albertvillanova HF staff commited on
Commit
01983bc
1 Parent(s): 5dd2949

Convert dataset to Parquet (#4)

Browse files

- Convert dataset to Parquet (0e634bb8798c72ea05857d284af00384daed4e50)
- Delete loading script (7d33148e63a0671780534bc5472ed3660a61fb6f)

README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- pretty_name: Arabic Speech Corpus
3
  annotations_creators:
4
  - expert-generated
5
  language_creators:
@@ -10,7 +9,6 @@ license:
10
  - cc-by-4.0
11
  multilinguality:
12
  - monolingual
13
- paperswithcode_id: arabic-speech-corpus
14
  size_categories:
15
  - 1K<n<10K
16
  source_datasets:
@@ -18,22 +16,10 @@ source_datasets:
18
  task_categories:
19
  - automatic-speech-recognition
20
  task_ids: []
21
- train-eval-index:
22
- - config: clean
23
- task: automatic-speech-recognition
24
- task_id: speech_recognition
25
- splits:
26
- train_split: train
27
- eval_split: test
28
- col_mapping:
29
- file: path
30
- text: text
31
- metrics:
32
- - type: wer
33
- name: WER
34
- - type: cer
35
- name: CER
36
  dataset_info:
 
37
  features:
38
  - name: file
39
  dtype: string
@@ -47,16 +33,38 @@ dataset_info:
47
  dtype: string
48
  - name: orthographic
49
  dtype: string
50
- config_name: clean
51
  splits:
52
  - name: train
53
- num_bytes: 1002365
54
  num_examples: 1813
55
  - name: test
56
- num_bytes: 65784
57
  num_examples: 100
58
- download_size: 1192302846
59
- dataset_size: 1068149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ---
61
 
62
  # Dataset Card for Arabic Speech Corpus
 
1
  ---
 
2
  annotations_creators:
3
  - expert-generated
4
  language_creators:
 
9
  - cc-by-4.0
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 1K<n<10K
14
  source_datasets:
 
16
  task_categories:
17
  - automatic-speech-recognition
18
  task_ids: []
19
+ paperswithcode_id: arabic-speech-corpus
20
+ pretty_name: Arabic Speech Corpus
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  dataset_info:
22
+ config_name: clean
23
  features:
24
  - name: file
25
  dtype: string
 
33
  dtype: string
34
  - name: orthographic
35
  dtype: string
 
36
  splits:
37
  - name: train
38
+ num_bytes: 1527815416.966
39
  num_examples: 1813
40
  - name: test
41
+ num_bytes: 99851729.0
42
  num_examples: 100
43
+ download_size: 1347643373
44
+ dataset_size: 1627667145.966
45
+ configs:
46
+ - config_name: clean
47
+ data_files:
48
+ - split: train
49
+ path: clean/train-*
50
+ - split: test
51
+ path: clean/test-*
52
+ default: true
53
+ train-eval-index:
54
+ - config: clean
55
+ task: automatic-speech-recognition
56
+ task_id: speech_recognition
57
+ splits:
58
+ train_split: train
59
+ eval_split: test
60
+ col_mapping:
61
+ file: path
62
+ text: text
63
+ metrics:
64
+ - type: wer
65
+ name: WER
66
+ - type: cer
67
+ name: CER
68
  ---
69
 
