2019 Problems
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- 2019/finals/266243124686458.jpg +3 -0
- 2019/finals/268184757597716.jpg +3 -0
- 2019/finals/281442036550128.jpg +3 -0
- 2019/finals/291992558607686.jpg +3 -0
- 2019/finals/3188801037832284.jpg +3 -0
- 2019/finals/635336360404128.jpg +3 -0
- 2019/finals/637978470132709.jpg +3 -0
- 2019/finals/657561505101033.jpg +3 -0
- 2019/finals/668467847037494.jpg +3 -0
- 2019/finals/950762542025264.jpg +3 -0
- 2019/finals/cold_storage.html +111 -0
- 2019/finals/cold_storage.in +0 -0
- 2019/finals/cold_storage.md +97 -0
- 2019/finals/cold_storage.out +124 -0
- 2019/finals/khajiit.cpp +145 -0
- 2019/finals/khajiit.html +97 -0
- 2019/finals/khajiit.in +3 -0
- 2019/finals/khajiit.md +84 -0
- 2019/finals/khajiit.out +80 -0
- 2019/finals/little_boat_on_the_sea.html +77 -0
- 2019/finals/little_boat_on_the_sea.in +3 -0
- 2019/finals/little_boat_on_the_sea.md +67 -0
- 2019/finals/little_boat_on_the_sea.out +106 -0
- 2019/finals/scoreboard.html +73 -0
- 2019/finals/scoreboard.in +0 -0
- 2019/finals/scoreboard.md +61 -0
- 2019/finals/scoreboard.out +228 -0
- 2019/finals/strings_as_a_service.html +90 -0
- 2019/finals/strings_as_a_service.in +506 -0
- 2019/finals/strings_as_a_service.md +68 -0
- 2019/finals/strings_as_a_service.out +0 -0
- 2019/finals/temporal_revision.html +176 -0
- 2019/finals/temporal_revision.in +3 -0
- 2019/finals/temporal_revision.md +154 -0
- 2019/finals/temporal_revision.out +105 -0
- 2019/quals/leapfrog1.cpp +112 -0
- 2019/quals/leapfrog1.html +84 -0
- 2019/quals/leapfrog1.in +0 -0
- 2019/quals/leapfrog1.md +65 -0
- 2019/quals/leapfrog1.out +1050 -0
- 2019/quals/leapfrog2.cpp +112 -0
- 2019/quals/leapfrog2.html +85 -0
- 2019/quals/leapfrog2.in +0 -0
- 2019/quals/leapfrog2.md +66 -0
- 2019/quals/leapfrog2.out +1060 -0
- 2019/quals/mr_x.cpp +136 -0
- 2019/quals/mr_x.html +105 -0
- 2019/quals/mr_x.in +0 -0
- 2019/quals/mr_x.md +84 -0
.gitattributes
CHANGED
@@ -74,3 +74,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
74 |
2017/finals/tolls.in filter=lfs diff=lfs merge=lfs -text
|
75 |
2018/finals/claw.in filter=lfs diff=lfs merge=lfs -text
|
76 |
2018/finals/personal.in filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
74 |
2017/finals/tolls.in filter=lfs diff=lfs merge=lfs -text
|
75 |
2018/finals/claw.in filter=lfs diff=lfs merge=lfs -text
|
76 |
2018/finals/personal.in filter=lfs diff=lfs merge=lfs -text
|
77 |
+
2019/finals/khajiit.in filter=lfs diff=lfs merge=lfs -text
|
78 |
+
2019/finals/little_boat_on_the_sea.in filter=lfs diff=lfs merge=lfs -text
|
79 |
+
2019/finals/temporal_revision.in filter=lfs diff=lfs merge=lfs -text
|
80 |
+
2019/round3/chain_of_command.in filter=lfs diff=lfs merge=lfs -text
|
2019/finals/266243124686458.jpg
ADDED
Git LFS Details
|
2019/finals/268184757597716.jpg
ADDED
Git LFS Details
|
2019/finals/281442036550128.jpg
ADDED
Git LFS Details
|
2019/finals/291992558607686.jpg
ADDED
Git LFS Details
|
2019/finals/3188801037832284.jpg
ADDED
Git LFS Details
|
2019/finals/635336360404128.jpg
ADDED
Git LFS Details
|
2019/finals/637978470132709.jpg
ADDED
Git LFS Details
|
2019/finals/657561505101033.jpg
ADDED
Git LFS Details
|
2019/finals/668467847037494.jpg
ADDED
Git LFS Details
|
2019/finals/950762542025264.jpg
ADDED
Git LFS Details
|
2019/finals/cold_storage.html
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
Fred works the night shift in a refrigerator storage warehouse. It's not very exciting work, but Fred has ways to pass the time when nobody's around.
|
3 |
+
For example, lifting fridges turns out to be an amazing bodybuilding method!
|
4 |
+
</p>
|
5 |
+
|
6 |
+
<p>
|
7 |
+
The warehouse consists of <strong>N</strong> sections in a row, numbered from 1 to <strong>N</strong>.
|
8 |
+
In each section <em>i</em>, there are initially <strong>F<sub>i</sub></strong> fridges, all arranged in a single stack.
|
9 |
+
The sections are intended to be separate from one another, and only accessible from the outside.
|
10 |
+
To that end, each pair of adjacent sections are separated by a wall, for a total of <strong>N</strong>-1 walls.
|
11 |
+
However, these walls don't stretch all the way to the ceiling, and aren't necessarily all of the same height.
|
12 |
+
The wall between sections <em>i</em> and <em>i</em>+1 has a height of <strong>H<sub>i</sub></strong> fridge-heights (Fred has come to measure everything relative to fridge dimensions).
|
13 |
+
Fred's favourite pastime involves climbing over these walls to get between the warehouse's sections!
|
14 |
+
</p>
|
15 |
+
|
16 |
+
<p>
|
17 |
+
Fred will begin by entering the warehouse in some section, carrying in some number of new fridges from the outside (yes, he's become strong enough to carry multiple fridges in his arms at once). When he's currently in a certain section <em>s</em> and is carrying <em>f</em> fridges, he may perform any of the following actions:
|
18 |
+
<p>
|
19 |
+
|
20 |
+
<ul style="list-style-type:disc; padding-inline-start: 30px;">
|
21 |
+
<li>Pick up a fridge from section <em>s</em>'s stack of fridges, if it's non-empty. This decreases the number of fridges in that stack by 1, and increases <em>f</em> by 1.</li>
|
22 |
+
<li>Add a fridge that he's carrying onto section <em>s</em>'s stack of fridges, if he's carrying at least one fridge.
|
23 |
+
This decreases <em>f</em> by 1, and increases the number of fridges in that stack by 1. </li>
|
24 |
+
<li>Climb onto section <em>s</em>'s stack of fridges and jump over a wall into an adjacent section, if the number of fridges in that stack is at least as large as the height of that wall
|
25 |
+
(in fridge-heights). This decreases or increases <em>s</em> by 1. </li>
|
26 |
+
</ul>
|
27 |
+
|
28 |
+
<p>
|
29 |
+
Fred's goal is to visit all <strong>N</strong> sections at least once each.
|
30 |
+
He just needs to decide which section he should initially enter and how many additional fridges he should bring from the outside.
|
31 |
+
He has <strong>M</strong> such possible starting situations in mind, the <em>i</em>th of which involves him beginning in section
|
32 |
+
<strong>X<sub>i</sub></strong> while carrying <strong>Y<sub>i</sub></strong> fridges.
|
33 |
+
For each hypothetical starting situation, please help Fred determine whether or not he will be able to visit all <strong>N</strong> sections!
|
34 |
+
</p>
|
35 |
+
|
36 |
+
|
37 |
+
<h3>Input</h3>
|
38 |
+
|
39 |
+
<p>
|
40 |
+
Input begins with an integer <strong>T</strong>, the number of warehouses Fred works at.
|
41 |
+
<br />For each warehouse, there is first a line containing the space-separated integers <strong>N</strong> and <strong>M</strong>.
|
42 |
+
<br />Then follows a line with the <strong>N</strong> space-separated integers <strong>F<sub>1</sub></strong> through <strong>F<sub>N</sub></strong>.
|
43 |
+
<br />Then follows a line with the <strong>N</strong> - 1 space-separated integers <strong>H<sub>1</sub></strong> through <strong>H<sub>N-1</sub></strong>.
|
44 |
+
<br />Then, <strong>M</strong> lines follow, the <em>i</em>th of which contains the space-separated integers <strong>X<sub>i</sub></strong> and <strong>Y<sub>i</sub></strong>.
|
45 |
+
</p>
|
46 |
+
|
47 |
+
|
48 |
+
<h3>Output</h3>
|
49 |
+
|
50 |
+
<p>
|
51 |
+
For the <em>i</em>th warehouse, print a line containing "Case #<em>i</em>: " followed by
|
52 |
+
a string of <strong>M</strong> characters, the <em>i</em>th of which is "Y" if Fred can visit all <strong>N</strong> sections from the <em>i</em>th starting situation, or "N" otherwise.
|
53 |
+
</p>
|
54 |
+
|
55 |
+
|
56 |
+
<h3>Constraints</h3>
|
57 |
+
|
58 |
+
<p>
|
59 |
+
1 ≤ <strong>T</strong> ≤ 90 <br />
|
60 |
+
2 ≤ <strong>N</strong> ≤ 8,000 <br />
|
61 |
+
1 ≤ <strong>M</strong> ≤ 8,000 <br />
|
62 |
+
0 ≤ <strong>F<sub>i</sub></strong> ≤ 100,000 <br />
|
63 |
+
1 ≤ <strong>H<sub>i</sub></strong> ≤ 100,000 <br />
|
64 |
+
1 ≤ <strong>X<sub>i</sub></strong> ≤ <strong>N</strong> <br />
|
65 |
+
0 ≤ <strong>Y<sub>i</sub></strong> ≤ 1,000,000,000 <br />
|
66 |
+
</p>
|
67 |
+
|
68 |
+
<p>
|
69 |
+
The sum of <strong>N</strong> across all <strong>T</strong> test cases is no greater than 80,000. <br />
|
70 |
+
The sum of <strong>M</strong> across all <strong>T</strong> test cases is no greater than 80,000.
|
71 |
+
</p>
|
72 |
+
|
73 |
+
|
74 |
+
<h3>Explanation of Sample</h3>
|
75 |
+
|
76 |
+
<p>
|
77 |
+
In the first case, the warehouse is arranged as follows:
|
78 |
+
</p>
|
79 |
+
|
80 |
+
<img src={{PHOTO_ID:668467847037494}} width="100px" />
|
81 |
+
|
82 |
+
<p>
|
83 |
+
If Fred begins in section 1 holding 0 fridges, he can't climb over the wall to visit section 2, whereas if he's holding 1 fridge, he can place it in section 1 and then climb over.
|
84 |
+
On the other hand, if he begins in section 2, he can climb over the wall to visit section 1 using the existing fridge, regardless of whether he's holding any himself.
|
85 |
+
</p>
|
86 |
+
|
87 |
+
<p>
|
88 |
+
In the second case, consider the first starting situation, in which Fred begins in section 3 holding 4 fridges:
|
89 |
+
</p>
|
90 |
+
|
91 |
+
|
92 |
+
<img src={{PHOTO_ID:3188801037832284}} width="200px" />
|
93 |
+
|
94 |
+
<p>
|
95 |
+
He could begin by placing 3 of his fridges in section 3, and using them to climb over the wall into section 4 while still holding 1 fridge:
|
96 |
+
</p>
|
97 |
+
|
98 |
+
<img src={{PHOTO_ID:268184757597716}} width="200px" />
|
99 |
+
|
100 |
+
<p>
|
101 |
+
He could then place his remaining fridge in section 4, climb back to section 3, pick up a fridge there, and climb over to section 2 while holding that 1 fridge:
|
102 |
+
</p>
|
103 |
+
|
104 |
+
<img src={{PHOTO_ID:281442036550128}} width="200px" />
|
105 |
+
|
106 |
+
<p>
|
107 |
+
Finally, he could place his final fridge in section 2 and climb over to section 1:
|
108 |
+
</p>
|
109 |
+
|
110 |
+
<img src={{PHOTO_ID:657561505101033}} width="200px" />
|
111 |
+
|
2019/finals/cold_storage.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/finals/cold_storage.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Fred works the night shift in a refrigerator storage warehouse. It's not very
|
2 |
+
exciting work, but Fred has ways to pass the time when nobody's around. For
|
3 |
+
example, lifting fridges turns out to be an amazing bodybuilding method!
|
4 |
+
|
5 |
+
The warehouse consists of **N** sections in a row, numbered from 1 to **N**.
|
6 |
+
In each section _i_, there are initially **Fi** fridges, all arranged in a
|
7 |
+
single stack. The sections are intended to be separate from one another, and
|
8 |
+
only accessible from the outside. To that end, each pair of adjacent sections
|
9 |
+
are separated by a wall, for a total of **N**-1 walls. However, these walls
|
10 |
+
don't stretch all the way to the ceiling, and aren't necessarily all of the
|
11 |
+
same height. The wall between sections _i_ and _i_+1 has a height of **Hi**
|
12 |
+
fridge-heights (Fred has come to measure everything relative to fridge
|
13 |
+
dimensions). Fred's favourite pastime involves climbing over these walls to
|
14 |
+
get between the warehouse's sections!
|
15 |
+
|
16 |
+
Fred will begin by entering the warehouse in some section, carrying in some
|
17 |
+
number of new fridges from the outside (yes, he's become strong enough to
|
18 |
+
carry multiple fridges in his arms at once). When he's currently in a certain
|
19 |
+
section _s_ and is carrying _f_ fridges, he may perform any of the following
|
20 |
+
actions:
|
21 |
+
|
22 |
+
* Pick up a fridge from section _s_'s stack of fridges, if it's non-empty. This decreases the number of fridges in that stack by 1, and increases _f_ by 1.
|
23 |
+
* Add a fridge that he's carrying onto section _s_'s stack of fridges, if he's carrying at least one fridge. This decreases _f_ by 1, and increases the number of fridges in that stack by 1.
|
24 |
+
* Climb onto section _s_'s stack of fridges and jump over a wall into an adjacent section, if the number of fridges in that stack is at least as large as the height of that wall (in fridge-heights). This decreases or increases _s_ by 1.
|
25 |
+
|
26 |
+
Fred's goal is to visit all **N** sections at least once each. He just needs
|
27 |
+
to decide which section he should initially enter and how many additional
|
28 |
+
fridges he should bring from the outside. He has **M** such possible starting
|
29 |
+
situations in mind, the _i_th of which involves him beginning in section
|
30 |
+
**Xi** while carrying **Yi** fridges. For each hypothetical starting
|
31 |
+
situation, please help Fred determine whether or not he will be able to visit
|
32 |
+
all **N** sections!
|
33 |
+
|
34 |
+
### Input
|
35 |
+
|
36 |
+
Input begins with an integer **T**, the number of warehouses Fred works at.
|
37 |
+
For each warehouse, there is first a line containing the space-separated
|
38 |
+
integers **N** and **M**.
|
39 |
+
Then follows a line with the **N** space-separated integers **F1** through
|
40 |
+
**FN**.
|
41 |
+
Then follows a line with the **N** \- 1 space-separated integers **H1**
|
42 |
+
through **HN-1**.
|
43 |
+
Then, **M** lines follow, the _i_th of which contains the space-separated
|
44 |
+
integers **Xi** and **Yi**.
|
45 |
+
|
46 |
+
### Output
|
47 |
+
|
48 |
+
For the _i_th warehouse, print a line containing "Case #_i_: " followed by a
|
49 |
+
string of **M** characters, the _i_th of which is "Y" if Fred can visit all
|
50 |
+
**N** sections from the _i_th starting situation, or "N" otherwise.
|
51 |
+
|
52 |
+
### Constraints
|
53 |
+
|
54 |
+
1 ≤ **T** ≤ 90
|
55 |
+
2 ≤ **N** ≤ 8,000
|
56 |
+
1 ≤ **M** ≤ 8,000
|
57 |
+
0 ≤ **Fi** ≤ 100,000
|
58 |
+
1 ≤ **Hi** ≤ 100,000
|
59 |
+
1 ≤ **Xi** ≤ **N**
|
60 |
+
0 ≤ **Yi** ≤ 1,000,000,000
|
61 |
+
|
62 |
+
The sum of **N** across all **T** test cases is no greater than 80,000.
|
63 |
+
The sum of **M** across all **T** test cases is no greater than 80,000.
|
64 |
+
|
65 |
+
### Explanation of Sample
|
66 |
+
|
67 |
+
In the first case, the warehouse is arranged as follows:
|
68 |
+
|
69 |
+
![]({{PHOTO_ID:668467847037494}})
|
70 |
+
|
71 |
+
If Fred begins in section 1 holding 0 fridges, he can't climb over the wall to
|
72 |
+
visit section 2, whereas if he's holding 1 fridge, he can place it in section
|
73 |
+
1 and then climb over. On the other hand, if he begins in section 2, he can
|
74 |
+
climb over the wall to visit section 1 using the existing fridge, regardless
|
75 |
+
of whether he's holding any himself.
