|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
from typing import List |
|
import datasets |
|
import logging |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {TidyTuesday for Python}, |
|
author={Holly Cui |
|
}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset compiles TidyTuesday datasets from 2023-2024, aiming to make resources in the R community more accessible for Python users. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_train.json", |
|
"validation": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_val.json", |
|
} |
|
|
|
|
|
class TidyTuesdayPython(datasets.GeneratorBasedBuilder): |
|
|
|
_URLS = _URLS |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="train", version=VERSION, description="This part of my dataset covers the train set"), |
|
datasets.BuilderConfig(name="validation", version=VERSION, description="This part of my dataset covers the validation set"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "train" |
|
|
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"date_posted": datasets.Value("string"), |
|
"project_name": datasets.Value("string"), |
|
"project_source": datasets.features.Sequence(datasets.Value("string")), |
|
"description": datasets.Value("string"), |
|
"data_source_url": datasets.Value("string"), |
|
"data_dictionary": datasets.features.Sequence( |
|
{ |
|
"variable": datasets.Value("string"), |
|
"class": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
} |
|
), |
|
"data": datasets.features.Sequence( |
|
{ |
|
"file_name": datasets.Value("string"), |
|
"file_url": datasets.Value("string"), |
|
} |
|
), |
|
"data_load": datasets.features.Sequence( |
|
{ |
|
"file_name": datasets.Value("string"), |
|
"load_url": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_to_download = self._URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"] |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["validation"] |
|
} |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
logging.info("generating examples from = %s", filepath) |
|
with open(filepath, "r") as j: |
|
tidytuesday_json = json.load() |
|
for record in tidytuesday_json: |
|
yield record |
|
|