|
|
|
|
|
""" |
|
|
Ví dụ sử dụng dataset trong notebook training |
|
|
""" |
|
|
|
|
|
from datasets import Dataset |
|
|
import os |
|
|
import glob |
|
|
|
|
|
|
|
|
def load_from_directory(directory_path): |
|
|
"""Load tất cả file .txt từ thư mục""" |
|
|
texts = [] |
|
|
file_paths = glob.glob(os.path.join(directory_path, "*.txt")) |
|
|
|
|
|
for file_path in file_paths: |
|
|
try: |
|
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
|
content = f.read().strip() |
|
|
if content: |
|
|
texts.append({"text": content}) |
|
|
except Exception as e: |
|
|
print(f"Lỗi khi đọc file {file_path}: {e}") |
|
|
|
|
|
return Dataset.from_list(texts) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
train_dataset = load_from_directory("train") |
|
|
print(f"Train dataset: {len(train_dataset)} mẫu") |
|
|
|
|
|
|
|
|
val_dataset = load_from_directory("val") |
|
|
print(f"Val dataset: {len(val_dataset)} mẫu") |
|
|
|
|
|
|
|
|
test_dataset = load_from_directory("test") |
|
|
print(f"Test dataset: {len(test_dataset)} mẫu") |
|
|
|
|
|
|
|
|
if len(train_dataset) > 0: |
|
|
print("\nVí dụ dữ liệu training (200 ký tự đầu):") |
|
|
print(train_dataset[0]["text"][:200]) |
|
|
|
|
|
|