|
76 |
+
|
77 |
+
In the second case, consider the first starting situation, in which Fred
|
78 |
+
begins in section 3 holding 4 fridges:
|
79 |
+
|
80 |
+
![]({{PHOTO_ID:3188801037832284}})
|
81 |
+
|
82 |
+
He could begin by placing 3 of his fridges in section 3, and using them to
|
83 |
+
climb over the wall into section 4 while still holding 1 fridge:
|
84 |
+
|
85 |
+
![]({{PHOTO_ID:268184757597716}})
|
86 |
+
|
87 |
+
He could then place his remaining fridge in section 4, climb back to section
|
88 |
+
3, pick up a fridge there, and climb over to section 2 while holding that 1
|
89 |
+
fridge:
|
90 |
+
|
91 |
+
![]({{PHOTO_ID:281442036550128}})
|
92 |
+
|
93 |
+
Finally, he could place his final fridge in section 2 and climb over to
|
94 |
+
section 1:
|
95 |
+
|
96 |
+
![]({{PHOTO_ID:657561505101033}})
|
97 |
+
|
2019/finals/cold_storage.out
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: NYYY
|
2 |
+
Case #2: YNYNY
|
3 |
+
Case #3: NYYY
|
4 |
+
Case #4: NYNNYYNNY
|
5 |
+
Case #5: NYNNNYNYYN
|
6 |
+
Case #6: NYYNNNNNYYNYNNNYNYYYYYYYYNNYNN
|
7 |
+
Case #7: NNYYYYYNNYN
|
8 |
+
Case #8: YNNNNY
|
9 |
+
Case #9: YNNNNNYNY
|
10 |
+
Case #10: YNYNYYYYY
|
11 |
+
Case #11: YYYNNNNNYNNN
|
12 |
+
Case #12: YYNNNNNNNNYY
|
13 |
+
Case #13: NNYNNNY
|
14 |
+
Case #14: NNYYYYYNNYN
|
15 |
+
Case #15: NNNYYNNYYNYY
|
16 |
+
Case #16: YYNNNNY
|
17 |
+
Case #17: NYYNNNNYYNN
|
18 |
+
Case #18: NYYNYNYYY
|
19 |
+
Case #19: YNNNNNYN
|
20 |
+
Case #20: NNYN
|
21 |
+
Case #21: YYNNYNY
|
22 |
+
Case #22: NNYY
|
23 |
+
Case #23: YY
|
24 |
+
Case #24: NNNYNNYNYYNYYYYYYYNNNYYYNYYNNNNNNYYNYNYYNNNYYNNNNYYYYNNYYNYNNNYNYYYNYYNNNYYYNNYNNNNYYYNYYYYNNNNNYNYYNYYYNYNYNYYNNYNNYYNYNYNNYNNYYNYNNNNNYYNYYNYYNYNNYNYYYNYYNYNNYYNNYYYYYNYNYYYYNNYYYNYYYNYNYYYYYYYYYYNNYYNYNNNNNNYYYYYYNNYYNYNYYNYNNNNNYNNYNNNYNNYNYNYYYNNNNNNYYNYYNNYNYYNYNNNYNNYNNNYNNNNNYYNYNYNYYYYYYYYYNNNNNNYYNYNYYYNYNNYYNYNYNNYYYNNYYYYYYNNNYYYNNNYYYNNYNYNNYYYNYNNNNNNYYYYNNNNNYYNNYNYNYNNNNNNYYNYYYNNYNNNNYYNNNNNYNNYNYYYYYNYYYNNNNYNYNYYNNNYNNYNYNNYYNNYYNNNYYYYNYNNYYNYNYYYYYNYNYYNNNYYNYNYYNYNNNYYYYYNYYYYYNNNNNYYYYYNNNNYYNNNNNNNYNYYNNYNYNNNYYNYYNNNNNYNYYYNNYNNYYYNNNYYNYNYNYYYYNNNYYYYYYNYYNYNNYNYYNYYNYNNYYYYYYNNNYNYYNYNYYYYYNYNYNYNNYYNNYNNNNNYYNNYYNYYNYYNYYYYNNYNYNYNNYNYYYYYNNNNYYYNNNYNNNYYNNYNYNNYNYYYYNYYNYYYYNNYNNYNNYNYYNYNYNYNNYYYNYNNNYYYNYYYNNNNNNYNNYYYYNNNYNYNNNYYYNNYYNYNYNNYYNNNNNYNNNYYYYNYNYNYYNNYYYYNNYNNNYYNNYYNYNYNYNNNYYNNNNNNNNNYNNNNYNYYNYNNNNYNNNYNNNYYNNNNNYYNYYNNNNNNYNYNNNYNNYYYYNYNNNNYNNNYYYYYYYNNYNNYYNYYNYYNNYYYNNYYYYYYNYYNNNNYYYYYNNYNYNNYYNYYNNNNNYNNNNYNYNNNNYYYNYYNYNYYNNYYNNYYYNNYYYYYNNNYNNNYNYNNYYYYYNYYYNNYNYNYNNYNYYYYNYNNNNYYNNYYYYNYYYNYYYYYNNNYNYNNNNNYNNNYNYNNYYYNNYYYNNNNNYNNYYYYYNNNNYYYNYYNNYNYNNYNYNNYNYYNNYNYNNNNNYYNNYYNNYYNNNNYNNNYYNNNYYYNYNYYNNNYYYNNNYYNYYYYYYYNYNYNYYYYYNYNYYNYNYNYNYNNYYYYNYNYYYNYYYNNYNYYNNNYYNNNYYNYYNNYNYYYNYNYYYNNYNYYNNNNYYNNNYNNNNNNNYNYNNYYYYNYNYYYYYNNNNNNYYNYNYYNYYNNNNNYYYNNYYNNNNYNYNYNYNNNNNNNYYYYNNYNNNYNNNNYYYNYYYYYNNYNNYNNNYYYYNNYNNYNYNYNNYYNNYYYYNNYYNNYYYYNNNNNYNNYYYNNYNNNYNYYYYNNNYYNYYYYYNYNNYYNYYNYYYYNYNYYNYNNYNNNYNNNYNYYNYNNNNNNNNNYYYNNYNYNYYNNYNNNYYYNYNNYYNYYNNNNYYNYYYNYYNNNYNYYYNNYNYYNNYNYNYNNYYYNNYNNYNYYYYNYNYNYYYYNYNNYYYNYNYNNYNNNYYYYYYYNNYYYYNYNYYNNYNNNYNYYYYNYNYNNYNNYNNYNYYYYYYYYYNYNNYNNNNNNNNYYYYNNYNNYYNYNYYYNNNYNNNNYNYNNYNNYYYNYYYYYNYNNNYNNNYNYNYNYNNYNYYYYYNYNYYYYYNNYYYNNYYYNNNNYYYNYYYYNNYYNNNNYYYYNNNNYNYNNYYNNNNYNYNNNYNNYNNNNNNNNNYYNYYYYNYNYYYNNNNNYYYNYYNNYNNNNNNYNNYYNYNNNYYYNYNNYNNYNYNNYNYYNNNNNYYYNNNNNYNYYYNYYNYNYNNNYYNYNNYNYYYYNNYNYYYNYNNYYNNYNNNYNYNNNYYYNNYYYNYYYNYNYNNNYYNNNYNYYYYNNNNNYYNYNYNNYNNNNNNNYYYYYYNNNNYYYNNNYYNYNNNNNNNYYYYYNYNYNNNYNNNYYNYYYYNNNYYYYYNYYNNNNNNNNNYYYNNNYNNYNYYYYNYNYYYNYYYNNYYNNYNYYYNNNNYYYYYNYNYYNNYNNYYYNNYYYYYNYYNYYYYYYYNYYNYNNYYYNYNYYYNYNYYYNNNNYNYYYYYYNNYNNYYYNYNYNYNYNNNYNYNNYYYNYYYNYYYYNYYNYYYYNYNNYYNYYYNYNYYYNNNNYNYYYNYNNNYYNNYYNNYNNYNYNYNNYYYNYYYNNNYYNYNNYNYNNYYNYNNYNYYNYYNNNYYYNYYYNYNNNNYYNYYYYNNYNYNNYNYNNYNYNNYYYNNNYYYYYYYYNYNYYNNYNNNYNYNNNNNNYNNNYYYNNYNYNNNYYNYYYNYNNYNNYNNNYYYNYNYNNNYNNNYNNYYYYYNYNNNYYNNYYYNYNYYNYYNNYYYYNYNYYNYNYYYNNNYNNNYYYYNNNNYYYNNNNYNYYNNYNYNNYNYYNNNNYNNYYNNYNNNYNNYNNYNNYYYYYNNNNYNYYYNYYNYYYYYNNNYNYYYNNYYYYNNNYYNNNYYNNNYYNNNNNYNYYYYNNYNNNYYYYNNYYYYYYYNYNNNYYYYYYNNNYNNNNNNYYNYYNYNNYNNNNYYYNYNYNNNNNYNNYNYYYYYNNYNYNYNYYNNNNYNNYNYYNNNYYYNYNNNYNNYYYNNNNYYNNYNNNYYYNNNYYNYNNNNNYYNYNNYYYYNNNNNYNYYNYNNNYYNNNYYYNYYNNNNYYYYYNNNNYNYYNNNYYYYYYNYYYNYNYYYNNYNNYNYYYYNNNYYNYYNNNNNNYYNYNYYNYNYYYYYNYYNYYNYYYYYYNYYYNNYYNYNYNNYNYYYNNYNYNYYYNNNYYNNNYNNNYNYNNNNNNYYYNNNYYNYNNNNNNYNYNNYYNNNNNYYYYNNYYNYYNNNYNNYNYYNYNNYNYNYYYNYYYYNYNYYYNNNNYYYNNYNNNYNYYNNYNYNYNNYYYNYYNYYYYYNNNYNNYYYNNYYNYNNYYYYYYNYYNNYYNYNNNNYNNYYNYYNYYYYYNYYNYYNNNYYNNNYNYYNNYNNYYYYNYNYNNYYYNNNYYNYNYNYYNNYNYNYYYNYYNYYYYNNNYNYNYNNNNNYNYYYYNNYNNNNYYYYNNNYYYYYYYNYNYYYYNYNYNYYNYNNYYYNYNYNYYNNYNNNNYYYNYYNYNYNNYYYYYNNNYYNNYNYNYYYYNNYNYNYYYYNYNNYYNNNNYNNNNYYNYNNNNYYYNYYYNNNNYYNYYYNYYNYYNNNNYYYYNYYYNNNNNNNYYNNYNNYYYYNNNNYNNYYNYYYYYYNNYNNNYNYYNNYYNYYYNYNNNYYNYNYYYYNNYNNNNNNYNNYYYNYNNYYYNYYYNNYYYYNNNYNYYNYYYNYNYYNYNYNNNNNYYYNNYYYNYNNYYYYYNNNNYYNNYNYYNNNNNNNYNNNYNYNYYNYYNNNYNYYNYYNNYNYYNNYYYYYYYYNYYYYYNNYNYYYNYNNYNYYNNYYNYNNNNNNNNYYYNNYYYYNYNNYNYYNYYNNNYNNYNYYNNYNNYNNYNNNYNNNNNYNYNNNYNNNNYYYYYYYYYNNNYYYNYNNNNYNYNYYYYNNYNNNNNNNYYNYNYNNYYYYNYNNYNYNYYYYYYYNYNYNNYYNNYNYNNYYNNYYYNYYYNNYYYYYNYNYNNNYNNNYYYYYYNNNNYYNYYYNYYNYNNYYNYNNNYYYYYYNYNNYNYYYYNNNYNYNNYYNYNYYYYYNNYNNNYNNYNYNNYNYYYYYYYYNNNNNYNNYYYYNYNNNYYNYYYNYYYNNYNNYYYYYNYYNNNNNNNYNYYNNNYYNYYYYNYYNNYNNYNYNYYNNYYNNNNNYYYYYYYNNNYNYYYYYYYYNYYNNYNYYNNYNNYNNNNNYYNYYNYYYNYYNNYYNYYYYYNNNNNNNYYNNNNYYYYNNNYNYNYYNYNNNYNYYYNYNYYNYYNYYNYNYYYNYNNNNYNYNYYNNYNYNNYYNNNYYNNNYYYNNYNYNYNYYNNYNYYNNNNYYYYNYNNYYNNYNYYYYYNNYNNNNYNNYNYYYYNYYNNYNNNYNNNNYNNYNYNYYNNYNYYNNNNNNNNYNNNYNNNYNYYNNYYNYYNYYNYNNNNYNYYYNYNYYYNYNNYNNYNYYYYNYYYNYYYYNYNNYNNNNNYNYYYNNYYNYNYNNNNYYYNNNNNYYYNYYNYYYYNNNYYNNNYNNYYYYYNNYYNNYYNNNYNYNNYYNNNNNYNYYNYYNNYYYNYNYNYNYYYNYNYNNNNYNYYYYNYNNYNNNYNNYNNNNNNYNNYYNNNYYNYYNNYNNNNYYYYYYNYNYYNYNNNYNNYNYNYNNYNYNYNYNNYYNNYYNYNNYNNYYNYYYNNNNNNNNYYYNYYNNNNNNNYNNYNYYYNYYYYNNYNNNNNNNNNYNNNYYNNNYNNNNYYNNYYNYNNNNNNNNYYYNYNNYYYYYYNYNYNYNNNYNYYYNNNYYYYNYNYNNNYNNNYNYYNYNYYNYYNYNNNYNNYYYYYNNYNYYYNYYYNNYNYYNYNNYYYNNYYYNNYYYNYNNNYYNNYYYYYYNYNYYYYNNNNNYYYNYNNYNNNYNNNYNYNYNYNYYNNNNYNYYYYYNYNNYNNYYYNNYNNYNNYNNYYYYYYYNNNNYNNYYNYNNNNYNNNYYNYYNNYNYNNNYNNNNNNNNNNYYNNYNNNNYYNYYYNYNNNNNNYNYNYYNYNYYNYNYNYYNYYNNYYYNNYNYYYNNNYNNYNNYYNNNYYYNYYYNYNNYNYYNYYYYNYYYNYNNNNNYYYYYNNYYNNYYNYNYNYNNNYNYYNNYNNYNNNYYNNNNNYYNYYNNYNYYNNYYNNYNNYNNYYYNYNNYYNNNYNYYNNYYNYYYYYNNYNNYNYNYYNNNYNYYYNYNYNNNNYYYYNYYYNYNNNYNYYYYNNNNYYYYYYYYYYYYYYYNNNYYYYNNYYNNYYNYYNNYNNYNNNNYYNYYNNYYYNNNYNNYNYNNNNNNNNNNYNYYYNYYNYNNYNNNNYYYYYNYNYNNNYYYNNNNYNYNNNNNYYNNYYYNNNYNNYYYNNYNNNNNYNNYNNNYYYYYNNYYNYNNNYYYNYNYYNYNNNYNYNYYYNNNYNNYYYYNNYYYYYYYYYNYYYYNNYYYNYYYYNNNYYYNYNNNNNYNYNNYNYNYYNYYYNYYNNNNNNNYYYNNYYNYYNYNYYNNNYYNNYYNNYYYNYYYNYNNNYYNYNNYYNYYNYNNYYYNYNYYNYYNNYNNYYNYNNNYNYYNYYYNNNYYNNYYYNNNNYYNYNNNNYYNNYNYYNNNNYNYNNNNNYYYYNNNNNNYNNNYNYNNYYNNNYYNYYNNYYYYYNYNNNNNNNYNNNYNYYNYNYYNYNYNNYNNNNYNNYNYNNYYNNYNYYNYNNNNNYNNNNNYYNNYNNYYYYYNYNYNNNNYNNNNYYNNYYYNNYYYYNYNYNYYNNNYNYNYYNYNYYNNYYYYYNYYYNNNNNNNYNYYNNNNYYYNYNYNYYNNNYNYNNYNYYNNYNYNNNNNNNNNNNYYYYNNYNNYNYNNYYNNNYNYNNNNYYYNNYYNYNNYNNNYYNNNNYYYNNYYYYYNYYNYNYYYYNNYYNYYYNYYNYNNYNNYNYNNNNYYNYNYNYYNYYNYNYNNNYNYNNNNYNYNYNNYNNNNNNNNYYNYYYNNNYNNNNYNYYNNYNNNYNNYYYNYYNNNNYNYYYYYNNNYYNNNNNYYYYNYYNYNNNYYNYYYNNNNYYNYYYYYYNNNNYNNNNNNNYNYYYNNYNYYYYNNYYNNNNYNNYYYYYYNYNNNNNNNNYYYYNYNYNNNYYNYYNNYNYYNYNNNYNYYYYYYNYNYYYNYNNNYYNYNNYNNYYNNYYNYNYNNNNNYYYYYYYNNYYYNYNYYYYYYNNYNNNNNNYYNYYNYYNNYYYNNNNYNNNNNYNNNYYYNNYNYNYYNNYNNNYYYYYYYNYNYNYNNNYYNNYYYNYYNYYYYYNNNNNNYNYNNNYNYYYNYYYNYYYNNYNYYNNNNNYNYNNYYYNNNYNYNYYNYYNYYNNYYYYNYYNNYNNNNYNNYNYNYYYNYNYNNNNNYNYYYNYYNNYYYNYYNYYNYYYNNNYNYYNYNYNNYNYNYNNYNNYYNNNNNNNNYYNNNYYYYYYYNYNYNYYNYYYYNNNYYNYYYNYNNYNYNYYYNNNNNYNYNYNYYYNNYYNYNYNYNNNNYYNYNNNYNNNNNYYYYNNNNYYYNYYYYNYNYNNNYNYNNYNNNYNNNYNNYNYNYYYYYNYNYNNNYYYNNNNNYYNYNNYNYYNYYYNYYNNYNYNYYYNYYYNNYYYNYYYYNYNYNYNNYNNNYYNYNYYNNNYYYYYYYNYYNNNYNNYYYNYNNNYNNYNYNNYYYYYYYNYNNYNNYYNYYNYNYYYYYYYNYYNNYYYNNNYYNNNNYNNYNYYYYNNNNNYYNYNYYYYYYNNYNYYNYNYYNYNNYNYNNYNNNYNNNNYYNYNNNNNNNYYNYYNNYNYYNYNNYYYYNNNYNYNNYYYNYYNNNNYYNNNYYYNNNYYNYYYNNNNNYNNYNNYNNNNNYNNYYYNYYYNNNYNNNNNNYNYNYNYNYYYNNNYNNYYYYYNYNNYNNYYYNYNYYYYYNYNNNNNNYNYYNYNNYNNNYYYNYNNNYYNNNNNYNYYYYNNNYYNYNYNYNYNNNNNNNNYYYYYNNNNNNYYYYNNYYNYYYYNNYYNYNYYYNYYNYYNYYYNYNNYYYNYYYNNYNYNNYNYNNNYYNYYYYNYNYYNNYYYNYYYNYYYNYYNYYYYNYNNYNNYYYYYYYNNNYNYNNNYNNNNNYNNNNNYNYYNNYNNYNYNNNYNYNNNYNYYNYYNNNYNYNNNNYNNYYNYNYNNNNNYNYNNNNNYYNYNYNYNYYYYYYYNYNYNYYNNNYYYYYYNNYYYYNNYNNYYNNYYYNYYNYNYYNYNNNNYNYYNYNYYNYYNYNNNYNNYYNNYNYNNYYNNYNNYNYNNNNYYYNYYNNNNNYNYYYNYYNYNNNYNYNYYYNNYYYYYYYNNNYNYNYYNNNNNYYNNYYNNYNYYNYNYYYNNYYNYNYYYNYNNYYYYYYYYYNNNYYYYYNNNYNNYNNNNNYYNNNNYNYNNNYYYNNYYNNNNNNYYNNNNYYYNYNYYYYNNYNYNNNYYNNYYYYYNNYYYNYYNYYYYNNYYNYYYYNNNNNYNYNYYYYYYNNNYNNYYNNYYYYYNYYNYYNNYYNNNYYYYYYNNYNYNYNNYNYNNYYNNNYYNNYYYYYYYYNNYNNNNNYNNYYNYNNNYNNNYNNYYYYNYYNNNNNNNYYNNYYYNNYNNNYYNYNNNYNYNYNNYYYYNYYYYNNYNYYNYYYNYNYYNYYYYNYNYNYYNYYYNYYNNNYNYYYYNYYYNYNYNYYNYNNNYYNYYNYNNYNNYYYYYYYNNNYYYYNNYNNYYNYYNYYNNYNNYNNYNYNYNNYNNYYNYYNNYNNYNYYNNNYNYYYYYNYNYNNYYYYYYYNNYNNYYYYYNNNYNNNNYYYYNNNNNNYYNYNNYNNYYYNNNNNYNYYNYNNYYYYNYNYYNYYNNYNYYYYYNYYYYNYYYNNNNYNYNYYNYYNNNNNYYNNNNYNNNYYYYYNYYNNYYNYNNNYNYNNNNNNYNNNNYYNNNNYNNYYYNNYYNYYNNNYNNNNNYYYYYNYNNYYNNNYYNYYNYYYYYNYNYYNNNNNNNYNNYYYYNNNNNYNNYYYNNYNYNNNYNNNNNYYNNYNYNYYNNYYYYYYYNNYYYNYNYNYYNYYYYYNNNNNNNNYNYYNYNNYNNYYYYYNNNNYNNNNNYYYNYNNYYYYNNYNYNNNYYNYYNYYYNNYNYNYNYNYNYNYNNYNYYYNNYYYNYYNNYNYYNYYNNNNYNNYYNNNNYYNNYYYYYNYYNNYYYNYNNNNNYYYYNNNYYNNNNNYNNYNNYYNYNNYYNNNYNYYYYNNNNYYNYYNYYNNNNNNYYNNNYNNNYYNYNNNYNYNYNNNYYNYYNNYYYNNYYY