70
  # Dataset Card for Arabic Speech Corpus
arabic_speech_corpus.py DELETED
@@ -1,145 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Arabic Speech Corpus"""
18
-
19
-
20
- import os
21
-
22
- import datasets
23
- from datasets.tasks import AutomaticSpeechRecognition
24
-
25
-
26
- _CITATION = """\
27
- @phdthesis{halabi2016modern,
28
- title={Modern standard Arabic phonetics for speech synthesis},
29
- author={Halabi, Nawar},
30
- year={2016},
31
- school={University of Southampton}
32
- }
33
- """
34
-
35
- _DESCRIPTION = """\
36
- This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton.
37
- The corpus was recorded in south Levantine Arabic
38
- (Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.
39
- Note that in order to limit the required storage for preparing this dataset, the audio
40
- is stored in the .flac format and is not converted to a float32 array. To convert, the audio
41
- file to a float32 array, please make use of the `.map()` function as follows:
42
-
43
-
44
- ```python
45
- import soundfile as sf
46
-
47
- def map_to_array(batch):
48
- speech_array, _ = sf.read(batch["file"])
49
- batch["speech"] = speech_array
50
- return batch
51
-
52
- dataset = dataset.map(map_to_array, remove_columns=["file"])
53
- ```
54
- """
55
-
56
- _URL = "http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip"
57
-
58
-
59
- class ArabicSpeechCorpusConfig(datasets.BuilderConfig):
60
- """BuilderConfig for ArabicSpeechCorpu."""
61
-
62
- def __init__(self, **kwargs):
63
- """
64
- Args:
65
- data_dir: `string`, the path to the folder containing the files in the
66
- downloaded .tar
67
- citation: `string`, citation for the data set
68
- url: `string`, url for information about the data set
69
- **kwargs: keyword arguments forwarded to super.
70
- """
71
- super(ArabicSpeechCorpusConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
72
-
73
-
74
- class ArabicSpeechCorpus(datasets.GeneratorBasedBuilder):
75
- """ArabicSpeechCorpus dataset."""
76
-
77
- BUILDER_CONFIGS = [
78
- ArabicSpeechCorpusConfig(name="clean", description="'Clean' speech."),
79
- ]
80
-
81
- def _info(self):
82
- return datasets.DatasetInfo(
83
- description=_DESCRIPTION,
84
- features=datasets.Features(
85
- {
86
- "file": datasets.Value("string"),
87
- "text": datasets.Value("string"),
88
- "audio": datasets.Audio(sampling_rate=48_000),
89
- "phonetic": datasets.Value("string"),
90
- "orthographic": datasets.Value("string"),
91
- }
92
- ),
93
- supervised_keys=("file", "text"),
94
- homepage=_URL,
95
- citation=_CITATION,
96
- task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
97
- )
98
-
99
- def _split_generators(self, dl_manager):
100
- archive_path = dl_manager.download_and_extract(_URL)
101
- archive_path = os.path.join(archive_path, "arabic-speech-corpus")
102
- return [
103
- datasets.SplitGenerator(name="train", gen_kwargs={"archive_path": archive_path}),
104
- datasets.SplitGenerator(name="test", gen_kwargs={"archive_path": os.path.join(archive_path, "test set")}),
105
- ]
106
-
107
- def _generate_examples(self, archive_path):
108
- """Generate examples from a Librispeech archive_path."""
109
- lab_dir = os.path.join(archive_path, "lab")
110
- wav_dir = os.path.join(archive_path, "wav")
111
- if "test set" in archive_path:
112
- phonetic_path = os.path.join(archive_path, "phonetic-transcript.txt")
113
- else:
114
- phonetic_path = os.path.join(archive_path, "phonetic-transcipt.txt")
115
-
116
- orthographic_path = os.path.join(archive_path, "orthographic-transcript.txt")
117
-
118
- phonetics = {}
119
- orthographics = {}
120
-
121
- with open(phonetic_path, "r", encoding="utf-8") as f:
122
- for line in f:
123
- wav_file, phonetic = line.split('"')[1::2]
124
- phonetics[wav_file] = phonetic
125
-
126
- with open(orthographic_path, "r", encoding="utf-8") as f:
127
- for line in f:
128
- wav_file, orthographic = line.split('"')[1::2]
129
- orthographics[wav_file] = orthographic
130
-
131
- for _id, lab_name in enumerate(sorted(os.listdir(lab_dir))):
132
- lab_path = os.path.join(lab_dir, lab_name)
133
- lab_text = open(lab_path, "r", encoding="utf-8").read()
134
-
135
- wav_name = lab_name[:-4] + ".wav"
136
- wav_path = os.path.join(wav_dir, wav_name)
137
-
138
- example = {
139
- "file": wav_path,
140
- "audio": wav_path,
141
- "text": lab_text,
142
- "phonetic": phonetics[wav_name],
143
- "orthographic": orthographics[wav_name],
144
- }
145
- yield str(_id), example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
clean/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5ea889532615c4ca9c63b5b83fc3bacb94e9fa156c26f5963b8da2c8e87768
3
+ size 90899095
clean/train-00000-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c3f2931ab19224daf55126c1cf96ff068f3ad442d760c1f5db99805d5a290be
3
+ size 398895011
clean/train-00001-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d02e7e7d080082d1d96929b83e19b924d7c10c8b59a39f190c373245559ea36d
3
+ size 322764456
clean/train-00002-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ea3385f7d8496bf1e77d9b1a2696fb2bb3769e1ffa060e43fa4fc6c5e25cf06
3
+ size 291793854
clean/train-00003-of-00004.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91bbec3487d3ba745113c5869be40a6008ef815b9681fe683cf7ab46dd06efcf
3
+ size 243290957