harpomaxx commited on
Commit
84d8cf7
1 Parent(s): a1d6299

Update dga-detection.py

Browse files
Files changed (1) hide show
  1. dga-detection.py +15 -24
dga-detection.py CHANGED
@@ -10,12 +10,11 @@ of DGA domains of Andrey Abakumov and John Bambenek. The total amount of DGA dom
10
  were generated by 51 different malware families. About the 55% of of the DGA portion of dataset is composed of samples from the Banjori, Post, Timba, Cryptolocker,
11
  Ramdo and Conficker malware.
12
  """
13
-
14
  _HOMEPAGE = "https://https://huggingface.co/datasets/harpomaxx/dga-detection"
15
 
16
  class MyDataset(datasets.GeneratorBasedBuilder):
17
  def _info(self):
18
-
19
  return datasets.DatasetInfo(
20
  description=_DESCRIPTION,
21
  features=datasets.Features(
@@ -24,15 +23,15 @@ class MyDataset(datasets.GeneratorBasedBuilder):
24
  "class": datasets.Value("int")
25
  }
26
  ),
27
- supervised_keys=("domain", "label"),
28
  homepage="_HOMEPAGE",
29
  )
30
 
31
-
32
  def _split_generators(self, dl_manager: datasets.DownloadConfig):
33
- # Load your local dataset file
34
  csv_path = "https://huggingface.co/datasets/harpomaxx/dga-detection/resolve/main/argencon.csv.gz"
35
 
 
36
  return [
37
  datasets.SplitGenerator(
38
  name=split,
@@ -44,24 +43,14 @@ class MyDataset(datasets.GeneratorBasedBuilder):
44
  for split in ["train", "test", "validation"]
45
  ]
46
 
47
- def _generate_examples_old(
48
- self,
49
- filepath: str,
50
- split: str,
51
- ):
52
- # Read your CSV dataset
53
- dataset = pd.read_csv(filepath,compression='gzip')
54
-
55
- # You can filter or split your dataset based on the 'split' argument if necessary
56
- dataset = dataset[dataset["split"] == split]
57
- # Generate examples
58
- for index, row in dataset.iterrows():
59
- yield index, {
60
- "domain": row["domain"],
61
- "label": row["label"],
62
- }
63
-
64
-
65
  def _generate_examples(
66
  self,
67
  filepath: str,
@@ -69,7 +58,10 @@ class MyDataset(datasets.GeneratorBasedBuilder):
69
  ):
70
  # Read your CSV dataset
71
  dataset = pd.read_csv(filepath,compression='gzip')
 
 
72
  dataset['class'] = dataset['label'].apply(lambda x: 0 if 'normal' in x else 1)
 
73
  # Get the total number of rows
74
  total_rows = len(dataset)
75
 
@@ -96,4 +88,3 @@ class MyDataset(datasets.GeneratorBasedBuilder):
96
  "label": row["label"],
97
  "class": row["class"],
98
  }
99
-
 
10
  were generated by 51 different malware families. About the 55% of of the DGA portion of dataset is composed of samples from the Banjori, Post, Timba, Cryptolocker,
11
  Ramdo and Conficker malware.
12
  """
 
13
  _HOMEPAGE = "https://https://huggingface.co/datasets/harpomaxx/dga-detection"
14
 
15
  class MyDataset(datasets.GeneratorBasedBuilder):
16
  def _info(self):
17
+ # Provide metadata for the dataset
18
  return datasets.DatasetInfo(
19
  description=_DESCRIPTION,
20
  features=datasets.Features(
 
23
  "class": datasets.Value("int")
24
  }
25
  ),
26
+ supervised_keys=("domain", "class"),
27
  homepage="_HOMEPAGE",
28
  )
29
 
 
30
  def _split_generators(self, dl_manager: datasets.DownloadConfig):
31
+ # Load your dataset file
32
  csv_path = "https://huggingface.co/datasets/harpomaxx/dga-detection/resolve/main/argencon.csv.gz"
33
 
34
+ # Create SplitGenerators for each dataset split (train, test, validation)
35
  return [
36
  datasets.SplitGenerator(
37
  name=split,
 
43
  for split in ["train", "test", "validation"]
44
  ]
45
 
46
+ """""
47
+ The data variable in the _generate_examples() method is a temporary variable that holds the portion of the dataset based on the current split.
48
+ The datasets.SplitGenerator in the _split_generators() method is responsible for creating the three different keys ('train', 'test', 'validation').When you load your
49
+ dataset using load_dataset(), the Hugging Face Datasets library will automatically call the _split_generators() method to create the three different dataset splits.
50
+ Then, it will call the _generate_examples() method for each split separately, passing the corresponding split name as the split argument.
51
+ This is how the different keys are created. To clarify, the _generate_examples() method processes one split at a time, and the Datasets library combines the results
52
+ to create a final dataset with keys for 'train', 'test', and 'validation'.
53
+ """
 
 
 
 
 
 
 
 
 
 
54
  def _generate_examples(
55
  self,
56
  filepath: str,
 
58
  ):
59
  # Read your CSV dataset
60
  dataset = pd.read_csv(filepath,compression='gzip')
61
+
62
+ # Create the 'class' column based on the 'label' column
63
  dataset['class'] = dataset['label'].apply(lambda x: 0 if 'normal' in x else 1)
64
+
65
  # Get the total number of rows
66
  total_rows = len(dataset)
67
 
 
88
  "label": row["label"],
89
  "class": row["class"],
90
  }