|
25 |
+
Case #25: NYYNYYYYYYYNNYYYNYYNNNNYYNNYNNYYNNYYYNNYYNYNYNNNNYNYYNYNNYNYNNYNYYYYYYYYNYYYNYNNNYYNYYYNNNNYNYNNNYYYNNNNNYYYNYYNNYYYYNYYNYNNYYYNYNNYYNNNYNNYYNYYYYYNYYYYNYNYYYYYYYNYYYNNNYNNYYNYNYYYYNNYYYYYNNYNNYNYNYNYYYYYYYYYYYYYYNYYYYYYYNNYNNYNYNYNNYNNYYYNNNYYNNYYNYYYNNNNNNNNYYNYNNNNYNYYNNYNYNYYYYYYNNNNNNYNYNYYYNYYYNNYYYNNYNYNNNYNNNYYNNYYYNNNNYYYNYYYYYYYYNYNYNYYYNYNNYNNNNNYNYNYYYYYYNYYNNNYYYYNYNYYNNNNYYNNNYYNYNNYYYYYYYNNYYNYNYYYNNNYYNYYYNNYNNNYNNNNNNNNNNYNYYYNYYYYYNNNYYYNYNYYNYYNYYYYYNYYNYNNYNNYYYNYNNYYNYNYYYYYYYNYYYNYNNNNYYYNNYNYNYNYYYNNYNYYYYYYNNNYYNYNNYYYYYYNYNNNYNNNYYYNYNNYYNYNYYYNNNNYYYYYYYYYYYNYYYNYNNYNNYNNNYYYYYNYYNYNNYNNNNYNYYYYNYNNNNYYYNNYYNNNYYNNNNYYYNYNNYYYYYYNYYYNYYYNYYYYNYNNYYNYYNYNYYYYNNYNNYYYNYNNYNYYYYNNNNYYNNNNYYYNNNNYNYYNYNYYYYNYYNNYNYNNNNYYYNYYNNNNYYNNNNNYYYNYNNNNYNYNNYYYYNYYNYNNYNNNYYNNYYYNNYNNNYYYNNYYYNYYYNNYNNYYYYNYYYYNNYNYYYNNNYYNYYYYYNNYNNNYNYYYNNYNYYYNNNYNYNYYNYNYYNYYYYNYYYYYYNNNNYNYNNNYYYYYNNNYYNYYNNYYNYNYYYYYYYYYYYYNYNNNNNYNNYYYYNNNNYNNNYYNYYNYNNYNNYYNYYYYYYYYYYNNYNNYYNYNNNNNNNYYYYNYYYYNYYYYYNNYYYNYNNNYNYYYYNNYYYYNYYYYNYNYYNNNNYNNNYNYNNYYNNYYNNYYYNYNYNYYYNNYNYYYYNYNYYYYYYYYNYNYNYNYYYYYYYYNYNYNNYNYYYYNYYNYNNYNYNNYNNYYYYYYNYYYNNYYYNYNNYNYNNNYNNYYYNNYYYYYNNNYYYYYNYYNYYNNYYNNYYYNYYYYYNNYNYYNNNYYYNYYNYYYYYNNYNYYNYYYYYYYYYNNNNNYYNNYYYYNYYYNYYNNNYYNNNYNYNYNYYYYYYYYYNNYYNYYNYNYYYNYYNYYYNYNNNYYYYNNNYYNYYYYYYNYYNYNYYNYNNNYNYNYYNNNNNNYYYYNNYYNYYYYNYYYYYNYYNYYNYYNYYYYYYYYNYYYYNYYYNYNYNNNYNNNNNYYYYYYYYYNNYYNNYYNNYNNYYNYNNNNYYYYYNYYNYNNYNYNNNNNYNYNYNYYNNYYNYYNNYNYYNYYYYNYYNYNYYNNNYYYNNYYYNYYYNNYNYYYYNYYNYYNNYYYNYNYNYYNYYYNNYYYYYYYYNYNNNYNYNNNNYYYNYNNYYYYYYYNYNNNNNYNNYYNYNYNYNYNYNYNYYNNYYNYYYNNNYYYYYYNYNYNYNYYYYYYYYNNYYNNYYYNYNNYYNNNNYNYYYYYNYNNYYYNYYYNYYYYNYYNNYYYNNNYNYNYYYYYYNNNYNYNYYNNYYYYNYNNYNYNYNNNYYYYYNNYYYYYNYNNNNYNYYNYYNYYYNYYYYYNNYNYYYYYNYYYYYYNYNYYYNYNYNNNYYYNNNNYNYNYNYYYYYNYNYNYYNYNYYYYYYYYNNYNYYNYYNNYYNNYNYNYNNNYYYNNYYYYYNYYYNYYNNNYYYYYYNYNYNYYNNYYYYYNNYNYNYYYYNYYNNNYNYYYYNNYYNYYYYNNNYNYNYNYYNNYNYYYNYNNYNNYYYYYYNNNYYYYNYYNNYYNYNNNYNNNYNNYNYYNNNYYNNYYYNNYNYYYNYNYYYYYYYYNYNYNYYNYYYNNNYYNYYNNNNYYNNNNNNNNYYYNNYYNYYNYNNNNNYYNYYYYYNYNNNNNYNYYYYYNNNYNYNNYYYNYYYYNYYYYYYNNYYYNYNNNNYYYNNYNNNYYNNYNYNNNYYNYYYYYNYYYNNNNNYNNYYNYYYNNYNYYYNYNNYYYYNYYYYYYYYNYYYNNYYYYYYYYYNYYYYYNNYYYNNNNYNYNNNYYYNYYNYYYYNNYYNYYYYYYYYNNYNNNYYNYYNNYYYYYYNNNNNNYYYYYNNYYNYYYYYNNNNNYYYYYNYNNYNYYYYYYNYYNYYYNYYYNNNYYYNYNYNYYYYYYNYYYNNYYYNNNYYYYYYYNYYYYNYNNNYNNNYYNNNYYYNNNNNNNNYYNNYYYYNYNNYYYNYYYYNNYNYNYNYNYYYYYNNNNNYYYYNNNYYYYYYYYNNNYNYYYYYYYNYYNNYYYNNYYNYNNNNYNYNNYYNYYNYYNYNYYNNNYYNYYYNNYYYYYNNYNYYNYNYYNNNYNNYYYYNNNYYYNYYYYYNNNNYYYYNYNYNNNYYYYYNNNYYYYYNNNNNYYYNYYNYYNNNYYYYYNNYNYYYNNYYYNYYNNYYNYNYNYNYNYYYYYYYNYYNYNYYNNYYNYYYYYNYYNYNYYNYNYNYYYYNYNNYYYYNYYNYYYNNYYNYNYYYNNNYYYYYYYYNNNYYNYYYYNNNNYYYYNNNYYYYNNYNNNYYYNYYNNYYYYNYYYYNYYYNYYYYNYYYYNYYNYYYYYYYNYNYNYYNYYYYYNNYYNYYYNYYNYNYNNYYNNNYYYNYNNNNNNYYNYYNYNNYNYYNYNYNYYYNYYNYYNNYNNYNYNYYNYYYYYYYYYYYNYNNNNYNYYYYNNNNNYNNYNYYNYNNNYYNYYYYYYNNYYNYYYYYYYNNYYYYNNYNYYNNNYYYNYNNYYNYNYNNYYYYYNYNNYYNYYYYYNNYYYYNNYYNYYNYYNNYNYYNYYNYYYNNYYNNYYYNNNNYYNYYYNYYNYYYYYNNYNYYYYNNNYNNNYYYYNYYNYYYYNNYNNYYYYYNNNNNNYYNNNNNYYNYNNNYYNNYYNYYYYYYYNYYYYYYYYNNNNNNYNNNNYYYYYNYYNYYNYYYYNYYNNYYNNYYYNNNYNYNNYYNNYNNYYNNYYNNNYNYYNYYNNNNYNNNNNNYNYNYYNNYNYYNYYYNYYYYYYYYNNYYYYYNYYNYNNNNYYYNYYYNNNNNNNYYYYYNNNYYNYYYYNYYNNNNYNYNNNNNNNYYNNNNNYYNYYYYYNNYNYYNYYNYNYYNYYNNYYYYYYYNYYYNYYYYNYNYNNYYYNNNYNNYYYNNYNNYYNYYYYYYNNNYYYNYYYNNNNYYNYYYNYNNNNYYYNNYNYNNYYYYNNYYYYNYYYNNYNNYYYNNNNYYNYNNYNNNNNNYYYYYYYYYYNYYYNNNNNYYYYNYYYYNYYNYYYYYNNYNYYNYNNYNNYYYNYYYNNYYNNYYYNYYNYNYYNYNYYYYYYNNNYNNYNYNYNNYYNYNNYNYYNYYYNNYNYNYYYNYYNYYYYNNYNYNNYYNYYYYNYYYNYNNNYYYYYYNYNYYNNYYYNYNNYYNYYNNNNNYNYYNYNNNNYNYYYNYNNYYYNYYNYNNYYNNYNYYNNYYYNNYNNNYYYYNYYYNYYNNYYYYNYYNYYYYNYYNNNYYNYNYYYYYYYYNNYYYNNNYNNNNNYYNYYNYYNYNYYNYYYYYNYYYYNNYYNYNYYYNNYYYYYYYNNYYNYYNYYYYNYYNNYYYYNYYYNYNYYYYYYNNNYNYYYYNNYNNNYYNYYNYNYYNYNYNYNYNYNYYYYYNYNYNNNYNYNYYYNNNNNYYNYNYYYYNNYYYYYYYYNNNYNYNNYNYNYNYYYYNNYYYNNYNYYYNYYYYNYYYYYYNYNNNNNYYNYYNYYYYYNNNNYYYYYYYYNYYNYNNNNYYNYYYNYNYYYNYNNYYNNYNYYNYNNYYNNNYYYNYYYNYNNNYYYNYYNYYNNYNYYNNNYNYNNYYNNYYYYYYYNYYYNYYNYYYYNNYYNNYYNYYYNNYNYYYNYYNYNNYYNYNYYNYYYNYYYYYNNYNYYNYYNYYYYNYNNNYYYYYYYYNNNNYYYNYYYYYYNNYYYNYYYNNNNYYYYYYYNNNYYNYYYYNYYYYNNNNYYYYYYNYYNNNYYYNNNYNNNYYYYYNYNNNNYYYYNYYYYYYYYYYYYNYYYYNYYYNNNNYNYNYYYYYNYYYYYYYNYYNNYYYNYYYYYYYNYNYNNYYNYNNYYNYYYYYNNNNNYNYYYNYNYYYNYYYYYYNYNNYNNYYNNNYYNYYNYYYYYNNYYYYNNYYYYYYNYYYYNNNNNNNNNYNNNYNYNYYYNYYYNYYYNNNYNYYYNNNNNNYNYNNNNYYNYYYYYYYNNNNYYYNYYYNYYNNNYYYYNNYNYNNYYNNYYYNYNNYYNYNNNNNYYYYNNYYYNYYYYNNYNNYYYNYYYNYYNYNNNNNYNNYNNYNNYNYYNYYYYYYYNNYYYYNYNNNNNNYNYYNNYYNYNYNYNNNYYYYNNNYYYYYYYNYYYYYYYNYYNNNYNYNYNNNNYYNYNYNNYNNYNNYYNYNYYYNNNYYYNNNYNYYYYYYYYYNYNYYYNYNNYYYNYYNYYYYYNYNYNYNYNYYYYYYNNNNNNYYYYNNYYNYNNNNNNYNNYYYYYNNNNNYNNNYNYNNYNNNNYNNYNYNYNYYYYNNNYYYYYNYNNYYYYYYNYNYYNYNNNNYYNNNYYYNYYNYNYYYYYNYNNYNNYYYNNYYNYNYYYNYYYNYYNNYYNYYYYNYNYYNNYYYYYYYYNYNNYYYNYYNYYYYYYNNYYYNNNNNYNYYYYYYYYYNNNYYNNNNNYYNNYYYNYYNNNYYYYNNNNYYNNYNNYYYYYNYYYYYYYYYNNYNNYNNYYYYNYYYYYNNYYNYYYYNYYNYNYYYNYYNYNYYNYYYYYNYYYYYNYNNYYYYYYNYNNNYNYNYNYYYNNYYYNNYYNNYYYYYNYNYYNNNNYNYYNYNNYYYNNYYYNYNYYYNYNNYYYYNYNYYNNYNYYNYYNYNYYNYYNYYYNNNYYNYNYNYNYYNYYNYYNYNNYNYYNYNNYYYNYNYNNYYNNNYNYYYYNNYYYYNYNYYYYYYYNYNNYNYYYYNYYYNNNYYNNYYYNYNNNYNNYYYNYYYYNYYNNYYYYNYNNNNNYNYYYNYNNYNYNYNYYNYYNYNYNYNYNNYYYNNYYYYYYNYYYYNNYYYNYNYYYYYNYNNNYYYNNYYNYNYYNYNNYNYYNYNYNYYNNNNNYYYNNYYNNNYYYYYYYNYNNYYNYYNNYYYYNYYNNYNNYYYNNYNNNNNYYYNYYYNNYYNYNYNYYYNYYNNNYNNYYYYNNYYYNYYNYNYNNNNYNYYNYYNNYYYNYNYYYNNYNYYYYNNYYNYNYNYNNNYYYNNYNYYNYNNYNYNNNNYYNYNNYNYYYYNYYNYYYYNNYYYYYYYYYNYNNYYNNNYNYYYYNNYYYYNNYYYNYYYYYNYYNYYYYYYYYYYNNYYNYNNYYNYNYNYNYNYYNNYYYNYYNYNYYYNNYYYYNNYNYNNNNYNNYYYNNNYYYYNYYYNNNNNYYYYNYYNNYYYYYYYYNYNYYNYNYNYYNNNNNNNYYYNYNNYYYYNNNYYNNYNNNNYYNYYNYYYNYNNNYYYYYYYYYYYYYYYNYYYYYYNNYYNNNYYYYNYYNYYYYYYNYYNNNYYNYYYYNYNYYNYYYNYYYNNNNNNNNNNNYNYYNYNYNYNNYNYYNYNYYNNYNNYNYNYYNYYNNYNNYNYYNYYNYNNYNYNYNNYNNNYYNNYYYYNNYYYYYYNNYNYYNYYYNYYNYYNYYYYYYYYNNYYYYNYYYYYNYNNYNYYYYYNNNNYYYYYNYYNYNNYYYYYYYNYNYNYYYYNYNYYNYYNYNYYYYYYYNYNNYNYNYNYYNNNYYNYYYYNNYNNNYYNNNYYYYYYYNYNYYNYNNNYYNYYYNYYYNNNNYNYNNNYNYYNYYYYNYNNYYYYYYYNNYYYYNNNYYYYNYNNNYYYYNNYYYYNYNNYYYNNNNNNNNYNYNYNYNYYYYYNNYNYNYYYYYYYNNYNNYYYYYYYYYNNYYYYNYYYYYYYNYYNNNNNYYYNNYYYNNNNYYNNNYNNYNNYNNYYYYNYYYYNYNNYYNYYYNNNYYYYYYYYYYYYNYNYNYNYYYNYNYYYYYNYYYNNYNYNYNNNNYNNNYYNNNNYYYYNNYNYNYYNYYYYYYYNYYYNYYNNNNNYNNNYYYYNNNNYNYYYYNYNNNNYYYNNYYNNYYYYNNNYNNNYYNYNYYYNYYYYNYYNNNYNYYNNNYYNNYNYNNYYYNYYYNNNYYYYNNYYNYYYNYNYYNYYNNNNNNYYNNNYNNYYNYYYYNYYYNNNYNYYYYNNNYYNYYNYNNYYYYNYYYYNNYYYYYYYYYYNYNYYYNYYNYYNYNYYNYNYYYYYYYNYNYNYYNNNNYNYYYNYYNNYYNYYNYNYYNYYYYYYNYYNNYNYNYNYNYNYNNYNNNYYYNYYYYNYYYNYYYYNNNYYYYYNYYYNNNYNNYYYYYNYNYNYYNNYNNYYYYNYYYYNYYYNYNYYYYNNYYNNNNNYYYYYYYNYNYNNNNYYYNYNNYYYYYYNNYYYNNYYYYYNNYYYNYYYYYYYNYYNYNYNYYYYYYYYYYYYNNYYYNYYNYYNYYYYNNYNYYYYYNNNYYYYYNYYYNNNNNYYYYNYYNNYYNNYNYYYYYYYNNYNYNNYYYYYYYYNYNYYNNNYYYYYYYYNYYYNNNNYNNNYYYYYYYNYYYNNNNNYNYNNNNYNNNYYNYNNYNNYNYNNNYNNNYYYNYNNYNNYNNYYYYNNYNNYYYNYYNYYNYYYYNNNYYYNNYYNYYNNYYNYNYYYYNYYNNNYNYNNNNNYYNYYYYYNNYNYNYYNNNYYYYYYYNYNYNNNYYYYNYYYYNNYYYYYYNNNYNYNNYYNNYNYYYNYNYYNYNYYYYYYNNYYYYNYYNNYYYYNNNNYYNYNYNNNNNNNNNNNNYNYYNYYYNYNNYYNYYYYYYNNYNYYNNYYYYYYYNYYYYYNNNNYNYYNYNNNYYNNYNYYNYNNYYYNNYNYYYNNNYYYYNYYYYNYNYYNYNYYYYYYNNYYYYYNNNYNYYYYYYNYYNYNYNNNNNNNNYYNNYNNYYNNYNNYYYYNYYNNYYYYYNNNYNNYYYYYYYNYYNNYNYYNYYNYYYYNYNYYYNYNNNYYYYYYNYYYYNYYYNYYYYNNNYYYYYNYYYYNNNYYYYYYYNYNYYYNYNYYNNYNYNYYYYYYNYYNNNYNYYNNNYNNNYNYYNYYYNYYNYNYYYYNYYYYYYYYYYYNYYYYYYYYYYYYYNNYYYNNYNNNNNYNNNYYYYYYYNNNYYYNYNYNNYYYYNNNNNYNYYYYNYYNYYYYYNNNYNNNYYNYYNYNYYYYYYNYNNYNNNNYYYYNNNYYYNNNNYYYYYNNNYNNNYNNYYYYNYYYNYYYNNYYYYYYYYNYYYNNNYNNYYNNNYNYYYYYYNNYYYYYNYYYYYNNYNYNNNNYNNNNYNYYYNYYNNYNYYYYYYYYYYNYNNYYNYYNYYYNYNYYNYYNYYNYYYYNNYYNYYNNNYNYYYYNNYNNYYYYYYNYNNYYNYYYYNYNNYYNNYYYYYYNYNYYNNYNNYNNYYYYNNYYYYYNNYYNYNNNNYYNYYYNYYNYYNYNYYYYNNNYNYYNYNNNYYYNYNYNYYNNNNNNYYYYNNYYYNYYYNNYNYYNYNNYNNNNNYNYYNYYNYYYYNYNYYNNNNYNYNYNNNNYYYYYYNYYYYNYYYYNYYYNYNYNYYYNYYYNNNYNYNYYNYNNNYYNYYYYNYNYYYYNYYNYNYYNYYNYNYNNNNYNNYYYYYYNYYYNNYYNYNYNNYYYYYNNYNNYYYNNYNYNNYYNYNYNNNYYYYYYYYYYNYNNYNNYNYYNYYNNYYYYYNYNYYYYYNYYNYNNYNYYYNYNNNYYNNYYYYNYYYNYYYYYYYYNNYNNNYYYNYYNY
|
26 |
+
