|
import anndata as ad |
|
import pyarrow as pa |
|
import pandas as pd |
|
import datasets |
|
|
|
|
|
CITATION = """ |
|
Simone Webb, Muzlifah Haniffa & Emily Stephenson (2022). |
|
Human fetal yolk sac scRNA-seq data (sample ID: F158 for Haniffa Lab; 16099 for HDBR). |
|
BioStudies, E-MTAB-11673. Retrieved from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673 |
|
""" |
|
URL = "https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673" |
|
DESCRIPTION = """Investigating the blood, immune and stromal cells present in a human fetal embryo in a |
|
world first single cell transcriptomic atlas. The embryo was dissected into 12 coronal sections, yolk |
|
sac, and yolk sac stalk. Live single cells sorted, with cell suspension then undergoing 10x chromium |
|
5 prime scRNA-seq. This accession contains the yolk sac and yolk sac stalk data from this embryo. |
|
A matched accession contains the coronal section data. Lane "WS_wEMB12142156" (from yolk sac) was excluded |
|
from downstream analysis due to low fraction reads in cells post-CellRanger QC. Termination procedure for |
|
this embryo was medical. The F158_[features...barcodes...matrix].[tsv...mtx].gz files attached to this |
|
accession represent raw count data from all the 10x lanes in this accession combined, and as output from |
|
CellRanger filtered matrices (CellRanger version 6.0.1 using human reference genome GRCh38-2020-A). |
|
One set of count matrices relates to the yolk sac data, and one set of count matrices relates to the yolk sac stalk data.""" |
|
RAW_COUNTS = "X" |
|
DATA_URL = "./data/17_04_24_YolkSacRaw_F158_WE_annots.h5ad" |
|
FEATURES_TO_INCLUDE = ['LVL1', 'LVL2', 'LVL3'] |
|
|
|
class RNAExp(datasets.ArrowBasedBuilder): |
|
"""RNA Expression Baseclass.""" |
|
|
|
def _info(self): |
|
|
|
self.batch = 1000 |
|
|
|
|
|
features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("uint32")),"rows": datasets.features.Sequence(datasets.features.Value("uint32")),"size":datasets.Value("uint32")} |
|
for feature in FEATURES_TO_INCLUDE: |
|
if not features.get(feature): |
|
features[feature] = datasets.Value("string") |
|
|
|
return datasets.DatasetInfo( |
|
description = DESCRIPTION, |
|
features = datasets.Features(features), |
|
homepage = URL, |
|
citation = CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
self.anndata_file = dl_manager.download_and_extract(DATA_URL) |
|
adata = ad.read_h5ad(self.anndata_file, backed = "r") |
|
demarcation = int(len(adata)*80/100) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TRAIN, |
|
gen_kwargs = {"split": "train", "adata": adata[:demarcation], "batch_size":self.batch}, |
|
), |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TEST, |
|
gen_kwargs = {"split": "test", "adata": adata[demarcation:], "batch_size":self.batch}, |
|
) |
|
] |
|
|
|
def _generate_tables(self, adata, batch_size, split): |
|
idx = 0 |
|
|
|
|
|
self.info.features["raw_counts"].id = f"{','.join(adata.var.index.tolist())}" |
|
|
|
|
|
for batch in range(0, adata.shape[0], batch_size): |
|
|
|
|
|
if RAW_COUNTS == "X": |
|
chunk = adata.X[batch:batch+batch_size].tolil().astype('uint32') |
|
elif RAW_COUNTS == "raw.X": |
|
chunk = adata.raw.X[batch:batch+batch_size].tolil().astype('uint32') |
|
else: |
|
raise("Not valid raw_counts") |
|
df = pd.DataFrame([chunk.data,chunk.rows]).T |
|
df.columns = ['raw_counts','rows'] |
|
df['size'] = chunk.shape[1] |
|
|
|
|
|
for feature in FEATURES_TO_INCLUDE: |
|
df[feature] = list(map(str, adata.obs[feature][batch:batch+batch_size].tolist())) |
|
|
|
pa_table = pa.Table.from_pandas(df) |
|
yield idx, pa_table |
|
idx += 1 |
|
|