haydn-jones commited on
Commit
050702c
1 Parent(s): 964d89f

Delete utils/generate_ds.ipynb

Browse files
Files changed (1) hide show
  1. utils/generate_ds.ipynb +0 -327
utils/generate_ds.ipynb DELETED
@@ -1,327 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "from datasets import load_dataset"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": 2,
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "data_files = {\n",
19
- " \"train\": \"./train.txt\",\n",
20
- " \"val\": \"./val.txt\",\n",
21
- " \"test\": \"./test.txt\",\n",
22
- "}\n",
23
- "ds = load_dataset(\"text\", data_files=data_files)"
24
- ]
25
- },
26
- {
27
- "cell_type": "code",
28
- "execution_count": 3,
29
- "metadata": {},
30
- "outputs": [],
31
- "source": [
32
- "ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
33
- "ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
34
- "ds['test'] = ds['test'].rename_column('text', 'SMILE')"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": 4,
40
- "metadata": {},
41
- "outputs": [],
42
- "source": [
43
- "import selfies as sf\n",
44
- "\n",
45
- "def try_convert(row):\n",
46
- " selfie = None\n",
47
- " try:\n",
48
- " selfie = sf.encoder(row['SMILE'])\n",
49
- " except:\n",
50
- " pass\n",
51
- "\n",
52
- " return {'SELFIE': selfie}\n",
53
- "\n",
54
- "# Alongside the SMILES, we also need to convert them to SELFIES\n",
55
- "# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
56
- ]
57
- },
58
- {
59
- "cell_type": "code",
60
- "execution_count": 5,
61
- "metadata": {},
62
- "outputs": [],
63
- "source": [
64
- "ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
65
- "ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
66
- "ds['test'] = ds['test'].map(try_convert, num_proc=8)"
67
- ]
68
- },
69
- {
70
- "cell_type": "code",
71
- "execution_count": 6,
72
- "metadata": {},
73
- "outputs": [],
74
- "source": [
75
- "# Drop the rows where the conversion failed\n",
76
- "ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
77
- "ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
78
- "ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": 21,
84
- "metadata": {},
85
- "outputs": [],
86
- "source": [
87
- "from tokenizers import Tokenizer\n",
88
- "\n",
89
- "tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": 22,
95
- "metadata": {},
96
- "outputs": [
97
- {
98
- "data": {
99
- "application/vnd.jupyter.widget-view+json": {
100
- "model_id": "0ebfc58c2d8a46419df052346f288eff",
101
- "version_major": 2,
102
- "version_minor": 0
103
- },
104
- "text/plain": [
105
- "Filter (num_proc=8): 0%| | 0/1273077 [00:00<?, ? examples/s]"
106
- ]
107
- },
108
- "metadata": {},
109
- "output_type": "display_data"
110
- },
111
- {
112
- "data": {
113
- "application/vnd.jupyter.widget-view+json": {
114
- "model_id": "af4f73ef62ad40a7992a6f99887eaa1a",
115
- "version_major": 2,
116
- "version_minor": 0
117
- },
118
- "text/plain": [
119
- "Filter (num_proc=8): 0%| | 0/79567 [00:00<?, ? examples/s]"
120
- ]
121
- },
122
- "metadata": {},
123
- "output_type": "display_data"
124
- },
125
- {
126
- "data": {
127
- "application/vnd.jupyter.widget-view+json": {
128
- "model_id": "b49b45c72f3d445abf74c3694979a34b",
129
- "version_major": 2,
130
- "version_minor": 0
131
- },
132
- "text/plain": [
133
- "Filter (num_proc=8): 0%| | 0/238698 [00:00<?, ? examples/s]"
134
- ]
135
- },
136
- "metadata": {},
137
- "output_type": "display_data"
138
- }
139
- ],
140
- "source": [
141
- "unk_id = tokenizer.token_to_id('<UNK>')\n",
142
- "\n",
143
- "# Drop any rows where the tokenization has an <UNK> token\n",
144
- "ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
145
- "ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
146
- "ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
147
- ]
148
- },
149
- {
150
- "cell_type": "code",
151
- "execution_count": 24,
152
- "metadata": {},
153
- "outputs": [
154
- {
155
- "data": {
156
- "application/vnd.jupyter.widget-view+json": {
157
- "model_id": "168a1aa5665f47529aea44c5f2bbbf9f",
158
- "version_major": 2,
159
- "version_minor": 0
160
- },
161
- "text/plain": [
162