Case #26: NNYNNYYYYNNYYYNNYYYNYYYYYNYYNYNYYYNNYYYNYYYYYYYNNNNNYYYYYNYNNNYYYYNYNYNNYNNNNNNYYYYNYNYYNNNNNYYNYYYNYYYYNNNNNNYNYYYYYYYYYYNYNNNNYNYYYYYYYNYYNNYYNYNYYYYNYNYNNYYYNNYNNYNNNYYYYYYNNNNNNYNNNNYNYYYYYYNYYYNNYYYYNYYNNYNNYNNYYNYNYYYYYNNYYNYNYNNYYYNNYYYNNYNNNYNNNYYNNYYYYNYYYYYNNYNYNYYNNYYYNYNNYNYYNNYNNNYNNYNNYNNYYNNNYYNYYYNYYYNYNNNNNNNYYYYNYYNNNNYNNYYNYNYYYNYYNNNYYYNYYNNYYYYNYNNNNYYYYNYNNYYNYYYNNYYYYYNNNYNYNNYYYYYYYYYYYYNNNYYYYYYNNYNYYYNNYNYYYNNYYNYNNYYNYYNNYYYNNYYYNNNYYYNYYYYYYYYNYNYNYYYNYYYNNNYYNNYNNYNNYNYYYYNNNYYNYYNYNNNNNYNYNYNNNYNNYNYYNNYYYNYYNYNYYNNNYYYNNNYYNNYYNYYNYNNYYNYYYYYYNNYYNYYYYYNNNYNNYNYNYNNNYYNYYYYNNYNNYNYYYNYYNNNNYYYYYNYYNYNNNYYNNYYNYYYNNNYYYNNNNNNYYYYYNYNYYNYNNYYYYNYYYYYNNNNNYYNNNYYNYNNNNNNYNNYNNYYYNNYNYNYYYYNNYYYYNNYYYYYNNYYYNYNYNYYYYYNNYNNYNYNNNNNNYYYYYNYYNNYYYYYYYYNYYYNYNYYNNYYNYYYNYNNNYNNYNNYYYNYNYNNNNNNYYNNNNYNYYYYYNYNNNYYYNNYNNYYYNYNNNYYNNYYYYYNYYNYYNYNYNYYYYNNYYYNYNNYNNYYNNYNYNYYNYNNYYNNYNYNYYNNYYYYYNYNYYNYNYNYNNYNNYNNNNYYNYYNYYNYNYYYYYYNYYYNYNYNYNNYNNYYYNYNYYYYNYYNYYNNYYNYNNNNNNNNNYNYNYYYYNNYNYNYYYNYNYYNNYYYYYNNYYYYYNYYYYYYYYYYNYYNYNYNYYYYNYYNNYNYYNYNYNNYNYYNYYNYYYYYNYYYNNNYYYYYYNYYYYYYYNNNYNNYNNNYYYNNYYYNYYNYYNYNNYYYYYYNNYYYNNNYNYYYYYYYYYYYNYYYNYYYYNYNYYYYYYNYNNYYNYNYNYNYNYNNYYNYNYYYYYYNYYYYYNYYYYYYYNNYNNNNNNNYYYYYNYNYYYYYNNNNYYNYNYNYYYYYYYYNYYYYNNYYNYYNYNYYNNYNYNYNNYYYYYNNYNNNYYYYYYYYYYNYYYYYNNYNNYYYYYYYYNYYYNNYYYYYYNYYYNYNNYNYYNYYYNYYYNNYNNNNNYYYNNNNYYYYYNNYNNNNNNYYNNNNNYYNNNYNYYNNYYYNNYYNYNYYYYYNNNNYYNNNNYYNYYYNYYYYYYYNYYNNYNYYYNNYNYYNNNNNYNYYYYYYNYYNYYYYYNYYYYYNNYYNYYYYNYYYYNNNNNNNNYNYNYYNNYYYYNYYYYYNNNYYYNNYNYYNNNNYYNYYYNYNYYYNYNYYYNYNNNYYYYNYYYYNYYNYNYNYYYYYNYNYYNYYYYYYYNYNYYYYYNYYYNYNYNYNYYYYYNYYNYYYNYNYYNYYYYNYYNYYYYYYNNNYYYYYYYNNYYYNNYNYNYYYYNNYYYYNYNNYYNYYNYNYYNYNNNNNYNYNYYNNYYYNYYYNNYNNYYYYYYNNNYYYYYNYNNYYYYYNYYYNYNYYNNNNNNYYYYYYNNYYNYYYNNNNNNYYNNYNYNNNYNYNYYNYNYYYYNNYNNNYYNYNNYNYNYYYYYYYNNYNYNNNYYYYYYNNNYNYYNNYYYYYNNYYNNYYYYNYYNYNNYYYYYNNNNYYYNYYNYYYNYYNNNYNYNYYYYYYYNNYNYYNNNYNYNYNNYNNNNYYYYYYNYYYNNYNYNYYNNYYNYNNNYNNNYYYNYNNYYYNNNNNNNYNNNNNYYNNNNYYYYNNNNYNYYYYYNNYYYNYNYNYNYYYYYYYNYYNNNNNYYNNYYNYNYNYNNNYYNYNNNYYNYNYNNYNYNYNYYYNYYYYYNYYYYNYYYYNNYNNNYYYYYNYYNYNYYYNNYYNYYNNYNNNYYNYYYYNYNYYYYYYYNNYNYYNNYNNYNNYNNYNYNNNNNYYNNNNNNNYYYYNYYNYYNYNYYYNYYYYYNNNYYNYYYYNYYYNNYYYNNNNYYYYYYNNNNYNYYYNNNYYYNNNYYNNYNYYNYNNYNNYNYYYNYYYYYNNNNNYYNNNYYYYNYYNNYYYNYYYNYNYYNYYNYNYYYYNNNNYYYYYYNYYNYYNNNNNNNYNNYYYYNNNYYYYYYYNYYNNYNNNYYNNNYNYNNNNYNNYYYYYYYNNYYYYYYNYNYNNYNNYYNYYYYYYNNYYNYYNNYYNYYYYNYNYNNYYNNYYYYNNNNYYNNYNYYNYYNNYNYNYNNYYNYNYYNNNNYNYYYYYYNNYYYYYNYYYYNYYYYNYYYNNYNYYNNYYYNNNNYNNYNYYYYYYYYNNYYYNYNNYYNYNYYNNNNYYNNYYNNNYYYYYYNYYNYYYYYYYNYYNNYYYYYNNYNYYYNYNYNYNYYNYYYNYYNNYYYYYNNYYYNNNYYYYNYYNYYNYYYYYYNNNNYYNYNNNYNNYNNYNNNNNYYNYNYNYYNYYYYNYYNYNNNYNYYNYYYYYYNYYYYYYYYNNYNYYNNYYNYYYNYYNNNNNNYYNNNYNYYNNNYYNNNNYYNYYNNYYYYYYYNYYYYNYYYYNYYYYYYYYNNNYNNYYNYYNYYNNYYYYNNNNYYYYNYYNYYYYNYYYYYYYNNNYYYYNYNYYYNYNNNNNYNYNYNNYYNYYYYYYNYYNNYYNNNNNYYYYYYYYNYYYYNYNYNYNNNYYNNYYYYNYYYNNYYNNNYYYNNNYYYNNYYNYYYYYYNYNNYYNYYYYNYNYNNYYNNYYNYNYNNNNYYNNNYYYNYNYYYYYNYNYNYYYYNYNNNNYNYYYYYYNNNYNYYYYYYYYYYYNYYYYYNNYYNYNYYNYYYYNYYNYYYNYNNYNYNYNNNNNNYYNNYNNNYYYNYYYYNNYNYNYYNYNNNYYYYYNNYNYYYYNNYYYYNYNNNNYYYNYNNNNYYYNNNYYNYYYNYNNNYYNNYYYYYYYNYYYNYYYYYNNYYYYNYNNNNNNYNYYNYNYNYNYYNYNYNYNYYYNNYNYNYYNYYNNNYYNNYYYNYYYYYYYYNYYYYNYYYYYNYNNNNNYNYNYYNYYYNNNYNNYYNYNYNYNNYNNYYNYNYYYYYNNNYNYYYYNYNNNYNNNNYNNNYNYYYNNYYYNYYYNYNYYYYYNNYYYYYYNYYYYYNNNYNNYYYNNYNYNNNYYNYYYYNYYYNYNNYYYNYNYYYYNYYNNYNYNYNYYNYNYNYYYYYYNNYNNYYNNYNNYYNYYYNYNYNYYNYYYNYYYYYYYYNNNNYNYNYNYNNYNYYYYYNNYYYNYNYYYYYYYYYYNNNYYYYNYYYNYYNYYYNYNYNYNNNNYNYYNYYNYYYYYNYNYYYNYYYYYNYYNYYNYNYYNYYYYNNNYNNYNYYYYNNNNYNYYNYYYYNYNYNYYYNNYYNYYYYNYNYYYYYYYYNNYNYNYNYYNYNYYNYYNYNNYYNYYNNNYNYYYNNYYNNNYNYNNYNYNNYNNYYNYNNYYYNYYYYNNNYYNYNYNYNNNNYYNNNNYYNYYYNYNNYYYYNYYYYYYNYYYNNNNYYNNNYNNNNYYNYYYNYYYYNYNNNNNNYYNYNYYYYNYYYYYNYYNNNNNYNNYYYYYYYNNNNNNNNYYYYYYYNYYNNNYNYYYYYYYNYNYYYYYNYNYYYNNYYNYYYNNYNYNNNNYYNYYNYYYYYNYYNNYYNYNNNYNNNNYYYYYYNYNYNNYYYYYNNNYYNYNNYNNYYNNYNYNYYYYYYYYNYNNNNNYNNYNYNYYYYNNYNYYNYYNNYYNYYYNNYYNNYNYYYYNNYYNNYNYYYYNNNYYYYYNYYYYYNYYNYYYYYNYNYYYNYYYYYNYYYYNYYYNYYYNNYNYYYYNYYNYYYNYYYNYNYYYNYYNNYYYYNNYNNNYNYYYYYNNYYYNNYNYNNYNYYYYYYYNNNYYYNNYYYNNYYYYYNYNNYYNNNYNYNYYNYNNNNNNNYYYYNYYNYYNYNNNYYYYNNYNNYNNNYNNYNYYNYNYYYYYYYNYNNNYYNYYYYNYYNYYNYYYNNNYYYNYYNNYYYNNNNYYNYYNNYNNNNYYNYNNYNYNYYYYYYYNYNYYNYNNYYNYNNYYYYYYNYYNNYYYYYYNYNYNYYYYYYNNYYNYNNYNYYYYYYNYNNNNNYYYNYYYYYNYYNNYNYNYNNYYYYYYYYYYYYNNYNNYYYYYYYYNYNYYNNYYNNYNNNNNYNNYYNYNNNYYNNYYYNNYNNNYNYYYYNNNNYNNYNNYYYYNYYYYNNYYNYNNNYYYYYYNNYYYYYYYYNNYYYNYYNNYNYNNYYYYYNNYNYYNNYYYNYYNYNNYYNYYNYYNYYNYYYNYYNYYYYYYYNYNNYNYYNNYYYYNYYYYYYYNYYNNNNNYNYNYYYNNNNNNYYNYYYYYNNYNNNYNYYYYYYYNYNNNYYYNYYYNNYYNNYYYYYYNYNYYYNNYNNYYNYYYYNYYNYNYNYNYYYYNNYYNNNYYYYYYYYYYNYYNYYNYNYYYNYYYYNYNYYNYNNYYNNNNNNNNNYYYYYYNYNYNYYNYYNNNYYYNNNNYYNYYYYYYNNNNYYYYYYYYYNYYYYYYNYNNYYYNYNNNYNNNNYNYNYNYYYNNYYNYYYYYYNNYYNYNNNNYYNYNYYNYYNYYYYNNNYNYYNNNYYYYNYYNYYYNNYNNYYYNNNYYYNNYNYYYYYNNYYNNNYNYYNYYYYYYYNYYYNYNYYYNYNYYNYYYYYYYYNNYNNYYNYNYNYYNNNYNNNYYNNNNNNYNNYNNYYYYYNYNYNNNNYNYYYYNNYYYNYYYYNNNYYNYNYYNYNYYYNNYYYNYNYYYNYYYYNYYNNYNYNYNYNYNNYYNYYYNYNYNNYYYYNYNYNYYYYYYYYYYNYNYNYYNNYNYNYYNNNNYNYNYNNYNNYYNNNYYYYYYNYYYNYYNNYNNNNYYYYYYYNYYYYYNYNYNYNNYYYNYYYYNNYNYNYYYYYNYNNNYYYNYYYYNYYYYNNYNYNYNYYYYNYNYYYNNYYYYYYYNNYNYYYNYYYYNYYNYYYYYNYYNNYYYYYNYYYYYNYNYYYNYYNYYYNYNYYYYYYYYNYYNNNNYNYYNNYYNNYYNYNNYYYYYYNNYNYYYNYYNYYYYNYYYNYYNNYNYNNNYNNNYYNYNNNNYYNNNYNNYYNNYYYNNYNYNYYYYYNYYNNNNYYNYYYNYNNYYYNYNNNYNYYNYNYYNYYYYNYNYNYNYNNNYYYNNNYNYNYYNYNNYNNYYYNNNYNYNNYYYYNYYNNNYNNYYNNYNYNNNYNNNNYYNYNYYYYNNYYYYYYYNNNYNNNYNYNYNNYYYYYNYYNNNNYNYYNYNYNNYNNYYNYNNYYYNYNYNYNNYYYNYYNYYNYNNYYNYYYYNYNYNYNYNNYYYNNYYNYNYYYYYNYNYYNYNNYYNNYNYNYYNYYYYNYNNNNYNNNYNNYNNNYNYNYYNYYNNNNNYYYNNNYYYYYNYYYYNYYNNYYNNYYNYNNNYYYYYYYYYNYYYYNNYYYNYNYNNYNYNNYNYNYYYYYNYNYNNNYNYNYNYYNYNYYNYYYNNNNNNYNNYYYYYYYNNNYNYYYYYYNNYYYYYYYYYYNNYYYYYNYYNNNYNYYNYNNYNYNNYYYNNNYYNNNNNYYYYYYYYNYYNYNYNNYNYNYNNNYNYYNNYYNYYNNNYYYNYYYYNNYNYNYNYYNYYNYNYYYYYNNYNNNYYNYYYYYYYYNNNYYYYYYNNYNNYYNYYYYYYNYYYNNYYYNYYYYYNYNYYYYYYYYYYYYYYYYNYNNYNYYNNYNYYNYNYYNNNYYNYYNNYNYYNNNYYYNYNYNNNYNYYNNYYYNYNYNYNYYYNNNNNYYYYYNYYNNNYNYNNYNYYYNYNYNNYYYNNNYYNNYNYYNYNNNNNYNNNNYYYYYNNNNYNNNYNYYYYYYNYYNNYYNYNNYYNYYNNYNYYNYYYYYNYYYYNNYYYNNYYNNYYYYYYYYNYYYYNNYYYYNNNNNNYYYYYYNYYYYNYYYYYNYNYYYYNNYYNYYNYYNYYNNYYNYYNYNYNNNNYNYNNYNYYNNNNNYYNYNYYNNNYYNNNNYNNYNYYYNYNNYYYYNYYNYYYYYYNYNYNYYNNNNNYYNYYNNYNNNNNNNYNNYYNNYYYNYYNYYNYYNYNNYNYNYNNYYNNNYYYYNNYNNYNNYYYYYYNYYYNNYYYNNNNNYNYYNNYNYYYNYNYYNNYYYYYYYYYYYYYYYYNNYNYYYYYNYNYNYNNYNYNYYNNYNYNYYYYYNNYYNNNYYYYYYNYYYYYYYNNYYYYYYNYNNYNYNNYYNYYNNYYYYNYYYNYNNYYNNYNNNYYNYYYYNYNYYYNYNYNYNYNNNYYYNNYNYNNNNNYNYYYNYNNNYYNYYNYYNYYYNNYNNYYNNNNYNYNNNYNNNYNNYYYYNNNYNNYYNNYNYYYNYNYYNNNYNYYNNYYYYNNYYNYYYYNNNYYYYNNNNYNYYNNYYYYYYNNYYNNYNNNNYYNNYNNYYNYNYYYYYNNYYNNNYNYYYYNYYNNNYNYNYYYYNYYYNNNNNYNNNNNYYYYYYNYYNYYNYYYNYYYYYYYNYNYYYYYNNNNYNYYYNNNYYYNYYYYYYYYYYNNYNYYYNYNNYYYYYYNYNNYNNYYNYYYYYNYYNNYYNYNNYYNNNYNYYYYYYYNYNYNNYNNYNNYYYYNYYNYNYNYYYYNYYYYYYYYNNYNYYYNYYYYNYNNYNYYYYYYYYYNYYYYYNNNNNNYNYYNNNNYYNNYNYYYYYNYNYYNYYYNNNYNYYNYYNNYYNYYYYNNYNYYNNYNYNNNNYYNNNYNYYYNYNNYNNYNYNNYYYNNYYYYYNYNNNYNNYNYNNYYYYYNYNNYNYNNYYYYYYYYYNYYYNNNYYYNYYYYYYYNNYYNYNYYNNYNYNNYYYNYYYYNNYNYYNNYNNNYYNNNNYYNYNYNYYNNYYYYNYNYYNYYNNYNYYYNYYYNNNNNYYYYYYNNYNYNYYYYYYNYYNYYYNYYNYYYYYYYNNYYYYNNYNYNNYYNYNNYYNYNYYYYYYYNYYYYYYYYYYNNYYNNYYNYYYYNNYNYYYYYNYYNYNYNYYYNYYNNYNNYNYYYNNYNYNNNNYYNNYYYNYYNNYYNYYYYYYNYYYNNYYYYNNYYNYNYYYYYYYYYYYNYYYYNYNYYYNNYYNYYYYYYYNYYYNYNYYYYYYNYNYNYYYNYNYNNYNYYNYYYNNYYNYNYYNYNNYYNYYYNYYYYNYYNNNYYYNNNNYNYNNYNYNNNNNNYNYYNNNNYYYYNYYYYNYNYNNYYNYYYYNNYYYNYNNYYNNYNNNNYNYYNNNYNNYYNYYYYYNYYYNNYYNNNNNNYNYYYYNYYNYNNYYYYYYNYYYNYNYYYYNNYYNYYYYYYYYYYYNYNNYYNYYNYYYNYNYYYYNNNNNNNNYNYYNNNYYYYYNYNYNYYYNYYYNNNNYYYNYYNYYNYYYNNNNNNNNNNNNNYNNYYNNNYYYYYYNYYNYYYYNNYYNNYNNNYNYYNNYYNYYYNYYYNYYNYNNYYNYYNYNYNYYYNNYNNNYNYNYYYYYNYNYNNYNYYNYNNNYNNNYYYYNYNNYYNYNNYYYNNYNYNNNNYNNNNYNYYYYNYYYYYNYYYNNYYYYYYYNNNNYYYYNNNYNYNNNNNYYNYYYNYYNYNYYNYNNYNNYYNNYYNNYYYYNYYNYYNYNNYNNYYNNNYNYYYNYYYYYYNNNNYNYNNYNNYNYNNNYYYYYNNYNNYNYYNYYNYYYNYYNYNNYYYNYNNNNNNNNYNYNYYYYYYYYNYYYYNNYYNYYNNNNYYNNYNNYYNNYNYYYNNNNYYYYYYYNN
|
27 |
+
