff # ...dddd # ...aaa''') # # print('fff\\') # print(r'fff\\') # # print('%2d-%02d' % (3, 1)) # print('%.2f' % 3.1415926) # # s1 = 72 # s2 = 85 # r = (s2 -s1) / s1 * 100 # print(r) # print('%.1f%%' % r) ''' list features: 1. 元素类型可以不一致,可以嵌套list 2. ''' # lists = [111, 222, 333] # len(lists) # print(lists[0]) # print(lists[-1]) # print(lists) # lists.pop(0); # print(lists) # # names = ['Bart', 'Lisa', 'Adam'] # for name in names: # print('hello, %s!' % name) ''' tuple 元素的指向永不变,同时元素类型可以多种,嵌套list等, ''' # tuples = () ''' dict(dictionary): 字典,即map,键值对 ''' # dicts = {'name':"xiaobei","age": 1,"address":"baoji",10:'age'} # print(dicts.get('names') is None) # print(dicts.get(10) is None) # print(dicts['name']) # # print(dicts['names']) # print(dicts[10]) ''' set ''' # sets = set((1, 2, 3)) # print(sets) # print(type(sets)) ''' if : xxx elif: xxx ''' # age = 10 # if age == 10 : # print("age > 10") # print("age <= 10") # # birth = int(input('birth: ')) # if birth > 2000 : # print("age <= 20") # else: # print("age > 20")
true
612a74f5a62ff67027bf82a27dc183a4163b886f
Python
tomboxfan/PythonExample
/exercise/001/P001V3.py
UTF-8
125
3.09375
3
[]
no_license
# 之前的输出结果不好看 for i in range(1, 5): for j in range(1, 5): num = i * 10 + j print(num)
true
0eb2cd02f917d217cbe173235b53491a3f7b8905
Python
fatihyasar/grower-firmware
/relay.py
UTF-8
712
3.078125
3
[]
no_license
import time import grovepi # Connect the Grove Relay to digital port D4 # SIG,NC,VCC,GND grovepi.pinMode(2,"OUTPUT") grovepi.pinMode(3,"OUTPUT") grovepi.pinMode(4,"OUTPUT") grovepi.pinMode(5,"OUTPUT") grovepi.pinMode(6,"OUTPUT") grovepi.pinMode(7,"OUTPUT") def open(relayNumber): grovepi.digitalWrite(relayNumber,1) time.sleep(2) print (relayNumber, ".relay turned on " ) def close(relayNumber): grovepi.digitalWrite(relayNumber,0) time.sleep(2) print (relayNumber, ".relay turned off " ) ######################## # Main ######################## if "__main__" == __name__: print "running console mode" for x in range(2, 8): open(x) close(x) quit()
true