hcaoaf commited on
Commit
cd1bcb9
1 Parent(s): f432b89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -3
README.md CHANGED
@@ -1,3 +1,123 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - question-answering
5
+ language:
6
+ - en
7
+ tags:
8
+ - chemistry
9
+ - molecule
10
+ ---
11
+ # Dataset Card for MoleculeQA
12
+
13
+ <!-- Provide a quick summary of the dataset. -->
14
+
15
+ ## Dataset Details
16
+
17
+ ### Dataset Description
18
+
19
+ <!-- Provide a longer summary of what this dataset is. -->
20
+ [MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension (EMNLP 2024)](https://aclanthology.org/2024.findings-emnlp.216)
21
+
22
+
23
+ - **Curated by:** [IDEA-XL](https://github.com/IDEA-XL)
24
+ - **Language(s) (NLP):** en
25
+ - **License:** mit
26
+
27
+ ### Dataset Sources
28
+
29
+ <!-- Provide the basic links for the dataset. -->
30
+
31
+ - **Repository:** https://github.com/IDEA-XL/MoleculeQA
32
+ - **Paper [optional]:** https://arxiv.org/abs/2403.08192
33
+
34
+
35
+ ## Dataset Structure
36
+
37
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
38
+
39
+ ```
40
+ - JSON
41
+ - All
42
+ - train.json # 49,993
43
+ - valid.json # 5,795
44
+ - test.json # 5,786
45
+ - TXT
46
+ - All
47
+ - train.txt
48
+ - valid.txt
49
+ - test.txt
50
+ - Property
51
+ - Source
52
+ - Structure
53
+ - Usage
54
+ ```
55
+
56
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63458f173cc8a5caf9b84e48/gr1PDjhOXP-6c7Z8KaAMb.png)
57
+
58
+
59
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63458f173cc8a5caf9b84e48/QELSG-259d4o1ByD-hi4H.png)
60
+
61
+ ## Dataset Creation
62
+
63
+ ### Curation Rationale
64
+
65
+ <!-- Motivation for the creation of this dataset. -->
66
+ Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a
67
+ model’s factual correctness. To rectify this absence, we present MoleculeQA1, a novel question answering (QA) dataset which possesses
68
+ 62K QA pairs over 23K molecules. Each QA
69
+ pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description
70
+ from authoritative corpus. MoleculeQA is not
71
+ only the first benchmark to evaluate molecular
72
+ factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on
73
+ MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and
74
+ pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA
75
+ in reinforcement learning to mitigate model
76
+ hallucinations, thereby enhancing the factual
77
+ correctness of generated information.
78
+
79
+ ### Source Data
80
+
81
+ <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
82
+
83
+
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63458f173cc8a5caf9b84e48/qbOw0mIWTztzZhbkWn0Tk.png)
85
+
86
+ #### Data Collection and Processing
87
+
88
+ <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
89
+
90
+
91
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63458f173cc8a5caf9b84e48/FqkfVhXeMJ6vaoY6Utqdp.png)
92
+
93
+
94
+ ## Citation
95
+ **BibTeX:**
96
+ ```
97
+ @inproceedings{lu-etal-2024-moleculeqa,
98
+ title = "{M}olecule{QA}: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension",
99
+ author = "Lu, Xingyu and
100
+ Cao, He and
101
+ Liu, Zijing and
102
+ Bai, Shengyuan and
103
+ Chen, Leqing and
104
+ Yao, Yuan and
105
+ Zheng, Hai-Tao and
106
+ Li, Yu",
107
+ editor = "Al-Onaizan, Yaser and
108
+ Bansal, Mohit and
109
+ Chen, Yun-Nung",
110
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
111
+ month = nov,
112
+ year = "2024",
113
+ address = "Miami, Florida, USA",
114
+ publisher = "Association for Computational Linguistics",
115
+ url = "https://aclanthology.org/2024.findings-emnlp.216",
116
+ pages = "3769--3789",
117
+ abstract = "Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model{'}s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.",
118
+ }
119
+ ```
120
+
121
+ ## Dataset Card Authors
122
+
123
+ [He CAO (CiaoHe)](https://github.com/CiaoHe)