Case #27: YNYNNNNYYNNYYNYYYYNNYYYYNYYYYNNNYNYYNYNYYYNYYYNYYNYYNNYYNNNNNNNYYNNYYNNYNNYYYYNYNYNNNYYNNYNNYYYNNNYYNYNNNYNNYYYNYNYYYNNYYYNNYNYNYNNYYNNYYNYNNYYNYNNYYYNNNNNYNYYNYYYNYYYNNNNYNNYYNYNNNNNYYYNYNYYNYNNYNNYYYYYNYNYYYYNYNYNYNYNYYNYYYYNYNNYNNNNNYNYYNYNNYYYYNYNYNNYYYNYNYNNYNYNYYNNNYNYYYYYYYNNYYNYNNYNNYNNYNNYYYNYYNNYNYYYYNNNNNYNNNYYNYYYYYNYYNYYNYNYNNYNYNNYNYYNYNYYNYYNYNNNNNYYYNYNYYYYNYYYNYNYNNYYYYYNNNNNNNNYNYNYNNNNYNNYYYYNNYYNNNYNNYYNNNNNNYNNNYYYYYNYNNNYYNYNYNNYNYYYNYNNNNNYYNYNNYYYYNYYYNYNYNNNNYYYNYNNYYYYYYNNYNNYYNNYYNNNYYYYYYYYYYYYNNNNNYNYNYNYYYYNNYNNYYNYYYYNYNNNNNNYNNYYYNNNYYYNNNNNNNYYNYNNNYNNYNNNNNNYNNYNNNYYNYYNYNYNNYNYNNNYNNYNNNNYNYYYYYNNYYNYYNYYNYYYYYYYNYNYNNYNNNNYYYYYNNNNNYNNYYYNNNYYYYNYYYYYYNNYNNNYYYYYYNNYNYYYNYNYNYNNNNNNNYYYNYYYNNYNYNNYYYYYNYYYNYNYNNYNYNNYNNNYNNNNYNNNYYNYYYYNNNYYYYNYYYNNNYYYNNYNYYNNYYNYYNNNYNYYNYNYNNNNNNNNYNNYNYYYNNYYNYYYNYNNNNYYYYNYNNYNYNYYYYNNYYYYNYYYNNYYYYYYYYNNYNNNNYNNYNYYNNYNNNYNYYYYYYNYYNNYYYNYNYYNYYYNNNNNNNNNNNYYYYNNYYNYNYNNYYYNNNNYNYYYYNNYNNNNNYYNNYYYNNYYYYYNNNNYNYYYYNNYYYYYNYNNYYYNYNNYYNNNYYNYNNNNYNNNNYNNNNNNYNYNYYNYNNNYNNNYNYYNYNNYYYNYNNNYYNYYNNNNNNNYYYYNYYNNNNYYNNYYNNNNNYYYNYNYNYYNYYNYNYYYNYYNYNYNNNNNNNNYNNYYYNYYYYNNYYNYNYNYNNNNNNNYYNYNYNNNNYYYNYNYNYYYYYYNNNYYNYYNNNNNNNYYNYNNNYNYNNNYYYYYYNNNYNNYNYYNYYNYYNYNYYYYYYNNNYNYYNNYNNYNYNYYYNNNYYNNNNNYNNNYNYNYYNNNNYYYNYNNNNNNNNYYYNYYNYNYYYNYYYNNNYNYNNYNYYNYYNNYNYYNYYNYNYYNNNNYNNNYNNNYYYNNYYNYYNYYYYYYNNYYNYNNYNYYYYNYNYNNYNNNYNYYYYNYYNYYYNYYYYNNYYYNYYNYYYNYNNYNNNYNYYYYNYNYYNNNNNYNNYNYYNNYYYYYNNNNYNYNYYYNYNYNNNNNYNYYNNNYNYNYYNYYNNYNYYYYNYYNYNNNYYYYYNYNYNYNYYYNYYNYNYYNYNYNYNYYYYYNNNNNYYNYYYNYNNNNYYNNNNYYYNNYYNYNYNYYYYYYYYNNNYYNNNNNYYYYNYNNNYYNYNYNNNNNNYNYYYYYNYYNNNNNYYNYNYYYNYNNYNYNYYNNYNYYYNNYYNNNYNYYYYYYYNNNNYYNYNYYYYNNYYYNYNNYYYNNYYYNYYNNNNYNYYYNYYYNYNNNYYYYNNYYNYNNNNYNNNYYNYYYYYNNYYNYYNNYNNNNYYNYYNNYNNNYYYNYYNYNNNNNYNNYNYNYNYYNYYYYNNYNYNNNNYNYYYNNYYNNYNNNYNYYNNNYNYYYYNNYYNNNNYYNNYNYYNNYNYNNNNYYYNYNNYNYYYNYYYNNYYNNNNYNNNYNNYNNYNNYYYNYYNNYNNNYNYNYNYYNYYYNYYNNNYYNYNYNYNYNNNYYNYYNNYYNNNNYNYYNNYYNNYYNNNNYYNNYYNNYYNNNNYYNYNYYYNNNNYYYNYYNNYYNNNYYNNYYYNNNNNNNNNYYNNNYYYNNNYNYNNYYNNNYYNYNNYYYNYNNYYYYNYYYYNYNYYNYNNNYYYYYNNYYYYNYYYYYYNNNYYNNYNYNYYYNYYYYYNNNNYYNNNNYNYYNYNNYNNNYNYNYNYNNNYYNNYNNYNYYNNYNYNNYNNNYYNNYYNNNNYYNNYNYYYNNYYYNYYYYNNNYYNNNNYNNNNNYYNYNYNYNNNNYYYYNNNNNYYNNNNNNNNNYNNYYYYYNNYNNYNNNNNYYYYNYNNYYYNYYYNNYNYYNNNNNNNNYYNYNYNYYYNYNYNNYNYYYNYNNNYNNNNYYNYNNNNYYYNNNYYNYNYNNYNNYYNNNNYYNYNYYNYYNYNYNYYYNYYYYNNYYYYNNNNYNNNNYNNYNYYYYYNNYNNYNNYYYNYNNYYYNNNYNYNYNYYNYYNNNNYNYYNYNNNYNYYNYYYYYYNNNYNNYNYYNNYYYYYYYYYNYYYNYNNYYYNNYYYNYNNYYYNNYYYYNNYNYYYNYNYYNYNYNYNYYNYYYNNYNYYNYYYNNNNNYYNNYYYNNYNNNNYNYNNNNYNYYNYNNYNYYNYYNYYYNNYNYYNYNYYYNNNYYNYYNNNNYNYNNNYNYYNNNNYYYNYYNYNYNNYNNYNNYYYNNYYNNNYNNYYYYNNYYYNNYYYYYNNNYYYNNYYYYNYNNNNYYNNYYYYNNYNYYYYYYNNYNNYNYNNYYYYNNNYYYNYYYYNNNNNNYNNYNYYYYYNYNYYNNNNNYYNYNNYYNYYNNNNNNYYYNNNYYYNYYNYNNNNYYNNYNYNNYNNNNNNYNYYYNNNYNNNYYNYYYYNNNNNNNYYNYNNYYNYNYNYNYNYNNNYYYYNNYYYNYYYNNNNNYNNYYNYYYNYYYNNYYYNNYYNYNNYYNYNYNYNNNYNNYYNNNYNNYNYYYYYNYNNYYYNNYNNYYNYYNNNNYYNNNNNYNNNNYNNYNNNNYNYYYNYNYNNNYNNYYNYYYYNYNYNNNNNNNNYNYYNNNYNNYNNNNYNYNNYYYNYNNYYNNNNYYNNYNYYNNNNNNNYYYYYNYYNNNYYYNNYNNNYYYNYYYNNNNNYYNYNYNYNYYNNYNNNNYYYNYNYYYNYNYNYYNNNNNNNNYNYYNYNYYYYNNYYNNNYYNYNNYNYYYNYYNNYYNNYNYYYYYYYNYYNYYYYYYNNNNNNNNNYNNNYYYNYYYYYYNYNNYYYYYYYNNNNNYNNNYNYNYYNYNNNNYYNYYNYNYYNYNYYNYNYYNYYYNYNYNYYYNNNNNYNNNYYNNNYYNYNNNNYYYNNNNNYYNNYNNNYNNNNNYYNYYNNYNNYNYNNNYNNYYYYNYNNNYNNYNNNNNYNYNNNYNYYNYYYNNNNYYYNYNYNNNYNYYNNNNNYNNNYYNNNYNNYYYYYNYYNYNNNNNNNYNNNNNYYYNYYNYYYNNYNNNYYNNYYNYNNYNNYNYYYNYNYYYYYNYYYYNYNNYNYNYYYNYNYNNNNYNNYYYNNNYYYNYNYNNNNNYNNYNYYNYNYNNNYNYNYYYYNNNYNYYYYNNNYYNYNNNYNYYNYYYNYYYYNNNNNNNYNYNYYNYNNNYNYYYYNYYYNNNYNNNYYYNYYYYYNYNNYNNNYYYYYNYYYNNYNNYNYNYNNYNNYNNNYNNYNNNYYYYYYYNYNYYNNYNYYNNYNNYNYYYNYYNYNNNYYNNNYNNYYNNYNYYYYNNYYYYYYYNNNNYYYNYYYNNNNYYYNYYNYYNYYYYNNNYNYYNYYNNNYNYNNYNNNNYYNNYYNYNYNNYNNYYYNYYYNYYNYYYNYYNNNYYNNYNNNYNNYNYNYNYYYNNYNYNNYYNNNYYNYYYNYNNYYYYNYYYYYYYYNNNNNYYYNYNNNYYYNNNNYNNNNNYNNYNNNYNNNYYNYNYNNYNNYYNNYYNYNYNNYNNYNNYYNYYNNYNNYYNYNYYYYNNNNYYNNNNNNNNYYNNYYYYNNYNNYYNYYYNYYYYYYYNNNYYYYYYYNYYYNYNNNNYNYYYNNYYYYYNYNYYNNNNYYNNNNYNNNNYYYYYNNYNYYYNYNYNYYNNYNNYYYYNYYYNYNYNYYNNYYYYNNYNYYNYNYYYNYNNNNNYYNNNNNYYNNYYNYYYYYYYNNNNYNYNNNNNYYNYYYYYNNYYNNNNYYNNYNYYNNNNNYYYYYNNNNYNYNYNYYNYNYNYYNNNYYNNYNNYNNNYNNNNNNYNYNYYYYYYYYYYNYNNYNNYYNNYNNNNNNNYNYNNYYNNNNYNNYYYNNYYNYNNNYYNYNNYNYYNYNNNYNYNYNNYYNNYYNNNYNNYNYYYNNYNYYYYYNYYYNYNNNYNYNNYYYYYNYNNNNYNNNNYYYYNNNNYNNYNNNNYYNYNNNNYYNNNYNNNNNNYYYYYNYNNNNNNNYNYNYNYNNNYNYNYYYNNYNNYNNYYYYYYYYNNNYNYNNYYYNNNYYNYNNYYNYYYYYNYNNNNYNNNYYYYYYYNYYNYNNNYYYYYYNYNNYYYYNNYYNYNYYYNNNYYYYNNNNYYNNNNNNNYYNYNNYYYNYYYNNYNYYNYNNYNYNYYNYYYNYNYYYYNYNNYNYNYNYNYYYYNYYNYYNNNYNYYYNYYYYYYNNNYYNNNYNNNYNYNYYYYYNNNYYYYNNNYNNNNYNNYNYNNNYNYNNYNYYYNNYNNYNYNNYYYNNYYYYNNNNNNNNYYNNNNNYYYNNNNNNYNYYNNNNNNYNYYYNNNYNYYNYYNNNNYNNYYNNNYNYNNYNYNYNNNNYNYNNNNYNNYYYNNNNYYNYNYNYYNNNYNYYYYYNNYYYYNNYYYNYNNYYNYYYYYNYNYYNNNNNYYYYYNYNYYYNNYYNYYYYYNNYNNYYYYYYNYYYNNNYNYNNNYNYYYYNNNYYNNYNYYNNYNYYYNYNYYYYNYYNYNNYNNNNYYNYNYYNNNNNNNNYYYNNYNYNYNYNYNNYNNNNYNNYYNYNNNNNYNYYYNNNYYNYYYNNNNYYNYNNNNNNNNYNYYNYNYYYNNNNNNNNNYYNYNNNNNYYYYYNYYNNYYNNYNYNNYNYYNYYYNYNNYNYNNYNNNNNNYYYYYNYYNNNNYNNNYYYNYYYNYNNYYYNNNNNYNNYNNNYNYNYNYNYNNYNNYNYNYNYYYNNYYNYYYNNYYYYYYNYNYNNYNYNNYYYNYYYYNNNNNNYNYYNNYNYYNYYYYNYNYYNYNNYNNNYNNYNNYYNNNNYNYYNNNYNYNNNYNYYYYYNNYYYNYYNNYNNYNYYNNYNYNYNYYYYYYNNNYNNYYNYNNNYYNYYYYYYNYNNYYYNYNYYYYYYNYYYYNYYYNNNYNYYYNYYYYYYNYNYNYYYNYNYNYNNYNYYYYYYYYNNNNNYNYNNNYNNYYNNYYYNYNNNNNNYYNYYYNNNNYYYNYYNYNYNNYYYNYNYYYNNNNNNNNYYYYNNYNNYNYNYNYNYYNYYYNYNYYNYYYYNYNYYYYYNYYYNNYNNNYNYNYNNNNYYYYYYNNYYNYNYNNNNNYYYYYNNYNYNNYNNYYNNYNYNYYYYNNNNNYNNNNNNNYNYYYYYNYYYNNNNYNNYNYNYYNYNNNYYYNNYNYNYYYYNYYYYNNNYNNYNYYYNNYNNYYNYYNYNYNNYYYYNYNNNNNNYNNNYYNNNYNYYYYYNYNNYYYNYYYNNNYNNNNYNNYYNYNNYYYYYNYYYYYNYNYNYNYYYYNYNNNYNNYYYYNNYYYYYYNYYNYNNNNNNYNYNYNYNYYNNYNYNYYYYNNNYYNYYYNYNNYNNYNNYNNYYNNYYYYYYNYNNNNYYYNYNYNNNYYNYNYYNYNYNNNNYNNNNNYYYYNNNNNYNNYYYYYNYNNYNYYNNNNYNNYYYYNYYNYNYYYYNYYNYNYYNNYNYNYYYYYNNNNYYNYNNYNNNYNNYNYYYNNYNNNYNYYNNYYNYYYYNNYYNNNYNNNNNYYYYNNYNYNYYYNYNYNYNYYNYYYYNNYNYNYNYYYNYNNYYYYYNYNYYNYNYYYYYNYNNYYYNYNNNNYYYYNNYYYNNNNYYNNYNNNYNNNYNNNNNNYNYNYYYNYYYYYNNYYNNYNNNYYYYNYYNNNYNNYNYNNYNYNYNNYNNNNYYYYYNNNNYYYYNNYNNYYNYNYNNNNNNNYNNNNNNYNYYNYYYYYNNYYNNYYYYNNYNNNYNYNNNYNNYYNNNYNNYYYYYYYNYNYYNYNYYYNNNYYYNYYYNYNNYYNNNNYYYNNNYYNNNYYYNYNYYNNNYYNNYYNNYNNNYYYNNYNNYYNYYNYNYNYYNYYNNNYYYYNNYNYNNYNNYNYYNYYYYYNNNYNYYYNNYNNYNYYNNNYYYNYYYYNYYYYNNNYYYYYYYNYYNYYYNNNYNYNNNNNYYYNNNNYYNNYNYYNNNNYYNYNYYYNYNNNNNYYYNNNNYNYNYNYNYYYNYNYYNNYNNNNYNNNNYNYNYYNYYYNNNYNYNYNNNYYYYYNYYYYYYYNNYYYYYYNNNYNYYNYNYYNYYNYYNYNYYYYNYYNNNNNNNNNNYNYNYYNYYNNNYYYNYNNYYYYNNYNNYNNNYNYNNNYNNNYNNYYNYYNNNYYNYNYNNNYNNNNNYYNNYYNNYNNNNYYYYNNNYNNNYYNNYNNNNNNYNNYNNYNNNYYYNNYNYYNYNNYYNNYYYYNNYYYNNYNYNYYNYNYYYNYNNNNYNNNYNYNYYYNNYNNNNNNNYNNNYYYNNYYYNYYNNNYYYYYNYNYYNNNYNYNNYYYNNNNNNNYNYNNYYNNYNNNNNYYNYYYNYNYYNNYNNNNYNNYNNYYNYNNYNYNYYNYNNNNNNNYNYNYNYYYNYNYNNYYYYYNYNYNNYYNYYNNYNNNNYYYNYNYYYYYYNNYYYNNNNYNNYYNNYYYYYNYNYYNYNYNYYYYYYYYNYYNYNNYYYYYNNNYNNNYYNNYYNYNNYNNNNNYYYNNYYNNNNNYNNYNNNYNYYYNYYNYNNYNYYNNNNNNYYYYYYYYNYNYYYNNNYNYNYYYYYYNYYYNNNNNNYNYYNNNNNYYYYYNNYYYYNYNNYNYYYYNYNNYNYYNYYYYYNNNNYYYNNYYYYYNYYYYYNNNYYYNNYYNYYNYYNYYYNYNYNNYYNNNNNNNNNYYYNYYNNYYYNNYNYYYYNYYNNNYYNNNNYNYNYYNNYNYYNNYYNNNNYYNNNNYYYYYNNYYYYYNNYNYYYYNYNYNYYNNNNNYNYYYNYYNYNYYYNNNNYNYYNNNNYYNNYNNYNYNYYYYNNYNYNNYNYYNNYNNNYYYYNNNYYYYNYNYNYYYYYYYNNYYNYNYNNNNNNNNYNYNYYNNYYNNNNYYNYYYYNYYNNYYNYYYYNNNYYYNYYNYNNNNNNYNYYYNYNNNNYNYNYNNYYYYNYYNNYNNNYYYYYYYNNNYYYYYNNYNNNYNYNYNYNNYNNYNYNYYNNYYYYYYNNYNNYNNNYNNNYYYNNYNYYNNYNNNNNNNYNYNYNYNYNYYYNNYYNNYYNYYYYNNYNNNNNNYNYYNNNNNYNYYNNNYNYYYNYNYYYYNYNNNYYYYYNNNYNNNNNYYNYYNNNNNNNYNYNYNNYYNNYNNNNYNNYNYYYNYYNYNNYYYYYNYYYNYYNNYNYNYNYNYNNYNYYNYNYNYNNYYYNYNYNYYYYYNNNYNNYYNYYNNNNYNNYNNNNNNNYYNYNYNNYNNYYNYYNNYYNYNNYYNYNNYYYYNYNNYYYYNNNNNYNNYNYYNYYYYYNYNNNYYNNNYNYNNYYYNNNYYYYYYYYNYYNNNYYYYYNYNNNNNNNYNNNYYNNYNYNNYNNNNNYYYYYNYNYNNNYYYNYYYYYNNYYYYYNYYYNNNNNYYNNNNYYNYNNYNYNNYYYYYNYNYYNYYNNNNNNNYNNYNNNNYYYYNNNYNNNYNNNYYNYNNYNYYYYNYYNNYYYYYYYNYYYNNNYYYYNNNYYNNYYNYNYYNYNNYYYNNYYNYYYYYYYYNYNNYNNYNNNNNYYYYYNYYYYNNNYNNNNYYNYNNNYNYYNYNYYNN
|
28 |
+
Case #28: NYYYNNYNNNNYYYYNYNYYNYYNNNYNYYNNYNYYNYYNNYYNNNYNYNNNNNNYYNNNNYYNYNYNNYYNNYNYNNNYNYYNNYYNNNYNYNNNYYYNYNNYNNNNNNNNYYNNNYYNNYNNNYNYNNNYNYYYYYNYNNYNYYYYYYNYNNNYNNYYNYYYYNNYNNNYNNNNYYNNYNYYYNNNYNYNYYYNYNYNNYNYYYYYYYYYYNNYNYNYYYNYNNNNNYYYNNYNNNNYNNYNYNYYNNYYNYNYNYNYYNNNYYNYNYYYYYYYYYYNYYNNYNYYNYNNNYNYNYYNNYNNYYYNYYYNYYNNNYNNYYYYYYNYYYNYNYNYYNNNYYNNNNNYNNYYNNYNYYYNNNYYNYNNYYYNYNYNNYYYYNYNNNNNYNYYYNYNNNNYNNNNYYYNNNYYNNNYNYYNNYNNNNYYYNYYNNNYYYYNYYNNNYNYNNNNNNNYYYNNNYYNNYYYYNYYNYYNNNNYYNYNYYYNNNYNYYNYYNNYNYYNYNNNNNYNYYYYNYYYYNNYNNYYYNYNNNNYNYNNYNNYNYNYYYNNYNNNYYYNNYNNYYYNYNNNYNNYNYNYNYNNNYNYYNNNNYYYYNYNNYYYYNNNNYYYYYYYYYNNNNYYNNYYNYYNYNYNYNYNYYYNYYNNNNYNNNYYNNNNYYYYYYYNYYNYYNYYYYNNNYYYYYNNNYNYYNYNNNNNNYNNYNNYNYNYNYYNNYNYNNNNNYYNNYNYYYNYNYNNYNYYNYNYNNNYNNNNYNYNNNNNYYYYYNYNYYYNNNNNYYYYNNNYNYYNNYYNNNNNYNYYYNNYNYNYYYYYYNYNNNNYYNYYNNNYYYYNNYYYNYYNNNNNNYNNYNYNYYYNYYYNNNYNYNYYYNYYNYNYNYNNYYYYNYYNNNNNNYNYYNYYYYYYNYNNNNNYYYNNNYNYYYYYNNNYYYYYYNYNYNYNYNYYNYNNNNNYNNNNYNNNYNYYNNNNYYYYNNNNYNYNYYNYYYYYNYNYYYNNNYYNYNNNNYYYNNYYYNYNNYNYNYNNYNYNNNNNNNYYNYNNYNNYNNYNYYNYYYYNYNYYNYYYNNNNNNYYNNYNNYYYYYYNYNNYYYNYYYNYYYNNNNNYYYNNYNNNYYNNNNYYNYYYYNYYNNNNNNYNYYYNNYNYYNYYYYNNYYNNNNNNYYYNYYYNYNYNYNYYNYYYNYYYYNYYYYYNYYYYNNYYNYYYNYYYNYYNNYNNYYYNNNNYNYNYNYYYYYYYYYYNYNYNYYNYYNYYYYNNYNYYYNNNYYNYYNYYNNNNNYNYNNYNNYYYYNNNYNYNYYYNNNNYYYNYYYYNNYYYNYNNYYYNNYNYYYYNNYYNYYYYNYYNYYYYYNYNYNNNNYYNNYNYYYYNNYYNNYYNNNYNNYNYYNNNNYNYYNYYYNNYYNYNNYNYYNNYYYNNNNYNNYNNYYNNYYNNYNYNNNNNNNYYNYNNYYYYNNYNNYNYYYYYNYNYYNNYNYNNNNYYYYYYYYNNYYYNYYYYNNNNNYNNNYYYYYYYNNNNNYNNYNYYYYNNNYNYYNNNYYNNNYYYYNNNYNNNYNYNNNYNYYNNYNYNNYYNNYNNNYNYNNNNNNYYNNYNNYNYYYNNYNNYYYNYYNYYYNNNYYYYYNYYYYYYNYNYYYYYYNYNYNNNYNYNNNNNYYNNYYNNYNNYYYNYNNYYYYYYNYYNYNNNNYYNYYNYNYNYYYYNNYYNYYYYYYYNYYNNYNYNYNNNNNYNYNNNYYNNYNNYYNYYNNYNNNYNNYNYYNNYYYYYYYYNYNYNNNYNNNNNYNYYYYYNNYNNNYYYNNNYYNNYYYNYYYNNYNYNNYYYYNNNNNNYYYYYNNNYYYYNYYYYNYYYNYYNNNNNNNYNNYNYYYNNYYYYNYYYNYYNNYYNYNNNNYNNYNYYYYYNYNYNYNYYYNYNNYYYYYYYYNNYYNNNYYNNNYYYNNNNYNYNNYYNNNYNYNYNNYYYNYYNYNNNNYNYYYYYNYYNYNYYNYNNYNNNNNNYYNNYYNNYNYNYYYYYNYYNYNNYYNNYNNYYYYYYNYNYYNNNYYNYNYNYNNYNNYNYYNYNNNYYYNNNNNNYNYNNYNNYYYYNYNYNNNNNYYYYYYNYNNYNNNNYNNNNYNYYYNYYNNYYYNNYNYNNNYYNNNYYYYYYYNYYYNNNYYYNYYYNYNNYYNNYNNNYNYNYNYNYNYYNYYNYNYYNYNNNYNNYYYYYYYYYYNYYYYNNYYNYNYNYNNNNNNYNYYYYYYYYNNNYYNNYYYYNNYYNNYNNYYYNNYNNNNYNYYYYYNNYNYYYNYYNNNYYYNYNYNNNYNYNYYYYYNNYYNYNYNNNNYYYYNYYNNYYNYNNYNYNNNNYNYNNYNNNYNYNYNYNYNNYYYNYYNYYYNNYNNYNNNNNNYNNYNNYNYYNNYYYYNNYNNYYNYYYYNNNNNYYNYYYNNNYNNYYNYNYYNYYYYYYYNYYYYYNNYYYYYYYYYNYYNNYNYYNNYYYNNNYNYNNYYYYYNNYNYNYNYYNNYYYNYNNYNNYNYYNYNYYYYYYYYYYNYYYYNNYYYYNYNYNYNYYNYYYYYNNNYNNNNNNNYYYYNNYYNYYNYYYNNNNYNYYNYYYNNNYYYNYNNNNYNNYYNNYYNYYYYYYYNYNYNNYYNYNYYNYNYNYNYNYYYNYYNNNNNNYYYNYYYNYYNNNYYNYNYNNYYNNYYNNYYNYYNYYYYYYNYYNYYYNYYYYNYNNYYYYNNYYNYNYYYNNYYNNYNYYYNNYNNNYNNNYYNNYYYYNNNNYYNNYNYYNNYYYNYYNYNYYNNYYNYNNYYNNNNYYYYNNNNYYYYNYNYNYYYYYYNNYNNYYYYYYNYNYNYNNYYYYNNNYNNNYNNYYYNYYNYNYYNNYYNNNNNYYNNYYNYYNYYYYNNNYYNNYYYNYYNNNNYYNYYYNNNNYYYYYNYYYNNNNNYNYYYNYNNNNNYYYNYNYYNNNYNYNNNNYYNNYYYYNNNYYYYNNNNNNNYYYNYYYYYNYYYNNNNNNNNNYNYNYYNYNYNYYNNYYYYNNNYNYNYNNYNNYYYNNNNYNYYYYNNNNNYYYYYNYYNNNYNYYYYYYNNYYYYYNNYYNYYNNYNYYYNNNYNYYYYYNYYYYYYNNYNNNNNNNYYYYYNNYNNYYNNNYYNYNYNNYNYNYNYNYYYNYYYYYYNNNNYYYYYNNNYYYYYNNYNNYYYNNNYNYYYNYYYYNYNYNNNYNYYYYNYNYYNYYNYNNYYNYYYNNNNNYNYNYNNNNNYYYNYYNNYYNYYYNNNYYYYYYNNYNNNYYNYYNYYNYYYYYYNYNNNNNNYYNYYYYNNYYYNYYNNYYNYYNYYNNYNNNNNYNNYNYNYNYYNYNNNYYYYYYNNYYNNYNYYNYNNNYNYYNNYNYNNYNNYNNNYNYNNNYYNYYNYNNNNYYYYYYYNNYNYNYNYNYYNYNNNNNYYNNNNNYYYYYNYYYYNNYYNNYNNNYYNYNYYYYYNYYYYNYYYNNNYNYNYNYNNNYNYNYYYYNNYNYYYYNYYYNYYYYNNYNNYNYNYYYYYNNYYYNYYNNNYYYYYYNNYNNNNNNYNNNYNYYYYNNNYYYNNYYNNYYNYNYYNNYNYNYNYYNYNYYYYYNNYNNYNNYYNYYNYYYNNNNYYYYYNNYYYYNYYNNNYYNNYYYNYYYNYYYYYNYYNYNNNNYYYYYYYNNNNNNYNNYYNNYYYNNNYNNNNYNYYNNYYNYNYYNYYYYNNYYYYNYYYYYYNYYNYYNYYNNYNNYNYYYNYNYYNNYNNYNYYNNYNYNYNNYYNYNYYYNNNYNYYYYYNNYYNNYYYYNYYNNYNYYYYYNYNNYYYNNYNNYYNYNNYYYYYNNNNYNYNYYNNYNNNNNYNYNYYYNNYNYNYNYNNYNYYNNYNNNYYYNNNYYNYNNYYNNYYNYNYNNYYYNNNNYNNNYYNNYNYNYNYNNNYNYNNNYNNNNNYNNNYNYNYYNNYNNYNYNYNNNYYNYNYNNYYYYNYYNYYYYYNNNNNYNYNNYNNNYYYNYNYYYYYNYYNNYNNYYNYYYYNNYYYYNNYNYYNNNYYNNYYYYNYYYNNNYYNNYNYYNYNNYYYYNYNYYYNYYNNNYNYNYYYYNYNYNNNYNNYNNYNYYYNYYYNYYNYYYNNYNNNYYNYNNYYYYYNNNNNNYNYNYNNYNNNYYNNYYNYYNNYNYNNNNNYYNNNYNYNYNYYNYNNNYYYYNNNNNNYNYYNYNNYNYYYNYYYYYYNNNNNNNYNNYYNYNNYYNYYYNYYYYYYYYYYNYNYNYYNYYYYYYYYNYYYNNYNYYNYNYYNYNNNYNYYYNYYNNNYYNNNYYNNYYNYYNYYYNNNNNNNNNNNNYYNNYYNNYYNYYYYYYYNNNYYYNYYYYYYYNNYNNNYNYYNNNNYYYYNNYYYYYNNNYYYYNYYYYNYNYNYNNYYNNNYYYYYYYNNNNNYYYNYYYYYYNYNYNYYNYNNYYYYYYYNNNYYNNNYYYYNNYYYYYYYYNYYNNNNNYNYYNNNNNNYNNYNYYYYNYYYNYYYYNYNYYYNNYNYYNNNYYNYNNYYNYNNYNYYNYNNNNYNYNNYYNNNYYYYNYNYNYNYYYYNYNNYYYNYNNNYNYYYNYNYNYNYYYYYNYYNYNYNNNNNYYYYYYNNNYYNYYNYYNYNNNYYYYYYYYYNYYNNNNNYYYYYYYYNYNYYYNYYYYYYNYNNNNYYNNYNNYYYYYYNNYYNNYNYYYNYNNNYYNNNNYNYNYYYYYYNNYNYNYNYYYNNNYNNYYYYYNYYYNYNYYNYYNYNYYNYYNYNNNYNYNNYYNYYYNNNYNYYYYNNNNNYYNNNNNYYNYYNNYNNNYYYNNNNYYYYNNNYNYYNYYNYYNNYYNYYNYNYNYYNYYYNYYYYNYYYNNNNYYNNYYYNYYNNYNNNYYNYYNYNYYYYNYYYNNYNNNNYYYNYNNNNYYYYYYNYYYYNNNYYYNYYNNYNYYYNNYNYNNNNNNYYNNNNYNYYNNNYYYYNYYNYNNYNYYNYYYYYNNYYNYYYYYNYYYNNNNYNYYNNNNNNYNNYYNYYNYNNYYYNYYNNYYYNYNYYYNNNNYYNNNYYYNYYNNYYYNYYNNYYYYYYYNYYYYYYNNNNYYNNYYYNYYNNYNNYYNNNNYYYYNYYNYYYNYNNNYYYNNNNYYYYYNNNYYNNNNYYNNYYNNNYYNNNNNYNYYYNYNYYNYYYNNNYYNYYNYNNNNNYYNNNYYNYNYNYYNYYNYYNNYYYYYNNNYYYNNYNYNNYNYYYNNYYNYYNYNNYYNYYYNYNNNNNYYYNYNNYYNNYYNYYYYYNNNNNNNNYYNYNNNYYYYNYNNYNYYNYYYNYNYNYNNYNNNYYYYNYYNNYYYNYNYNYNNYNNYNYNNNYYNYYYNYNNNYYNNNYNNYNYYYYYNNNYNYYNNYNNNNYNYYYYYYNYYNNYNYYYYYYYNYYNNYYNYNNNYNYNYYNYYNYNYYYYYYNNNNNNNYNYYNYYNNNNNYNYNNNYYYYNNYNYNYNNYNNNYYYNNYNYNNYNYYYYNNNNYNYYYYYYYYNYNYYYYNNYNYNNNYNYNNYNYNYYNYYNNNYNYNNYYYNYYYNNNNNYYNYNYYNNNNNNNNNYNNNYNNYNNNNYYYNYNNYYNNNNYYNNYNNYYNYYNNYYYYYNYYNYNNYYYNYYNYYYYNNNYYYYYNYYYYNNYYYYNYNYNYNYNYYYYYYYYYNYYYNNYYYYNNYNNYYYYNNYYYNNNYNNNYNYNNNYNNNNNYYNYYNNNNYNYYYNYNNYNYYYYYYNYYYNYYYYNNNNYYNYNYNYNNYNYYNYNYYYYNYNYYNYYNYNYNYYNNNNYNYNNNNNNNNNYNNYNNNYYYYNYYYNNNYNNNNNYNNYNNNYYYYYNYYYYYYNYYYYYYNYYNNNYYNYYYYNNYNYYYNNYYYYYNYNYNNNNNYNYYYYNYYYYYNYYNYNNNNNNNYYYNYNNNYNNYYYYYYYNYNYNYNYNNNYNYNYNYYYYNNYYYYNYNNNNYNNNYYNNYNYYYYNYYYYYNYYYNYNNYYNYNYYYYNYYNNYNNYYNYYYNNYYNYYYNYNYNNNYNYNNYNYNYNNYYNYYYYYNNYNYNNNYNNNYYYYYNNYYYNNNNNNYNYNYNNYYYNYNYNNYYYYNNYNYYYYNNYYNYNNYYNYNNNYNYNYNYYYNYNNYNNYYNYNYYYYNYYNNNYYNYNNYNYNNYYNNNNNYNYNYYNNYYYYNYNYYYNYNYYNYYNYNYNYNNYYNYNNNNYNYYYYYYYYNNYNYYNNYYYNNYYYNYYNYYNYYNYYNYYYNYNNNYYNYNYNYNNYNYYNYYYYYYNNYNNNNYYNYNYNNNYYNNNYNNNYNNYYNYYNNYYNYNYYYNNNYNYNYNNYNNNNYYNYNYYNNYNYYNYYNYYYNNYNNNYNYNNNYNNYYYNYNNYNNNNYYNYNYNNNYNNYYNNYYYYYNYYYYYNNNYYNNYYNNYYYNYNYNNNNNNYNNYNYYYYNNNNYYNYYYYNYYNNYYNNNNNYYYYYYYYNYYNYNYNNYYYNNYNYYNYNNNYYYYYNYNNYNYNNYYNNYYYNNYNYNYYNYNYYNNNNYYYNNYNNYNYNYNYNYYNNYNYYYNYYYYNYYYYYYYNNNNNNYYNYYYNYYYYYNNYYYYYYYYYNNYYYYNYYNYNNNNNYNNYNYYNNNYNYNYYYYYYYYYYYYNNNNYYYYNYYYNYNNNYYNNYYYYYNYYNNNYYYYNNNYYYYYYYYYYYNYYYNYYYYNNYYNNNNYNNNYYYNYYYNYNYYNNNYYYYNYYNNNNYYNYNYNNNNNYYYNYYYYYNNYNNNYNYNYYNNYYYYNYYYYNYYNNYNNYNYNYNYNNNYNYYYYYYYYYYNYNYYYNYNNNNNNNNNYNYYNYYYYNNYNNYYYNNNYYYYYNNYNYNYNNNYYYNNNYYNNNYNNYNYNYNNYNNYNYNNYNNYNYNNYNYNNNYNYYYNYYYYYNNYYNNNYNNYNNYYYNNYYYNYYYNYYYYNNYNYYYYNNNYNNYNNNYNNNNNYNYNNYNYNYYNYYYNYNYNYNYNYNNYNNNYYNNNYNYYYNYNNYYNYNNNYYYNYYYNYNNNYYYYYYYYYNYYYNYNNNYYYYNNYYNYYNYNNYYYYYYYYNYYYYYYYYNYNYNYNYNYYYYNYNYNYNYNNNNYNNYYYNNYNYYNYYNYNYYYYNNYNYYNYYNNNYYYYNNNYYYYYYNYNNNYNYNNNYNNYYYNYNYYYNYNYYYYYNYYYNNNNYYYYNYNNNNYYYYNNNNYYYNNNNYNYYYNNNYNNNYNNNYNYNYYNNYNYYYNYNYNYYNYNNYYNYNYNYYYYNNNYYYYYNNYYYNNNNNYNYNNNNNYNYNNNYYYNYNNNYNNYNNNNYYNNYYYYNNNYNYYNYYYYNNNNNNYYYYNYNNYYYNNYNYYYNYNNNYNNYYYNNYYNYNYYYNNNNNNNNYYYYNYYYYNYYYNNYYNNNNNNYYYYNYYYYYYYYYYNYNNYYYYYNYYNYNYNNNYYNYYNYYNNYYNYYYNYNYYNYNNNYYNYYYNYYYNNNNNYYNNYYYNYYNYYNNNNYYYNYYYNYYYNYYYYNYYYYYNYNYYNYYNNNNYNYYYYNYNYYYYNYYYYYYYNNNNYYNNYYYYYNYNNNYYYNNNYYYNYYNYNYNYYYYYYYYNNNNNNYYYNNNYNNNNNNNYNYNNNNNYYNYYNYYNYYYNYYYYYNYYNYNNNNNYNYYNNNNYYYYNYNYNYYYNNYYNNYYNYYYNNNNNNYNYYYYNYNYYYNNNNYNNYNNNYYYNNYYYYNNNYNNYYYYYNNYNYNYNNYYYNYYNYYNYNYYNYYYNYYYNNYNYYNNYYNYNYNNYYYNYNNYYYYYYYNYYNYYYYNNYNNNNNNYNYYNYNYNYYYYNYNNYYNNNYNNNNNYYYYNYYYNYYNYNNNYNYYNNYNYNNYYNNYYYYYYNNNNNNYNNYYYYYYNYYYYYYYNYNYNYNNYYYYYNNNNNNNYYYYYYYNYYYYNNYYNNYYYYNNYYNYYYY
|
29 |
+
Case #29: YNYYYNNNYNNYYNYNYYNNNYNNYYYNNYNYNNNNYYNYYNNYNYNNNNYYNNYYYNNNNYNYYNNNNYNYNNNYYNYYYNYYYNYNYYYYNYYYYYYNNNYYYNYYNYNYNNNYNYYYYNNNYNNNNNYYNNYYYYNNYNYNNNNNNNNNNNNYYYNYNYNNNNNYYYNNNNYNNYYYNNYYNYNNYYYYNNYYNNNYNNYYNNYYYYYNYYNYNYNYNNNNNYNNNYYNYYYNYNYNNYNNYNNYNYNNYNNNYYNNNNYYNNNNNNYYYYNNNYYNNYNYNYNNNYNNNNNYYNYNYYYNNNNNNNYYYYNNYNYYNNNYYNNYNYYNYNNYNYYYYNYYYNNNNNYYYNYNYYYYNNNNNYYNYYYNNYNYYNNNNNYNNYNYYNNNYNNYNYNYNYNYYYNNYNYNYYYYYYYYYNNYNYYYNYNNNYYYNNYNYNNNYNYNNYYYYNNNNYYYNYNYNYYNNNNNNNNYNNYNNNNYNNNNYNYYYNYYYYYYNNYNYNYNYNNYNYNYNYYNYYNYYYYNYNYYYYYNYYNNNNNYYNNYYNNYYNYNNNNNYYYNNYNYYYNYNYNYYNNNNNYYYYNYYNNNYNYNYYNYYYNYNNYYNYYNNYYYYYNYNYNNYNYNNYYNNYNYNNNYYYNYNYNNNYYNYYNYNYYNNYYYYNYNNNNNYNNNYNNNNNYNNNYYYYYNYNNYYYNYYYNYNNNNYNNNNNNYNYYNYYNNNYNNNYYYYNNNYNNYNYYNNNYNYNYNYNNYYNNYNYNYYNNYNNNYYNYYNNYYYNNYNYYYNYYNNNYYYYNYYYNNNYYYNNNYYNNNNNYNYNYNNYNNYNYNNYYNNYYYYNNNYYNNYYNNYYYNNYYNYNYNYNNYYYYNNYYNNNYNNYYYYNYYYYNYYYYNYYYYYYYNYYYYNNYYYNNYYNYYNYNNYYNNNYNYNYNNNYYNNNYNNNYYYNYYNYNNYYNNNYNYYNYYYYNNNYYNNYYYYYYNYYNNNNNNNYNNNYNYNNNNYYYYYYNNYNYYYYYNYNNYNNYNNNNYNNYYYYYYYNYYNYNYYNNNYNNNYYYNNNYNYYYNYYNNNNNYYYNNYNYNYNNYYYNYYYYYYNYYNYNNYYNNYYYNNYNYNYNYNYNNYYYNYNNNNNNYYNNYNYNYYNNYYYYYYYNYYYYYNYNYNNNYNYYYNYYYYNNNYNYYYNYNNYYNNYYYYYNNNNYYNNYYYYYYYNNNYNYNNNNNNYYYNNYYYYYYYYNNYNNNNNYYYNNNYNNNNYNYNNYYYYNNYYNNNYNYNYYNYNNYNYNYYYNYNNYNNNNNYNYYYYYYNNYNNNNYNNNYNNNNNYNNNNNYYNNNYNNNYYYNNYYYYYNYYNYNYNNYYNNNYNYYNNNNNYNNNNNYNYYNYNNNNYNYYYYNNYYNNYYNNNYYNNNNNNYYNYNNNNYYNNNNNNYNYYNNNYNNYNNNNNNYNNYYNYNNYNYYNYNNYYYYNYYYYYYYNYNNNNNNNNYNNNYYYYNYNNNNNNNNNNNNNNYNNNNYYNYYYNYYYNYYYYNNYNNYNYNYYYYYNYYYYNYNYNNNYYNNYYYYYYNNNNYNNYYNYYNYYYNNNNNYNNNNNNYNYNNYNYYNYYNNNYYYYNNNYYNNYNYYYNYNNYNNNYYNYYNNYYYYNNNNNNYNYNNNNNYYYNYNYNYNNYNYNYYNNYNNYYNYNNNYYYNYYNNYNNYNYYNYYNNYNNYNNYNYNNYNNNNNYNYYNNNNYNNYYNNNNYNYYNYYYNNYNNYYNYNNNYNNNNYNNYYNNNYNNNYYYNYYYYNNYYYYYNNNYNYNNYYNYYNNYNYNNYYYYYNYNYYYYNNNNYNNNNNNNNYNNNYYNYYYNYNNNYYNNNYNYNYYYYNYNNNNNNNNYNYYYNNYYNYYYYNNNYNNYYYYYNYNYNNYYNNYYYNNNYYNYNYYNNYYYYNNNYNNNNYNNNYYNNNNNNYYYNYYYYYYNYNYNNYNYNYNYNNYYNNYYNNYNYNNNYYYYYNYYNYNNYNNYYYYNNYNNNNNYYYNNNNYYYYNNYYYNNYNNNNYNYNYNNNNNNNYNYYYNNNYNNNNYYYYYNYNNNNNYYNNNYYNYNNYNNNYNNNNYNNNNYYYNNNYNNNYNNNNNNYNYNNYNNNNYYNYNYYNNYNNNYNYYNNNYYYNNYYNYYYYNYNYNNNYNYYNYNYNYNYYNYNNNNYNNNYNYNYNNYNYNNNYYYNYYNYNNYNYNNYNYYYNYNNYYNYYYNYYYYYNNNNYNYNYNNNNNYYYNNYNNYYYNNNYYNNYYYNNYNYYNNNNNYYYYNNYNYYYNNYNNYYNYYNNNYNNYNYYNYNYNNNYYNYNNYYNNYNNNYNNYNYYNNNYYYNYYYYNNYYYNYNNNNYNYYNYNNNYYNYNYYYYNYYNNYYNYYYYNNYYNNYYNYYNYNYYNYYNNNNYNNNYYYYYNYYYYYYNYNNNYYNYNNNNYNYNNYNNNYYYYNNYYYNYNNYYYNNNNYYYYNNNNYYYYNYYNNNNYNNYNNYYYNYYNYYYNYYNYYYYNNNNNNNYNYNNNNNNNYYNNNNNNYNNNYNNNNYNYNNYNNYYYYNNYNNYNYYYYYYNNNYNNYNYYYNYYNNYNYNYNNYYNNNNNNNYNYYNNNYNYNYYNYYYYNNYYYNNYYYYYYNYYNNYNNNNYYYNYNYYNYYNNYYNNNYYYNNYNYYYNYNYYYYNYNYNNNNNNYYNNNNNYYYNNNNYYNNYNNYNNYNNYNYYNNNYNNNYYNNNYNYNYNNYYNNYYYYNNYYNYNYYYYYNYYNYYYYYYNYYNNYNNYNYYYYNYYYYYNNYYYNYNNYYYYYYNNYYYYYYNNYNYNNNNNYYNNNNYNYYNNYNNNNYNNYYNYNNNYNYYNYYNNNNYNYYYNYNNYYNYYNYYNYYYNNNYYNYNNYYYYYNNNNNNNNNYNYYNNNYNYNNNNNYYNYNYNNYNYYNNYNYNYYYNNNNYNYNYYYYNNNYNYNYYYYYNNYNYNYYNNNYNNYYNNNYNNNYNYNNNYYNNNYNYYNYNNNYNNYNNYYYYNYNYNYYYNNYYNYYYYNNNYNNYNNNYYYYYNNYNYNYYYNNNYNNNYNNYNYNNNYYNYYYYNYYYNNYYNNYNNNYNNNNYNNNYNYYYNNYNNYYYYNNNNYYYNYYNNYNNNYYNYYNNYYYNNNNYNNYNYYNYNNYYYYYNYNNNYYNNYYYNYYNYYYNNYNYNYYNYYYNNYYYYNYNYYYYNYYYNYYNNYNYNYYNYNYNNNYYNYNNNNNYYNNNYNYYNYNNNYYNNYYNNYNYNYYNYNNYYYNYYNNYYNYNNNNNYYYNNYNYNNYYYYYNYYNNNYYYNYYYNYYYNYYNYYYNNYYYNNNYNYYNYYNYNYYYYNNYYYYYNNNYYNYNYYYYYNNYNYNNYNYNYNNYNYNNNYNNYNNNNYYNNNNYNYYNYNYNNNNNNYNNYNNYNNNYYYNYNNNYYNNNNNNYYYNNNYNNYNYNYYYYNYNNYYYNNYNYNYNNYYYYNYNNNNNYNYNNYYNYNYNNNNYYNYNNNYYNNYYNNYNNNNYYNYYYNYNYNNNNNNNYNNNNNYNNNYYNNYYYNYNNYYYNNYNNNNYNNYYNNYNYYNYNYNNYYYYNNNYYNNNYNNNYNNNNNYYNNNNNYNNYYNNYYNNNNNYYYYNYNYYYYYNNNNNNNNNNYNYNNNYYYYYYNYNNYNYYYYYNYYYNNYNNNNYYNNNNNYNNNNYYNYYNNNNYYNYYNNNYNYYNYNYYYYNYYYYNNNNNYYNYYYYYYYYYYNNYNYYYNYYYNNNYYYNNNYNNYYYNYYYYYYYNYNYNYYYYNNNNYNYYYNYYNYYYYYNNNNNYNNNNYYNNNYYYNYYYNNNYNNYYYYYYYYNYNNYNYYYYYNYNNYNYYNNYYYNNYNYNNYYYNYNYYYNYNNNNNNNYYNYYNYYNYNYYNYNNNNNYNNYNNYYYNYNNNNYYYNNYNNNNNNYNNNYNYYNYYNNNYYYYNNYYYYNYNYYYNNNNNYYYNNYYNNYYYYYNNNNYNNYYNNYNNYNNNYYNYYYYYNYYNYYYYNNYNNYYNNYYNNNYYNYNYNNYYYNYYNYNNNNYYNYYYYNNNYYYYNNNYNNNNNNNYYYYNNNNYNYYYYNNNNNYYNNYNYNYNYYYNYNYNNNYNNNYNYNYYNNNNYYNNNNNNNNYNYNYNNNYNNNYYYNNNYYNNNYNYNNNYYYYYNYNYNYYNNYNNNNYNNYNYYYYNYYNYYNNNNNNYYNNNYNNYNNYYNYNYYYYNNYNNNYYYNYNNYYYYYYYNNNNNNYYYYNNNYNNYNYYNNNYNNYNYYNYYYNNYYYYYYYNNYNNNYNYNNYYYYYNNYNYNYNYYNNYNNYYYYNYYNYYYNYYNNNNNYYYNYNYYYNNNYNNNNNNYNNYYYYYYNNYNYNNNNYNYYYYNYYYNNNNNYNNYNNYNNNNNNYNYNYNNYNYYNYNNNYNNYYNNNYYNNYYNYNNYYYNYYYNNYNNYNNNYYYYNYYNNYNYNYNYYNYYYYNNNYYNNYNYYNNYNYNYNYYYYYYNNYYYYYNNNYNNNYNYNNYYYNNYNNNYYYYYNNYNYNNYNNNNYNYYYYYYNYNNYYNYYNNYYYNYYYYYYYYNYYNNNYYNYYYNNYYYYNNNNYYNNYYNNNYYYNYNYNNNYNYNNYNYYNYYYNYNYNYYYYNYYNYNYNNNYNYYYYYYNYYYYNNYYNNYNNNNYNNYYYYNYYNYNYYYNNYNYYNNNNNNYYYNYYYYYYNNNYYYNYYNNNYYNYNYYYNNYNYYYYYYNNYYYYNNNNNYNNNNYYNNNYYYYNYYYNYYYYNYYNNYNYYNNNYNYYNYYNNYNNYNYNYNYNNYNNYYYYNYYYYNYNNNNNNYYYYYNYYNNNYNNNNNYYNNYNNYYNYYYNYYYNYNNNYYYNNNNNNYNYYNNNYYNNNYYYNYNNNYYYNNNNNYYNYNNNNNYNNYNYYNNYYNYNNYYYYYNYNYYYNYYYNYYYNYYYYNYNYNYNNNNNYYNYYNYNYYNYNYYYNYNNYNNYYYYYNYNNNNYYNNNYYYYYNNYYYNYNNYYYYYNNNNYNNYYYYNYYNNYYNNYNYYYYNYNYNNYNYNYYYNNNYYNNNNYYYNYYNNNNNYNNYNNNNNYYYYNNYYNYNNYNNYYNYYNYNYYYNNYYYNYYNYYNYNNYYYNYNNNYYNYYNNNYYYNYYNNNYYYNYNNNYNNNYYNNNNNYYNYNNNYYNNNNNYNYNYNNNNNNYYNNNNNYYNYNNYNNYYYYYNNYYYNYYNYNYYYYNYYYYNNYNYNYYNYNNNYYNNNNNNNNNYYYYYNYYNYYNNYNNYNYYYYYNNYYNNNNYNNYNYNNNYYYYNNNNNYYNNNNNYYNYYNYYNYNNYNYNNYYNYYNNYNNYYNYNYNNNYNNYYYNYNYNYYNNNNYNNYYNNNNYNYYYNNNNYYYYNNNYYNNNNYYYYYNYNNYYNNYYYNYNYNYYYYNYYYYYNNYNYYYYYYNNYNYYNNNYNYNNNNNNNNNNYNNNYNNNNYNNNNNNYYYNNYYYYNNYNNNYNNNNYNNYNYNYYNYNYNYNYNNYNYYYYYNNYYYNYYYNNNNYYYNNYNYNNYYNYNNYNNYNNYYYYYNNYNYNNNNYYNYYYYNNNYYNNNNYYNNYNNYYNYYYNNNYNNNNYYYYNYNNYYNNNYNYNYYYNYYYYNNYNYNNYYNYYYNYYNNYYYNYNNNNNNNNNNNYNNYNNYYNNYYYYNYNYNNNNNYNNYNYYYYNYYYYNNNNYYNNYYNNYNYYYNNNNYNNNYNYYNNNYYNNNYYYNNYYYNYYYNNYNYNYYNNNNNYYYYNYYYYYYYNNYNYYYYNYYYYNYNYYNYNYNYYNYNYYNYNNNYYYNYYNNNNNYNYYYNYYYYNNYYYYNNNYNYYYNYNYNYNNNNNNYYYYNYNNNNNYYYYYNNNYYYYYYNYYNYYNNYNYNYYYNYNYYNNYNNYYNNYYYNNNNNNNNNNYNYYYYYYNYYYYYNNNNNYYNNNNYYYYYNYNYYNNNYYNNYYYYYYNNNYYYYNYNYNNNNNNYYYYNNYYYYYNNYNNYNYNYYNYNYYYYNYNNNYNNNYYYYYYNYYNYYYYNYNNYYYNYNYNNNYYYYYNNYNNNNNNYNYNNNNNYYNNNNYYNNYYNNYNNYYNNYYNYNYNNYYNNYNNYYNNYNYNNNNNYYNNYYYYYYYYNYNYYNNNNYNYNYNNNNYNNNYYNYYYYYNYYNNNYNNYNNNNNYNNYYYYNNYNNNYYNNYYNNYYNNYYYNNYYYYYYYNYNNYNYYYNYNYYNNNNYYYNYNYNYNYYYYYNYYNNNNNNYYYNNYNNNYYYNYNYYNNYYNNYYYNYYNYNNYYYYYYNNNYNYYNNYNNNNNNNNNYNNYYYNYNNYNNYNNNYNYYNYNYYNYYNYYYYNYYYYNYNYYYNYYNNYNNNNNNNNNYYYNNYYNYNNNNYNYYNYNYYYYNYNYNYYNNYYNYYNNYNYNYNNNYYNNNNYYYYYNYNYNYNYNNNYNYNYYNNYNNYNYNYNYNYNYYNYNYYYNNYNYYNNYNNYYYYNNNYNNYNYYYNNYYYNNNYNYNYYYNNYYYYYNYYYYNYYNYYYNYYYYYNYYYYNYNYYYNNYNYYNYYNYYNNYNNYYYNNNNYNYNYYYYNNNNYYNYNNYNNYYYNYYNYYYNNYNYNNYYNNYYYNYYNYYYYNNYNNNNYYNYYNYYYNYNYNYNYYNNYYYNYYNNYYNYYYNYYNNYNYYYNNNNYNNYNNYNYYYYNYYNNYNNNNYYNNYYYNNYNNNYNNNYNYYNNNYYYNNYYYNYYNNYNNNYYYYNYYYNNNYYYYNNNYNYNYYNNNYNNYYYNYNNYYYNYYNYNYNNNYYYNYYNNYYYNYYYYNNYYNNYNNNYYYYYNYNYYYNYYNYNNNYNYNYNNNYYYYNYYYYYNYNYNYNNYNNYYYNYYYYYNNYYNNYNNYNYYYNYYYNNNNYNNNNYYNYNNNNNYYNNNNYNNNNYYYYNYYYNNYNYNYNNNNYNYNYNNNYNNNYNYYNYNNNNNYYYNNNNNNNYNYNYYYYYYYYNNYYNNYYYYNNNNYYYNYYYNNNYNYNYYYYNYNNNNYNYYNYYNYNNYNNYYYYYNNNYNYYYNYYYNNYYNYNNYYYNNNNNYYYYNNYNYNYYNYNYYNYYYYYNYYYYNYNNNNNYYYYYNNNYNNNYNNYYYNNNYYYYYYNNNNYYNYYNNNYNYNNYYYNNNYNNYYYNYNYYYYNYYYNNYNNYYNNNYYYYYYYYYNNYNNNNYYNNYYNNYYNNYNYNNNYNNYNYNYYNYYYNNNYYYNNYYNNYNNYNNYYYYNNNNNNYYYNYYYYYYYYNYYNNYNNNNNNNNNNNYYYNYNYYYNYNYYNNNYYYYYNNNNYNNNYNYYYNNNNNNNYYNNYNNYYNYNYNNYYYYYNNNYYNNNYYYNYYNYNNYYYNYYYNNYNYYYYNYYYNNYYNNNNNYNYYNYNYNYYNNNYNYNYNNYYNYNYNNYYYNNYNNNYNNNNNNNYYNNNNYNNNNNYNYYNYYNYNYNNNYYNYYNNYYNYYYNNNYNYNYNNYNYYNYYYNYNNYYYYYYYYYYNYYYNYNNYNNYNNYYYYNNNNNNNYNNYNYNYYYYYNYNYYNNNNNNNNNNNNNYYNYNYNYYYNYNYNNNNYYYNYNYNNNYNNYYNYNYNNNNYYNYNYYNYYYYNNNYYNNYYYYNNYYYYYYYNYYYNYNYNNNNYNYNNNYYNNYYYNNNYYNNYYNYYNYYNNNNNYNNYYYYYYNYYNNYNNYYYNYYNYYYNNNNYYYYNNYYYYYNYNNNNYYYNNNNNNYNYYYYNYYYYYNYYNYNYNYNYYNNYNYYYNNNYNYNYYYNNYYNNNYNYNYYYYYNNYNNYNYYYYYYYNYYNNNYYNYYNNNNNYNNYNYYNYYNNYYNNYNNYNNYYNNYNNYNNNNNNNNNYNYYNYYYNYYNYNYNNNYNYNYNNNNNNYYYNNYNYNNYNYYNYYNNNNNNNNNNYNNNNNYYYYYYYNYYYNYYYNNNNNNNNYYNNNN
|
30 |
+
Case #30: YNYYYYNYNNNYYNYNYNYNNYNYNNYYNNYYNYYYYYYYNYYYNNYYNNNNNNNYNNYNNYYNNNNNNYNYNNNNYNYYNYYNYYNNNN
|
31 |
+
Case #31: YYYYYYYYYYYYNYNYYYYYYNYYYYYNYYYNYYYYYYYYYNYYNYNYYYYYYNNNYYYYYYYYYYYNNYYNYYNYYYYYYNNYYYYNYNYYYYYYYYYYYYYYYYNYYYYYYYYYYYYYNNNYYYYNYYYYYNYNYYYNYYYNYNNYNYYYYYYYNYYYYYYY
|
32 |
+
Case #32: YNYNYYYYYYNYYYNYYYYNYNYYNNYNYNNYYYNYYYNNYNNYYNYNNNYYYNYNNNYYYYNYYYYYYYYNYYYYNNYYYNYNYYYYYYNYYYYYNYYYYNYYNYYYYYYYYNYNNYYNNNYYYNYNYYYNYYNYNYYNYYYYNNNY
|
33 |
+
Case #33: YYNYNYYNNYYYNYYNYYYNNYYYYYYYYYYNYYYNNYNNNYYYNYNYYYNYNYNYYYYYYYYN
|
34 |
+
Case #34: NYYNNYYNYNYNNNYYYYYNYYYYYNYYYYYYYYYYYYYNYYYYYYNYYYYNYYNYYYYNYNYNYYNYYYNYYNYNNYYNNYYYYYNNYYYNYYYYNYYNYYYYNYYYYYYYNYNNYNNNNNYYYYYNYYNYYYYNYNNYYYYYYNYYYYNYYNNNYNYNYYYYYNYYYNYYYYNNYNYYYNYYYNYYNYNYNYYN
|
35 |
+
Case #35: YYYYNYNYYYNYYNYYYYNYNNYNYNNYYYYYYNYYYNYNNYNYYYYYYYYYNYNNYYYNYNNYNNYYYYYYYYNYYYNYYYYNYYNYYYNYYNNYNYNYYYYYYYNYNNYYYYNNYYYNYYNNNYNYYYYYYNYYYYYYYYNNYNNNNYNYYNYNYYYYNNNNNYYYNYNYYNYNNYNYYYYYYNYNNYNYYNNYYYNYNYYYYYNYYYYYYYYNNYNNYNNYNNYYYYYYYNYYYNYNYNNYYYYYYYYNYYYYYYYYYYNNNYNNYYYYNYYYYNYNNYYYNYY
|
36 |
+
Case #36: NNYNYNYYYNYYYYNYYYNYNNYNYYNYNYNYYYYNYYNYYYYYNNYNNYYNNNYNNNNYYYYYNNNYNNNNYNYYYYYYNYNNYNNNNNYYNNNYYNNYYNYYNNYNNYYYYYNNNYYYNNYNNYYYNNYNYNYNNYYNYYNNYNNYNNYYYYNYYYYNYNNNYYNNNYNYYNYYNNYYNYNNYYNNNYYNYNYYNYNYYNNNYYYNYNNYNNNYNNYNNYYNNNNYNNNNNNYYYNYYYNYYNNYYYNYNNYNNYYNNNNYYNNYYNYNNYNNYNYNNYYNYYYYNNNYNYNYN
|
37 |
+
Case #37: YYYNYYNYNYYNNYYNYNNNYYYYYNYYNYYYYNYNYYNYYYYYYYNNYNYNYNYNYYYYYYNNNNNYYNYYNYYYYYNYNYNYYNYYNYNYNYYYYYYYNYNYYYYYNYNYYYYNYNNYYYYNYYYYNYYYYNYYNYYYYYYYYYYYNNYNNYYYYYNNYYYNNYYYYYNNYYYYYNYYNYYNYYYNYNNYYYNYYYYYYNNY
|
38 |
+
Case #38: YYYYNNYNNYNYYNYYNNYYNYNYYYYNNYNYYNNYNNNYYYYNNNYNYYYNYNYNNYYYNYNNNNYNNNYYNNYNYNYYYNNYNNNYNNYYNYYYYNYYYYNYYNNNYNYNYYNYNYNNNYNNYYNNYNYNYYNNYNNYNNNNNNYYYYNYYYYYNNNNNNYYNYNYNYNYNYNNNYNNNNNYYYNYNYYYYYYYYNYYYYNYYNNYYNYNNNYNNNNNNYNYNNYYYNYYYYNYYYNY
|
39 |
+
Case #39: YYYNNYYYYYYYYNYYYYYNNNYYYNYYYYYYYYYYY
|
40 |
+
Case #40: YNNYNYYNYYNYYYNYYYYNNYYNNNNYNNYYYYNNYNYNYYYYNYYNYYNYYNYYNYNYNYNNN
|
41 |
+
Case #41: YYYYYYYYYYYYYYYYNNYYYYNNNYYYNYYNNYYYYYYYYYYYYNYYNNNYYYYYYYYYYYNYYYYYYYNYYNNYYYYYYYYYNYNYYYNYYYNYNYNNYYNYYYYNNNYYYNYYYYYYYYYYYYNYYYYYNYYYNYYYYYYYNYYYYYNYYYYYYNNNYYNYNYYNYNYYYNNYYYYYYYYYYYYYNYYYYYYYYYYYYNNYYYNYNYNNYYYYYNYYNYYYNYYYNYNNYYYYNNNYNYNNYNNYYYYYYYYYYYYYYYYYNYYNNYYYYYN
|
42 |
+
Case #42: YNNNNYYNYYNYYNYNYYYNNNYYYNNYNNYYNNNYYYYYNNNYYYYYYYYYNYNNYNNYYYNYNYYNYYYNYYYYYYYYYYNYNYNNYYYNNNNYYYYYNYYNNYNYYNNYYNNYNYNNNNNNYNYNYNNYNYNNNNNNNYNNNYNNNNNYNYNYYNNYNYYYYYYNYYYNYNYYYNYYNNYYNNNNYYYYNYNYYYNYYNNYYYYYNNNYYNNNNYNYNYYNNNYYYYYNNNNNNY
|
43 |
+
Case #43: NNNYNYYYYNYNNYYYYYYNYNYYNYNNYNNNYNYYNYYYNNNNYNYYYYNYYYYNNNNYYYNYNYYNNYYNYNNYYNYYNNYYNYYNYNYNNYNNNNNYYNNYYNYNNYNNY
|
44 |
+
Case #44: YYYNNNYNNYNNYNNNYNNNNNNYNNNNNNNNYNYNNYNNNNYNNYNYNNNNNNYYNYNNYYYYNNYYYYYNNNYNNYYNYNYNYYNNYYNNNYNNYYNNYNNNNYYNYYNNNNYNNNNNYNYYYYYNYNYNNNYYNNNYNNYNNYNNNYYYYYNNNNYY
|
45 |
+
Case #45: NNYYYNYYNYYYNYYNYYNYNYNYYYYNNYNNNYYYNNNYYNYNYYYYYYYYYYNYYYYYNNNNYYNYYYYYYYNNNYYNYNNNYYYNYNNY
|
46 |
+
Case #46: YYYNNNYYYNNYNYNNYYNYYYYNYYYYNNNYYYYYYYNNNNNNYYYYNYYYNYYNYNYYNYYYNYYNYNNNNNYNYYNYYYYNNYNYNNYNYYNNN
|
47 |
+
Case #47: YYYYY
|
48 |
+
Case #48: YYNNYYYYYNYYNNYNYNYNYNNYNYNYNYNNYYNYNYYNNNNNYYNYNNNYNNNYNNYYNNNYYYYYYYYNYNYYYNNYYNNYNNYNNNYNNNYYYNNYYYNNNYYYYYYNYNNYYYNNYYYNYNNNNYNNNYYYYNYNNNYYNNNNYNYYNYNYNYYNNYYYYNYYYY
|
49 |
+
Case #49: YYYNNNYNYYNNNNNYYYNNYNYYYNNNYNNNYNYYYNYYNYNYYNNYYNYNNNNNYNYYNNYNYNNYYNYNYYNNYNYYYNYNYNYYYYNYYYYYNNNNNNYNYNNNYNYYYNYYNYYNNYYNNNYYYNNNYNYNNYYYNNYYYYNYNYYNNNYYNNNNYNNYYNNNNYNNYYNNNNNNYYNNYYNNNNYYNNNYNNYYNNYYNNNYYYYYNYYYYNNNYNNYYYYYNNYYNYYNNYNYNYYYNYNNNNYNNN
|
50 |
+
Case #50: NNYYYNYNYNNYYYYNNNNYYYNYNNYYYYYYNNNYNNNYNYYYNNYYNYYYNYNNNYNYYNYNYYNYYNNNNYYNYNNNNNNYYNYYYNYNYNYYNNNNYYNNYNYNYNYNYNYYYYYNNN
|
51 |
+
Case #51: YYNYYNYNYNNNNNNNYYYYNYN
|
52 |
+
