Datasets:

Languages:
English
ArXiv:
License:
ShutongFeng commited on
Commit
de988d8
1 Parent(s): 5638297

Update emowoz.py

Browse files

Cleaning up comments.

Files changed (1) hide show
  1. emowoz.py +22 -42
emowoz.py CHANGED
@@ -11,19 +11,13 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
 
17
 
18
- import csv
19
  import json
20
- import os
21
 
22
  import datasets
23
 
24
 
25
- # TODO: Add BibTeX citation
26
- # Find for instance the citation on arxiv or on the dataset repo/website
27
  _CITATION = """\
28
  @inproceedings{feng-etal-2022-emowoz,
29
  title = "{E}mo{WOZ}: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems",
@@ -41,12 +35,23 @@ _CITATION = """\
41
  publisher = "European Language Resources Association",
42
  url = "https://aclanthology.org/2022.lrec-1.436",
43
  pages = "4096--4113",
44
- abstract = "The ability to recognise emotions lends a conversational artificial intelligence a human touch. While emotions in chit-chat dialogues have received substantial attention, emotions in task-oriented dialogues remain largely unaddressed. This is despite emotions and dialogue success having equally important roles in a natural system. Existing emotion-annotated task-oriented corpora are limited in size, label richness, and public availability, creating a bottleneck for downstream tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K emotion annotations of user utterances. In addition to Wizard-of-Oz dialogues from MultiWOZ, we collect human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability of this corpus for emotion recognition and state tracking in task-oriented dialogues.",
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  }
46
  """
47
 
48
- # TODO: Add description of the dataset here
49
- # You can copy an official description
50
  _DESCRIPTION = """\
51
  EmoWOZ is a user emotion recognition in task-oriented dialogues dataset, \
52
  consisting all dialogues from MultiWOZ and 1000 additional human-machine \
@@ -57,15 +62,10 @@ following emotions: 0: neutral, 1: fearful, 2: dissatisfied, 3: apologetic, \
57
  dataset homepage.
58
  """
59
 
60
- # TODO: Add a link to an official homepage for the dataset here
61
  _HOMEPAGE = "https://zenodo.org/record/6506504"
62
 
63
- # TODO: Add the licence for the dataset here if you can find it
64
  _LICENSE = "https://creativecommons.org/licenses/by-nc/4.0/legalcode"
65
 
66
- # TODO: Add link to the official dataset URLs here
67
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
68
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
69
  _URLS = {
70
  "emowoz_multiwoz": "https://zenodo.org/record/6506504/files/emowoz-multiwoz.json",
71
  "emowoz_dialmage": "https://zenodo.org/record/6506504/files/emowoz-dialmage.json",
@@ -73,34 +73,22 @@ _URLS = {
73
  }
74
 
75
 
76
-
77
  class EmoWOZ(datasets.GeneratorBasedBuilder):
78
  """EmoWOZ: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems"""
79
 
80
  VERSION = datasets.Version("1.0.0")
81
 
82
- # This is an example of a dataset with multiple configurations.
83
- # If you don't want/need to define several sub-sets in your dataset,
84
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
85
-
86
- # If you need to make complex sub-parts in the datasets with configurable options
87
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
88
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
89
-
90
- # You will be able to load one or the other configurations in the following list with
91
- # data = datasets.load_dataset('my_dataset', 'first_domain')
92
- # data = datasets.load_dataset('my_dataset', 'second_domain')
93
  BUILDER_CONFIGS = [
94
  datasets.BuilderConfig(name="emowoz", version=VERSION, description="This part contains all user-emotion-annotated dialogues from EmoWOZ"),
95
  datasets.BuilderConfig(name="multiwoz", version=VERSION, description="This part contains all user-emotion-annotated dialogues from MultiWOZ"),
96
  datasets.BuilderConfig(name="dialmage", version=VERSION, description="This part contains all user-emotion-annotated dialogues from human-machine interactions (DialMAGE)"),
97
  ]
98
 
99
- # DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
100
 
101
- def _info(self):
102
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
103
-
104
  features = datasets.Features(
105
  {
106
  "dialogue_id": datasets.Value("string"),
@@ -121,19 +109,14 @@ class EmoWOZ(datasets.GeneratorBasedBuilder):
121
  citation=_CITATION,
122
  )
123
 
 
124
  def _split_generators(self, dl_manager):
125
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
126
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
127
-
128
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
129
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
130
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
131
  data_dir = dl_manager.download_and_extract(_URLS)
132
 
133
  return [
134
  datasets.SplitGenerator(
135
  name=datasets.Split.TRAIN,
136
- # These kwargs will be passed to _generate_examples
137
  gen_kwargs={
138
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
139
  "dialmage_filepath": data_dir['emowoz_dialmage'],
@@ -143,7 +126,6 @@ class EmoWOZ(datasets.GeneratorBasedBuilder):
143
  ),
144
  datasets.SplitGenerator(
145
  name=datasets.Split.VALIDATION,
146
- # These kwargs will be passed to _generate_examples
147
  gen_kwargs={
148
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
149
  "dialmage_filepath": data_dir['emowoz_dialmage'],
@@ -153,7 +135,6 @@ class EmoWOZ(datasets.GeneratorBasedBuilder):
153
  ),
154
  datasets.SplitGenerator(
155
  name=datasets.Split.TEST,
156
- # These kwargs will be passed to _generate_examples
157
  gen_kwargs={
158
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
159
  "dialmage_filepath": data_dir['emowoz_dialmage'],
@@ -163,10 +144,9 @@ class EmoWOZ(datasets.GeneratorBasedBuilder):
163
  )
164
  ]
165
 