- "Saving the dataset (0/1 shards): 0%| | 0/1273077 [00:00<?, ? examples/s]"
163
- ]
164
- },
165
- "metadata": {},
166
- "output_type": "display_data"
167
- },
168
- {
169
- "data": {
170
- "application/vnd.jupyter.widget-view+json": {
171
- "model_id": "bb77c4370aee45ec9a3cb614d1b21b93",
172
- "version_major": 2,
173
- "version_minor": 0
174
- },
175
- "text/plain": [
176
- "Saving the dataset (0/1 shards): 0%| | 0/79564 [00:00<?, ? examples/s]"
177
- ]
178
- },
179
- "metadata": {},
180
- "output_type": "display_data"
181
- },
182
- {
183
- "data": {
184
- "application/vnd.jupyter.widget-view+json": {
185
- "model_id": "d966547c0f8847e5aff55fbb117a33d9",
186
- "version_major": 2,
187
- "version_minor": 0
188
- },
189
- "text/plain": [
190
- "Saving the dataset (0/1 shards): 0%| | 0/238694 [00:00<?, ? examples/s]"
191
- ]
192
- },
193
- "metadata": {},
194
- "output_type": "display_data"
195
- }
196
- ],
197
- "source": [
198
- "ds.save_to_disk('./guacamol')"
199
- ]
200
- },
201
- {
202
- "cell_type": "code",
203
- "execution_count": 26,
204
- "metadata": {},
205
- "outputs": [
206
- {
207
- "data": {
208
- "application/vnd.jupyter.widget-view+json": {
209
- "model_id": "e52e2a9926b94dec81514575a0600a39",
210
- "version_major": 2,
211
- "version_minor": 0
212
- },
213
- "text/plain": [
214
- "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
215
- ]
216
- },
217
- "metadata": {},
218
- "output_type": "display_data"
219
- },
220
- {
221
- "data": {
222
- "application/vnd.jupyter.widget-view+json": {
223
- "model_id": "c65e4593a4d4434eb5017997844ff50d",
224
- "version_major": 2,
225
- "version_minor": 0
226
- },
227
- "text/plain": [
228
- "Creating parquet from Arrow format: 0%| | 0/1274 [00:00<?, ?ba/s]"
229
- ]
230
- },
231
- "metadata": {},
232
- "output_type": "display_data"
233
- },
234
- {
235
- "data": {
236
- "application/vnd.jupyter.widget-view+json": {
237
- "model_id": "336e610ebd324b34a793c7f373f24769",
238
- "version_major": 2,
239
- "version_minor": 0
240
- },
241
- "text/plain": [
242
- "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
243
- ]
244
- },
245
- "metadata": {},
246
- "output_type": "display_data"
247
- },
248
- {
249
- "data": {
250
- "application/vnd.jupyter.widget-view+json": {
251
- "model_id": "0b5bc569aa7c4a9c880899f6728a9d88",
252
- "version_major": 2,
253
- "version_minor": 0
254
- },
255
- "text/plain": [
256
- "Creating parquet from Arrow format: 0%| | 0/80 [00:00<?, ?ba/s]"
257
- ]
258
- },
259
- "metadata": {},
260
- "output_type": "display_data"
261
- },
262
- {
263
- "data": {
264
- "application/vnd.jupyter.widget-view+json": {
265
- "model_id": "2028affe9f43476caf7e785417329a65",
266
- "version_major": 2,
267
- "version_minor": 0
268
- },
269
- "text/plain": [
270
- "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
271
- ]
272
- },
273
- "metadata": {},
274
- "output_type": "display_data"
275
- },
276
- {
277
- "data": {
278
- "application/vnd.jupyter.widget-view+json": {
279
- "model_id": "f3eedbe390574443b69528830d8039af",
280
- "version_major": 2,
281
- "version_minor": 0
282
- },
283
- "text/plain": [
284
- "Creating parquet from Arrow format: 0%| | 0/239 [00:00<?, ?ba/s]"
285
- ]
286
- },
287
- "metadata": {},
288
- "output_type": "display_data"
289
- }
290
- ],
291
- "source": [
292
- "repo_id = \"haydn-jones/Guacamol\"\n",
293
- "\n",
294
- "# Push the dataset to the repo\n",
295
- "ds.push_to_hub(repo_id, token=\"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\")"
296
- ]
297
- },
298
- {
299
- "cell_type": "code",
300
- "execution_count": null,
301
- "metadata": {},
302
- "outputs": [],
303
- "source": []
304
- }
305
- ],
306
- "metadata": {
307
- "kernelspec": {
308
- "display_name": "ddpm",
309
- "language": "python",
310
- "name": "python3"
311
- },
312
- "language_info": {
313
- "codemirror_mode": {
314
- "name": "ipython",
315
- "version": 3
316
- },
317
- "file_extension": ".py",
318
- "mimetype": "text/x-python",
319
- "name": "python",
320
- "nbconvert_exporter": "python",
321
- "pygments_lexer": "ipython3",
322
- "version": "3.11.6"
323
- }
324
- },
325
- "nbformat": 4,
326
- "nbformat_minor": 2
327
- }