Upload CelebA_bbox_and_facepoints.py
Browse files- CelebA_bbox_and_facepoints.py +154 -0
CelebA_bbox_and_facepoints.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""CelebA FACE dataset."""
|
3 |
+
|
4 |
+
import os
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
_HOMEPAGE = "https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html"
|
8 |
+
|
9 |
+
_LICENSE = "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)"
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{liu2015faceattributes,
|
13 |
+
title = {Deep Learning Face Attributes in the Wild},
|
14 |
+
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
|
15 |
+
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
|
16 |
+
month = {December},
|
17 |
+
year = {2015}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images,
|
23 |
+
each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter.
|
24 |
+
CelebA has large diversities, large quantities, and rich annotations, including 10,177 number of identities, 202,599 number of face images,
|
25 |
+
and 5 landmark locations, 40 binary attributes annotations per image.
|
26 |
+
"""
|
27 |
+
|
28 |
+
_REPO = "https://huggingface.co/datasets/hfaus/CelebA_bbox_and_facepoints/resolve/main/data"
|
29 |
+
_URLS = {
|
30 |
+
"train": f"{_REPO}/celebA_train.zip",
|
31 |
+
"validation": f"{_REPO}/celebA_val.zip",
|
32 |
+
"test": f"{_REPO}/celebA_test.zip"
|
33 |
+
}
|
34 |
+
|
35 |
+
class CelebA(datasets.GeneratorBasedBuilder):
|
36 |
+
"""CelebA dataset."""
|
37 |
+
|
38 |
+
VERSION = datasets.Version("1.0.0")
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
description=_DESCRIPTION,
|
43 |
+
features=datasets.Features(
|
44 |
+
{
|
45 |
+
"image": datasets.Image(),
|
46 |
+
"faces": datasets.Sequence(
|
47 |
+
{
|
48 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
49 |
+
"points": datasets.Sequence(datasets.Value("int"), length=10)
|
50 |
+
}
|
51 |
+
),
|
52 |
+
}
|
53 |
+
),
|
54 |
+
supervised_keys=None,
|
55 |
+
homepage=_HOMEPAGE,
|
56 |
+
license=_LICENSE,
|
57 |
+
citation=_CITATION,
|
58 |
+
)
|
59 |
+
|
60 |
+
def _split_generators(self, dl_manager):
|
61 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
62 |
+
return [
|
63 |
+
datasets.SplitGenerator(
|
64 |
+
name=datasets.Split.TRAIN,
|
65 |
+
gen_kwargs={
|
66 |
+
"split": "train",
|
67 |
+
"data_dir": data_dir["train"]
|
68 |
+
},
|
69 |
+
),
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.TEST,
|
72 |
+
gen_kwargs={
|
73 |
+
"split": "test",
|
74 |
+
"data_dir": data_dir["test"]
|
75 |
+
},
|
76 |
+
),
|
77 |
+
datasets.SplitGenerator(
|
78 |
+
name=datasets.Split.VALIDATION,
|
79 |
+
gen_kwargs={
|
80 |
+
"split": "val",
|
81 |
+
"data_dir": data_dir["validation"]
|
82 |
+
},
|
83 |
+
),
|
84 |
+
]
|
85 |
+
|
86 |
+
def _generate_examples(self, split, data_dir):
|
87 |
+
image_dir = os.path.join(data_dir)
|
88 |
+
bbox_fname = "list_bbox_celeba.txt"
|
89 |
+
landmarks_fname = "list_landmarks_celeba.txt"
|
90 |
+
|
91 |
+
#Abrimos los dos ficheros
|
92 |
+
fichero1 = open(bbox_fname, "r", encoding="utf-8")
|
93 |
+
fichero2 = open(landmarks_fname, "r", encoding="utf-8")
|
94 |
+
|
95 |
+
#Creamos una lista a partir del contenido de Fichero2
|
96 |
+
lista = fichero1.readlines()
|
97 |
+
for i, bbox_line in enumerate(lista):
|
98 |
+
|
99 |
+
# Se leen las líneas de ambos ficheros
|
100 |
+
bbox_line = bbox_line.rstrip()
|
101 |
+
if not ".jpg" in bbox_line:
|
102 |
+
break
|
103 |
+
landmarks_line = fichero1.readline(i)
|
104 |
+
bbox = " ".join(bbox_line.split()).split(" ")
|
105 |
+
landmarks = " ".join(landmarks_line.split()).split(" ")
|
106 |
+
image_name = bbox[0];
|
107 |
+
image_file_path = os.path.join(image_dir, bbox[0])
|
108 |
+
|
109 |
+
# Read number of bounding boxes
|
110 |
+
bbox_total = [int(bbox[1]), int(bbox[2]), int(bbox[3]), int(bbox[4])]
|
111 |
+
facial_landmarks = {
|
112 |
+
'lefteye': (landmarks[1], landmarks[2]),
|
113 |
+
'righteye': (landmarks[3], landmarks[4]),
|
114 |
+
'nose': (landmarks[5], landmarks[6]),
|
115 |
+
'leftmouth': (landmarks[7], landmarks[8]),
|
116 |
+
'rightmouth': (landmarks[9], landmarks[10]),
|
117 |
+
}
|
118 |
+
|
119 |
+
# Cases with 0 bounding boxes, still have one line with all zeros.
|
120 |
+
# So we have to read it and discard it.
|
121 |
+
if nbboxes == 0:
|
122 |
+
f.readline()
|
123 |
+
else:
|
124 |
+
for _ in range(nbboxes):
|
125 |
+
line = f.readline()
|
126 |
+
line = line.rstrip()
|
127 |
+
line_split = line.split()
|
128 |
+
assert len(line_split) == 10, f"Cannot parse line: {line_split}"
|
129 |
+
line_parsed = [int(n) for n in line_split]
|
130 |
+
(
|
131 |
+
xmin,
|
132 |
+
ymin,
|
133 |
+
wbox,
|
134 |
+
hbox,
|
135 |
+
blur,
|
136 |
+
expression,
|
137 |
+
illumination,
|
138 |
+
invalid,
|
139 |
+
occlusion,
|
140 |
+
pose,
|
141 |
+
) = line_parsed
|
142 |
+
faces.append(
|
143 |
+
{
|
144 |
+
"bbox": [xmin, ymin, wbox, hbox],
|
145 |
+
"blur": blur,
|
146 |
+
"expression": expression,
|
147 |
+
"illumination": illumination,
|
148 |
+
"occlusion": occlusion,
|
149 |
+
"pose": pose,
|
150 |
+
"invalid": invalid,
|
151 |
+
}
|
152 |
+
)
|
153 |
+
yield idx, {"image": image_file_path, "facial_landmarks": facial_landmarks, "bbox": bbox_total}
|
154 |
+
idx += 1
|