Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Chinese
Size:
10K - 100K
License:
"""TODO(cmrc2018): Add a description here.""" | |
import json | |
import datasets | |
from datasets.tasks import QuestionAnsweringExtractive | |
# TODO(cmrc2018): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{cui-emnlp2019-cmrc2018, | |
title = {A Span-Extraction Dataset for {C}hinese Machine Reading Comprehension}, | |
author = {Cui, Yiming and | |
Liu, Ting and | |
Che, Wanxiang and | |
Xiao, Li and | |
Chen, Zhipeng and | |
Ma, Wentao and | |
Wang, Shijin and | |
Hu, Guoping}, | |
booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, | |
month = {nov}, | |
year = {2019}, | |
address = {Hong Kong, China}, | |
publisher = {Association for Computational Linguistics}, | |
url = {https://www.aclweb.org/anthology/D19-1600}, | |
doi = {10.18653/v1/D19-1600}, | |
pages = {5886--5891}} | |
""" | |
# TODO(cmrc2018): | |
_DESCRIPTION = """\ | |
A Span-Extraction dataset for Chinese machine reading comprehension to add language | |
diversities in this area. The dataset is composed by near 20,000 real questions annotated | |
on Wikipedia paragraphs by human experts. We also annotated a challenge set which | |
contains the questions that need comprehensive understanding and multi-sentence | |
inference throughout the context. | |
""" | |
_URL = "https://github.com/ymcui/cmrc2018" | |
_TRAIN_FILE = "https://worksheets.codalab.org/rest/bundles/0x15022f0c4d3944a599ab27256686b9ac/contents/blob/" | |
_DEV_FILE = "https://worksheets.codalab.org/rest/bundles/0x72252619f67b4346a85e122049c3eabd/contents/blob/" | |
_TEST_FILE = "https://worksheets.codalab.org/rest/bundles/0x182c2e71fac94fc2a45cc1a3376879f7/contents/blob/" | |
class Cmrc2018(datasets.GeneratorBasedBuilder): | |
"""TODO(cmrc2018): Short description of my dataset.""" | |
# TODO(cmrc2018): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(cmrc2018): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_URL, | |
citation=_CITATION, | |
task_templates=[ | |
QuestionAnsweringExtractive( | |
question_column="question", context_column="context", answers_column="answers" | |
) | |
], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(cmrc2018): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
urls_to_download = {"train": _TRAIN_FILE, "dev": _DEV_FILE, "test": _TEST_FILE} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(cmrc2018): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for example in data["data"]: | |
for paragraph in example["paragraphs"]: | |
context = paragraph["context"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
id_ = qa["id"] | |
answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
answers = [answer["text"].strip() for answer in qa["answers"]] | |
yield id_, { | |
"context": context, | |
"question": question, | |
"id": id_, | |
"answers": { | |
"answer_start": answer_starts, | |
"text": answers, | |
}, | |
} | |