166
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
167
  def _generate_examples(self, multiwoz_filepath, dialmage_filepath, split_filepath, split):
168
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
169
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
170
  with open(multiwoz_filepath, encoding="utf-8") as f:
171
  multiwoz_dialogues = json.load(f)
172
  with open(dialmage_filepath, encoding="utf-8") as f:
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
 
 
14
 
15
 
 
16
  import json
 
17
 
18
  import datasets
19
 
20
 
 
 
21
  _CITATION = """\
22
  @inproceedings{feng-etal-2022-emowoz,
23
  title = "{E}mo{WOZ}: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems",
 
35
  publisher = "European Language Resources Association",
36
  url = "https://aclanthology.org/2022.lrec-1.436",
37
  pages = "4096--4113",
38
+ abstract = "The ability to recognise emotions lends a conversational artificial intelligence a human \
39
+ touch. While emotions in chit-chat dialogues have received substantial attention, emotions in \
40
+ task-oriented dialogues remain largely unaddressed. This is despite emotions and dialogue success \
41
+ having equally important roles in a natural system. Existing emotion-annotated task-oriented corpora \
42
+ are limited in size, label richness, and public availability, creating a bottleneck for downstream \
43
+ tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a \
44
+ large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, \
45
+ a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K \
46
+ emotion annotations of user utterances. In addition to Wizard-of-Oz dialogues from MultiWOZ, we collect \
47
+ human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions \
48
+ that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this \
49
+ is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, \
50
+ which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability \
51
+ of this corpus for emotion recognition and state tracking in task-oriented dialogues.",
52
  }
53
  """
54
 
 
 
55
  _DESCRIPTION = """\
56
  EmoWOZ is a user emotion recognition in task-oriented dialogues dataset, \
57
  consisting all dialogues from MultiWOZ and 1000 additional human-machine \
 
62
  dataset homepage.
63
  """
64
 
 
65
  _HOMEPAGE = "https://zenodo.org/record/6506504"
66
 
 
67
  _LICENSE = "https://creativecommons.org/licenses/by-nc/4.0/legalcode"
68
 
 
 
 
69
  _URLS = {
70
  "emowoz_multiwoz": "https://zenodo.org/record/6506504/files/emowoz-multiwoz.json",
71
  "emowoz_dialmage": "https://zenodo.org/record/6506504/files/emowoz-dialmage.json",
 
73
  }
74
 
75
 
 
76
  class EmoWOZ(datasets.GeneratorBasedBuilder):
77
  """EmoWOZ: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems"""
78
 
79
  VERSION = datasets.Version("1.0.0")
80
 
 
 
 
 
 
 
 
 
 
 
 
81
  BUILDER_CONFIGS = [
82
  datasets.BuilderConfig(name="emowoz", version=VERSION, description="This part contains all user-emotion-annotated dialogues from EmoWOZ"),
83
  datasets.BuilderConfig(name="multiwoz", version=VERSION, description="This part contains all user-emotion-annotated dialogues from MultiWOZ"),
84
  datasets.BuilderConfig(name="dialmage", version=VERSION, description="This part contains all user-emotion-annotated dialogues from human-machine interactions (DialMAGE)"),
85
  ]
86
 
87
+ DEFAULT_CONFIG_NAME = "emowoz"
88
 
89
+
90
+ def _info(self):
91
+
92
  features = datasets.Features(
93
  {
94
  "dialogue_id": datasets.Value("string"),
 
109
  citation=_CITATION,
110
  )
111
 
112
+
113
  def _split_generators(self, dl_manager):
114
+
 
 
 
 
 
115
  data_dir = dl_manager.download_and_extract(_URLS)
116
 
117
  return [
118
  datasets.SplitGenerator(
119
  name=datasets.Split.TRAIN,
 
120
  gen_kwargs={
121
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
122
  "dialmage_filepath": data_dir['emowoz_dialmage'],
 
126
  ),
127
  datasets.SplitGenerator(
128
  name=datasets.Split.VALIDATION,
 
129
  gen_kwargs={
130
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
131
  "dialmage_filepath": data_dir['emowoz_dialmage'],
 
135
  ),
136
  datasets.SplitGenerator(
137
  name=datasets.Split.TEST,
 
138
  gen_kwargs={
139
  "multiwoz_filepath": data_dir['emowoz_multiwoz'],
140
  "dialmage_filepath": data_dir['emowoz_dialmage'],
 
144
  )
145
  ]
146
 
147
+
148
  def _generate_examples(self, multiwoz_filepath, dialmage_filepath, split_filepath, split):
149
+
 
150
  with open(multiwoz_filepath, encoding="utf-8") as f:
151
  multiwoz_dialogues = json.load(f)
152
  with open(dialmage_filepath, encoding="utf-8") as f: