Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Chinese
Size:
10K - 100K
License:
Commit
•
137f2c4
1
Parent(s):
b3b4199
Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (e786dbed53f517958523ffe25da2545eaa25f29a)
- Delete loading script (8a55af5cff4ea5980563e9637608ac23aa684074)
- README.md +14 -5
- cmrc2018.py +0 -123
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -35,16 +35,25 @@ dataset_info:
|
|
35 |
dtype: int32
|
36 |
splits:
|
37 |
- name: train
|
38 |
-
num_bytes:
|
39 |
num_examples: 10142
|
40 |
- name: validation
|
41 |
-
num_bytes:
|
42 |
num_examples: 3219
|
43 |
- name: test
|
44 |
-
num_bytes:
|
45 |
num_examples: 1002
|
46 |
-
download_size:
|
47 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
---
|
49 |
|
50 |
# Dataset Card for "cmrc2018"
|
|
|
35 |
dtype: int32
|
36 |
splits:
|
37 |
- name: train
|
38 |
+
num_bytes: 15508062
|
39 |
num_examples: 10142
|
40 |
- name: validation
|
41 |
+
num_bytes: 5183785
|
42 |
num_examples: 3219
|
43 |
- name: test
|
44 |
+
num_bytes: 1606907
|
45 |
num_examples: 1002
|
46 |
+
download_size: 4896696
|
47 |
+
dataset_size: 22298754
|
48 |
+
configs:
|
49 |
+
- config_name: default
|
50 |
+
data_files:
|
51 |
+
- split: train
|
52 |
+
path: data/train-*
|
53 |
+
- split: validation
|
54 |
+
path: data/validation-*
|
55 |
+
- split: test
|
56 |
+
path: data/test-*
|
57 |
---
|
58 |
|
59 |
# Dataset Card for "cmrc2018"
|
cmrc2018.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
"""TODO(cmrc2018): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
from datasets.tasks import QuestionAnsweringExtractive
|
8 |
-
|
9 |
-
|
10 |
-
# TODO(cmrc2018): BibTeX citation
|
11 |
-
_CITATION = """\
|
12 |
-
@inproceedings{cui-emnlp2019-cmrc2018,
|
13 |
-
title = {A Span-Extraction Dataset for {C}hinese Machine Reading Comprehension},
|
14 |
-
author = {Cui, Yiming and
|
15 |
-
Liu, Ting and
|
16 |
-
Che, Wanxiang and
|
17 |
-
Xiao, Li and
|
18 |
-
Chen, Zhipeng and
|
19 |
-
Ma, Wentao and
|
20 |
-
Wang, Shijin and
|
21 |
-
Hu, Guoping},
|
22 |
-
booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
|
23 |
-
month = {nov},
|
24 |
-
year = {2019},
|
25 |
-
address = {Hong Kong, China},
|
26 |
-
publisher = {Association for Computational Linguistics},
|
27 |
-
url = {https://www.aclweb.org/anthology/D19-1600},
|
28 |
-
doi = {10.18653/v1/D19-1600},
|
29 |
-
pages = {5886--5891}}
|
30 |
-
"""
|
31 |
-
|
32 |
-
# TODO(cmrc2018):
|
33 |
-
_DESCRIPTION = """\
|
34 |
-
A Span-Extraction dataset for Chinese machine reading comprehension to add language
|
35 |
-
diversities in this area. The dataset is composed by near 20,000 real questions annotated
|
36 |
-
on Wikipedia paragraphs by human experts. We also annotated a challenge set which
|
37 |
-
contains the questions that need comprehensive understanding and multi-sentence
|
38 |
-
inference throughout the context.
|
39 |
-
"""
|
40 |
-
_URL = "https://github.com/ymcui/cmrc2018"
|
41 |
-
_TRAIN_FILE = "https://worksheets.codalab.org/rest/bundles/0x15022f0c4d3944a599ab27256686b9ac/contents/blob/"
|
42 |
-
_DEV_FILE = "https://worksheets.codalab.org/rest/bundles/0x72252619f67b4346a85e122049c3eabd/contents/blob/"
|
43 |
-
_TEST_FILE = "https://worksheets.codalab.org/rest/bundles/0x182c2e71fac94fc2a45cc1a3376879f7/contents/blob/"
|
44 |
-
|
45 |
-
|
46 |
-
class Cmrc2018(datasets.GeneratorBasedBuilder):
|
47 |
-
"""TODO(cmrc2018): Short description of my dataset."""
|
48 |
-
|
49 |
-
# TODO(cmrc2018): Set up version.
|
50 |
-
VERSION = datasets.Version("0.1.0")
|
51 |
-
|
52 |
-
def _info(self):
|
53 |
-
# TODO(cmrc2018): Specifies the datasets.DatasetInfo object
|
54 |
-
return datasets.DatasetInfo(
|
55 |
-
# This is the description that will appear on the datasets page.
|
56 |
-
description=_DESCRIPTION,
|
57 |
-
# datasets.features.FeatureConnectors
|
58 |
-
features=datasets.Features(
|
59 |
-
{
|
60 |
-
"id": datasets.Value("string"),
|
61 |
-
"context": datasets.Value("string"),
|
62 |
-
"question": datasets.Value("string"),
|
63 |
-
"answers": datasets.features.Sequence(
|
64 |
-
{
|
65 |
-
"text": datasets.Value("string"),
|
66 |
-
"answer_start": datasets.Value("int32"),
|
67 |
-
}
|
68 |
-
),
|
69 |
-
# These are the features of your dataset like images, labels ...
|
70 |
-
}
|
71 |
-
),
|
72 |
-
# If there's a common (input, target) tuple from the features,
|
73 |
-
# specify them here. They'll be used if as_supervised=True in
|
74 |
-
# builder.as_dataset.
|
75 |
-
supervised_keys=None,
|
76 |
-
# Homepage of the dataset for documentation
|
77 |
-
homepage=_URL,
|
78 |
-
citation=_CITATION,
|
79 |
-
task_templates=[
|
80 |
-
QuestionAnsweringExtractive(
|
81 |
-
question_column="question", context_column="context", answers_column="answers"
|
82 |
-
)
|
83 |
-
],
|
84 |
-
)
|
85 |
-
|
86 |
-
def _split_generators(self, dl_manager):
|
87 |
-
"""Returns SplitGenerators."""
|
88 |
-
# TODO(cmrc2018): Downloads the data and defines the splits
|
89 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
90 |
-
# download and extract URLs
|
91 |
-
urls_to_download = {"train": _TRAIN_FILE, "dev": _DEV_FILE, "test": _TEST_FILE}
|
92 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
93 |
-
|
94 |
-
return [
|
95 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
96 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
97 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
98 |
-
]
|
99 |
-
|
100 |
-
def _generate_examples(self, filepath):
|
101 |
-
"""Yields examples."""
|
102 |
-
# TODO(cmrc2018): Yields (key, example) tuples from the dataset
|
103 |
-
with open(filepath, encoding="utf-8") as f:
|
104 |
-
data = json.load(f)
|
105 |
-
for example in data["data"]:
|
106 |
-
for paragraph in example["paragraphs"]:
|
107 |
-
context = paragraph["context"].strip()
|
108 |
-
for qa in paragraph["qas"]:
|
109 |
-
question = qa["question"].strip()
|
110 |
-
id_ = qa["id"]
|
111 |
-
|
112 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
113 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
114 |
-
|
115 |
-
yield id_, {
|
116 |
-
"context": context,
|
117 |
-
"question": question,
|
118 |
-
"id": id_,
|
119 |
-
"answers": {
|
120 |
-
"answer_start": answer_starts,
|
121 |
-
"text": answers,
|
122 |
-
},
|
123 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cb3f679e735abdeeb37bba176042f5f0b0a62e4c4cf69884cfacf78c855ae16
|
3 |
+
size 394683
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b5ee0ce1caf754c8d164eeba467039d17a8e8b41ad7a791262869d7470826fb
|
3 |
+
size 3365898
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3d3116e5845b8d3c44a863c1e2f973817c9f10a52e503b079ac49d4366f78b2
|
3 |
+
size 1136115
|