Case #52: NYNYYYYYYYYYYYYYYNYNNYYYYYNNYNNYYNNNYNNNYNYNYNYNNNNYYYYYYYNYYNNYNNYNYYYYNNNYYYYYNNNNYYNNYYYNNNYYYYNYNYYYYYYYYNY
|
53 |
+
Case #53: YNNYYYYNYNYYYNYYYYYYYYYYYYYNYNYYYYNYYYYNNNYYNNYYYYYYYNYNYYYYYYNYYNYYYYNYYNYYNYYYYNYYNNYYYYYYYYY
|
54 |
+
Case #54: YYNNYYNYYNNYYYNNNYNNNNYYYNYNNNYNNNNNYNNYNYNNNY
|
55 |
+
Case #55: YNNYNNNNYYYNYNYNYNNYYNNYNYNYYNYYYYYYYYNYYNNNYYNNYNNNYYYNYNNNYYYNYNNNYYNNYYYYNYYYNYYNYNNYNYNNNNNNNNYNYYYYYYNNNYNNYNNNNNYNNNNYNYNYNYNNNYYYNNNYNYNNYYYNNYNYYNYNNNNNNYNYYYYNNNYNNNNYNYYNYNYYNYNNYYNYNNNYYNNYNNNNYNYNYYYYYYNNNYNYNYNYNYYNNNNYYYNYNNNNYYNNNNNNNNNNNYNNNNY
|
56 |
+
Case #56: YNNNYNNNYNYNNNNNNYNYNYYNNNYNNNNYNNYYYYYYYYNNYNYNYYNNYNNYNNYNNYNNYNYNNYNNYYNNYNYYYYYNYNNNYYNNYNNNNYNNNYNNYYNYYNYNYNNNNYYYNNYYNYNYYNYNNNYYYNNYNNNNYYYNNNYNNNYNNYNNYNYNYNNYYNNYYYNYNNYNNNNNYNNNNYYN
|
57 |
+
Case #57: YYNYYNNNNYNNNYYYYNNYNYNNYNNYNYYNYYNYYNNYNYYYYYNYNYYYYNNNNNNNYYN
|
58 |
+
Case #58: YYYNYYYYYNYYYYYNYNNYYNNNNNYYNYNNYNYYYNYNNNNNNNNYNYNNYNYNYNYYNYYYYYYNYNYYYYYYYYNYNYNYYYYYNNNYYNYYYYYYYYYYYNYYYYYYNYYYYNYNNYNYNYYYYYNNYNNNNYNYYYNYYYNYYYYYYNYYYNYNNNYYYYNNYNYYYYNYY
|
59 |
+
Case #59: YNYYNYNYNYYYYYNNYYYNYNNYNYYNNYNYNYNNYYNYNNYNNNNYYNYNNYNNYNNNYYYNNNNNNNNYNYNNNYNYYNNYYYNYYYYYYNNNNYYNNYYNNYNYYNYNNYNNYNNYNYNNNNYNYNYNYYNYYNYNNYNNNNYYNNYYYNYNYYNYYNNNNNYNYNNNYNNYNNNYNYNYYNNYNNYYNYNYYYYYNNNYNNNNYNNYNNNNYNNYYYNNNYNYNNYYYNNNNNY
|
60 |
+
Case #60: YYYYYNYYNYYNYNNNYYNNNYNNYNNNYNNNYYNNNYYYYNNNYNYYNNYYNYNYNNYNYNNYY
|
61 |
+
Case #61: NYNNNYNYYNNNYYNNNNYYNYYNNYNYNYNYNNYYYYNYNNYYYYYNNYYYYNYYNYNYYYYYNYYYYNNYYNYNNNYNNYYNYNNYNYNNYYYNNNNNNYNNNYNYN
|
62 |
+
Case #62: YYYNNYYNNNYYNNNYYYNNNYNYNNYYYNYYYYNNYYNYNYNNNNYYYNNYYYYYNYYYNYYNYYNYNNYNNNYYNNYNNYNNYYNNNYNNNNYNNNNNYNYNNNYYYNYYYYYYYNNYNYNYYYYYNNYNNYNYNYYNNNYNYYYNNNYNNNNYNYNNNYNNYNNYYYNYYNYYNNYYYYYYYYYYYYNNYYYYNNNYYYYYYYNNNYYYYNYNYYYNYYYNNYYYNNYYYYNYNNNNYYYYYNYYYYYNNYYYNYNNNNYN
|
63 |
+
Case #63: NYYYNNNNYNNYNYYNYNYYNYYNYYNYNYNNYYYYNNYYNYNYYYNYYYYNYNYYNNNYYYYYNYNYYYNYNYYNNYYNNNNYNNNYNYYNNYYNYNNNYNNYYNYYNNYNNYYYYYYYYNNYYNNYYNYYYYYYYNYYYYYNNNNYNNNNYYYYYYYNNNYYYYNNYNNYYNYYYNNYNYNNNYYYYNYYNNNNNYYY
|
64 |
+
Case #64: NYYYYNNNNYYNNYNYNYYNYNNNYNYYYYNNNNNYNYNYNNYNNNYNNYNYYYYNNNYYYYYNYNYNYNNYNNNNNNYYYYNYNNNNYYYYYNYNYYYNYYYYYYNNYYYNNNYNNNNYYYYNYYNYNYYNYYYNYYYNYNYYYYYNNYNYNYYYNYYNYYNNYYNYNYYYNNYYNNNYNNYNYNNYYYYYYN
|
65 |
+
Case #65: YNNYNNYYNYYYNNNNNNNNNYYNYYYYYYYYNYNYNYYYYNYYYNNYNNYNNNYNYYYYNYYNNNNYYYYNNYNNNYNNYYYYYNNYNYYNYNYYYYNNNNNYYYNYYNYNYNNYYYNYNNNNNYYNYNNYNNYYYYYNNNYNNNYYYYNNYYYYNNYYYYYNNNNYYYNYNYYNYYNNNNNN
|
66 |
+
Case #66: YNYYYNYNNNYYYYNNYNNYNYNNYNNYYNNYNYNNNNNNYNYNYNYNNYNNYYNYYY
|
67 |
+
Case #67: NNNYYNYYNNNNNNYYNYYNYNYYYYNYYYYNNNNNNYNYYNYYNNYNNNYYNYNNNNYYYNNNYYYNYYYNYYNNNYNYYNNYYYYNYYYYYNYYNYYYYYNYYYYYYYNNNNNYYNNNNNYYNYYNNNYYYYYYYYNYYYNNYYYNNNNYNNYYNYYYYYYYYNNYNYNNNNNNNYNNNYYNNNYNNNYNYNNNY
|
68 |
+
Case #68: YYYNNNNYYYNYNNYYNYNYYYYYYYYYNYNNYNNYNYYYYYNNNYYYYYNYYYYYYYYYYYNYYNNYYYNYYY
|
69 |
+
Case #69: YYYYNYYYYYYYNYYYYYYYYYYYYYYYYYYNYYYYYYNNYYYNYYNYYNYYNYYYYNYYYYNYNYYYYYYYNYYYYYYYYNNYYYYYYYYYYYYNYYYYYNYYYNYYNYNYNYNNYNYYYYNYYYYYYNYNYYYYYYYYYYNYNYYYYYYYNNYYYNYYYYYYYNYYYNYYYNNYYYYYYYYYYYYYYYYYY
|
70 |
+
Case #70: YNNYYYYNNYYYYYYYNYYYNNYNNNYYYYYYNYYNNNYNYYYNNYYNYNYYYNYYYNYNNYYNYYYYNYYNYNYYYYNYYNNYYNNNNYYNYNNNYYNYYNNNYYNNYNNYYNYNYYNYYYYNNYNNYYNYYYYNYYNYYYYNYNNNYNYYYYYYYYYYY
|
71 |
+
Case #71: YYYNYYYYYNNYYYYYYYNNNYYNYYYYYYNNNNYNNYYYYYYYYYYNNYYNYYNYYYYYYYYYYNYNNYYYNYYYNYYNYNYYYYNYNYYYYNNYYYYYYNYNYYYYYYYNYYYNNYYYYYYYYYYNYYNYNYYYNYYYYYYYYYYNYNNNYNNYNYYYYYNYYNNYYYNNYYYYNNYYYNYYYYYNYY
|
72 |
+
Case #72: YYYNNNYYYNYNYYYNNNYNYYYNNNNNYYNYNYNYNYNNNNNNYNYYNYYYYYNYNNNYNNYNYYNNYYNNNYYNYYYYNYNYNNYYNYYYYYYYYNYYYYYNYNNYNYNNYYNYNYYNYNYYNYYNYNYNYYNNNYNNYYNNYYYNNYYYNYNYYNNYNNYNNYYNYNYNNYYNYYYYYNNNYNYYNNN
|
73 |
+
Case #73: YNNNNYYYYYYYNNNYYYNYYYYNYNNYYNYYYNYNYYYYNYYYYYYYNNNYYYNYYYYYYNYYYYNYYYYYYYNYYNNYYNNYYNNYNNNYYYYYYYYNYNNNYNYYYNYYYYYYYYYYNYNNYNYYYYYYYYYYNNYNYYYNYYYYYNYYYYYYYYYYYYYYYYYYYYNYYYYNYYYYYYYNNYYNNNYYYNYYYY
|
74 |
+
Case #74: YNYNYNNYYYNNYYNNNYYNYYYYNYNYYYYNNNNNYY
|
75 |
+
Case #75: NYNNYNYYNNYYYYYYYYNNYNYYYYNNNYNYNYYYYYYYNNNYYYNNNYYYNYYYNYNYYYYNYYNYYYYNNYNYYNYYNNYNYYYYNNNNYYYNYYNNYNYYNNYYNYNYNNNNYY
|
76 |
+
Case #76: YYNYYNYNYNNYNYNYYNNNYYYNYYYNYNNNYYYYYNYNYYYNYYYYYNYNNYYYNNYYNYYYYYNYNYYYYNNNNYYNYYNNYY
|
77 |
+
Case #77: YYYYYYYYYNNNNNYNYNYYYYYYYYYYYYYNYNYYYNYYNYYYNNNYYYYYYNNYYNYYYNYYNNNYYYYNYYNNYYYNYYYYYYYNNNYNNYNYNNYYYYYYYNYYYYNNYNYNNYYYYYYYNN
|
78 |
+
Case #78: NYYYNYYYYNYYNNYNYNYNNNYNNYNNYYNNNNYNNNNNNNYNYNYYNNNNNNNYYNNYNNYYNNNYYNYNYNYNYYYNYNNNYYYYYYYYNYNYYNYYNYYYYYNNYNNYNNN
|
79 |
+
Case #79: YNYYYNNYNYYYYYNYYNYYNNNYYNYYYYYNYYYNYNNYYYNYNYYNYYYYNNYYNYYNYYNNYYYYN
|
80 |
+
Case #80: YYYNYYYNYYYNYNYYYYYYNNYYNNYYYYNYNYYNNYYYYYYYYYYNYNYNYYYYNYYNYYNYYYNYYYYNNNYNNNYYYYNYYYYYNYYYNNYNYYNYYYNYYYNYYNNYYNYNYYYYYYNNYYYNYNNYYYYYN
|
81 |
+
Case #81: YYNYNNNYYYYYNNNYYYYYYYYYNYYYYNNYNYYYYNYYYYYYYYYYYNYNYYYYYYYNYYNYYYNYYNYNYYYYYYYNYYNYYYYYYYYYYYYYYYNYNYNYYNYYYYYYYYYNNNN
|
82 |
+
Case #82: NYNYYNYYYYNNNNNYNNYNYYNNNNYYYYYYNYYNNYYNNYYNNNNNNYYNYNNYYYYNNNYYYYNYYYNNYYYYNYYYYNYNNYNNYNYYNYNNYNYNNYYNYYNNYYNNYYNYYNNYNYYNYNYYYNNYNYYNNYNYYNYNNYYYYNYYNYYNNNYNYYYNYNYNYNYYYNNNNYYNYYYYNYNNYYNNNNYYYYNNNYNYNYYYNYYNYNNNYYNYYYYYYYYYNNYNNYNYNYNYNNYNNYNNYYYNYNNYNYYNYYNNNNYYYNNNNYYNYYNYYNNY
|
83 |
+
Case #83: YNNYYYNYYYNYYNNYYYNYNYNYNYYYYYYYNYYNYYNYYYYNYNYYYYYYYYYNNYYNYYNYYYNYNNYYYNYNNYYYYYNYNYYYYNYYYNYNYYYNYNYYYYYNYYYYNYNYNYYYYYNYNYYYNYYNYNNYNYYNYYNYNYYYNYNYYYYNNNYYYYNNYYNYYYNNYYYYYYNYYYYYNYNYYNYYYYNYNYYYNYYYYYYYNNYYNYYNY
|
84 |
+
Case #84: YNYYYNYYYNYNYNNNNNYNYYYNYNYYNYNNYNNNNYNNYNYNYNNYNNYYNNNYNYYNYYYYYYYYNYNYYYYYNYNYYNNYNYNYYYYYYYYYYNNYNYYYYNYYYYNNYYYNN
|
85 |
+
Case #85: YYYYYYYNNYYYNYYNNNNYYYNNNYYNYYYYYYNYYNYYNYNNYYYYYYYYNYYYYNYYYNYYNYNYYYNYYYNNNNYYYNYNYYNYNNNNYNYYYYNNNNNNYYYYNYYNNNNYYYNYYNNYYYYYYYNNYYYYYYYNYYYNYYYYYYYNNNNYYYNYNYYYNYYYYYNNYNYYYYYYYNNYYYYYYNYNYNYNNYNYNYYYYYYYYYNYYNNNNYYYNNNYYYYNYYNNYYYYYYNYYNNYYNYYYYNNYNNYYYNYNYYYY
|
86 |
+
Case #86: YNNNYYNYNYNNYYYYNYYYYYYYNYNNYNNNYYNNNNNNNYYYYYNNYYYYYNNNNYYYYYNYYNNNYYYYNYNYYNYYNNYYNNYYYNYNNNYYYYNYYYNNNNNNNYNYNNNNYNYYYYNYYYY
|
87 |
+
Case #87: NYNYYNYYNYNYNNYNNYNYNNNNYYYNYYNNYNYYYYYNYNNYYYYYYNYNYYNNNYNNNYYNNNYNYNNNNYNNYNYNYNYYYYYNYNNYYYNNYNNNYNYYYYYNYNYNNNYYYNYYYYYYNYNNNNYYNNYNNYNYNNYYNYNNYNNNYYYYNYNNNYNNYNNNYNNYYNYNNNNNYNNYNNNNNNYNYYYYNNNNNNNYNNNNNYYNYYNNYYYNNNYYNYNNNNNNNNYYNYNYYYNNNNNYNYNNYYYNNNYNYNYYNYYYNYYYNNNYYYYYNNYNNYYNYY
|
88 |
+
Case #88: YYNNNYYYYNNYNYYYYYYYYYNNYYYYYYYYYYNYYNYYNYYYN
|
89 |
+
Case #89: NNYYYYYNYYYNYYYNYNYNNNNNNYYNYNYNNYYNYYNNYNYYYNYYYNNNNNYNNNNYYYYNYYNYYYYNNNYNNYYNNNNYNNNYNNNNNYNNNYNYNYNYYYYYNYNYNNYNYYYYYYYYNYYYNNYNYYNNYYYYYNNNNYNNNYNYYYYNNNYYNNNNNNYNYNYNYNNNNNYYYNYYYY
|
90 |
+
Case #90: YNYYYYYNYYYYNYYYYYYNYNYYYYNYNYNYYYYYYYYYNNNNYYYYYYNYNY
|
91 |
+
Case #91: YYNYNNNYYNNYYYYNNNYNNNYYNNYYYNYNNNNYYYYYYNNYNNYNYYYNYNYNNYNYYYNNYNNNYYNYNNNNYYYNYYNNYNNYYNNYNNNYYNNYNYYYYNYYYNYNYNYYYYYYYNNNNNNYNYYNYNNYYNYNNYYYYYNYNNYNNNYYNNNYYYNNNNYYNYNYYNNNYNYYNN
|
92 |
+
Case #92: YYYNYYYYYNNYYNNYYNYYYYNNYYYYNYNYYYYYNNYNYYYYYYYYNYYYYYYNYYNNYNYNNYYNYYYYYYYYNYNNNNYNNYYYYYYYYNYYYYNYYYY
|
93 |
+
Case #93: NYYYNYYYNNYYYNYYYYNYYYYNYNYYNYYNYYYNNYYYNYNNYYYNYY
|
94 |
+
Case #94: YNNNYYYYNNNNYNYYYYNNNNYYNYNYNYNYNNNYYNYNYYNNNNYNNYNNYNNYYYYNYYYYYYYYYNNNYYYYYYYNNYYYNYYNYYYYNYYNNNYYNYYYNYNYNNYYYNYYNYNYNNYYNYNYYNNNNYYNYYYNYNNYYYNNYNNYNYYYNNYNYNNYYYN
|
95 |
+
Case #95: YYNNNNYNNNNYNYNYYNYNNYNYYNNYNYNYNYNYNYNNYNNNNYYYYYYYYNYNNYNYYYYNNNNYNNNNYNYYNNNYNNNYNNYYYYYYYYYNYYYNYNYNNNYNNNNYYYNYYYNYNYNNYNNYNYNYYNYNNYYNYYNYYYYNNNNNNNYYYNYNNNYYNNYNYYYYNNNNNYYYNNYYNNNYYNNYNYNNYNNNYNNNNYNNNNNYNNYYYNYYYNYYNNNNNYYNNYNYYNYYNNYNYNNNNNNYNYYNNNYNYNYNYYNYNY
|
96 |
+
Case #96: YYYYNYYNYYNYYYYYYYNYYYNYYYYNYYNYYYNNNYYNYNYYYYYYYNYNNYYYNNYYYYYYYYNNNNYYYNYNNYYYYYYYYYYYYYYYYYNNNYYNYYNNYYYYNYNYYYYYNNYYYNYNNYNNYYYNYNYNNYYYYYYNNNYYYYYYYNNYYYYYNYNYYYNYYYNNYYYYYYYNYYYYYYNNYYNYYYYYYYYNNYNNYNYNNYYNNYYYNYYNYYYYYNYYYYNNYYNYYYYNYNNYYYYNYYYYNYYYYNYYYY
|
97 |
+
Case #97: YYYNYNNNYYYNNYNYYYYYNYYNNYNNYNYNNNYYYYNYNNNYNYYNNYYNNYNYYYYYNNYNYNYNYNYYYYNYNYNYNYNYNYNNNYYNYNYNNNNNYYYYYNNYNNYYYYNYNNYNYYYNNYYYYNYYYNNNYNYNYYNYYYYNYNNYYYNNYYNYYNNYNNNNNNNYYYYYYNYYYNNYYNYYNYYYYNYYNNNYYYNNYNYNYYNNYYNYNNYYNYNYYYYNNYNYNNNY
|
98 |
+
Case #98: NYYYYYNYYYYYYYNNNNYYYYNYNYYNNYNNYYYNYYNNNNNNYNYYYYNNYNNYNYNNNYYYYNYNNNNNNYNNNYNNNYYNYNYNYNYNYYYYYYNNYYYNYYNYNNYNYYYNNNNYYYYYNYNYYYYNNYYYYYNNYNNYYYYNNNYYNNYNYNNNNYNYNYYNYYNYYNYNNNNYYNNYNNNNYNYYYYYYNNYNNYNYNYNYYYNN
|
99 |
+
Case #99: YNYNYNYNYYNNYNNYNYNNNYYNYNNYYYNNNYNYNYNYNNYNNYNYNYNNYNYYNNYNYYYYYNNYNNNNNNNYNYNYYNNYYYYNNNNNNNNYYNYNNYYNNYYNYYNYNNYYYNYYYYYYYN
|
100 |
+
Case #100: NNNNYNNYYNNNYNYNNNYYNNYNNYYNNNYYNYYYYNYYNNYYNYYNNNNNNNNYNNYNNNYYYYNNYNNYNNYYYYYYYYNYNYYYYNNNYYYYYYYNYNYYYYYYYYYYYNNYNNNNYYNNYYYYYNYYYYYNYYNNNYNYNYNNNNNYYYNYNNNNYNYYNNYYNNNYYYYYNNYNYNYNNYNNYYYYNNNNNNNNYYYYNNNYYNNNNNNYNNNYYYYYNNNNYNYNNYNYNYYNNNNYN
|
101 |
+
Case #101: YYNYYYNNYNNYYYNNNNNNYNYYYNYNNYYYYNYNNYYYNNYYYNNYYYNYYYNYYNNNNYNYNNYNYYNNYNYNYNNYYYNYYYYYNYYYYYNNNYNYNNYNYYNNYNYYNYNNYYNNNYYYNNNNNYYNYYNYNYYYYYYNNNNYYNYYYYNNNNYYYYYYNYNNYYN
|
102 |
+
Case #102: YYNYNYYYYYYYYNYNYYYYYYYYNYNYYYYNNYNYYYNYYNYYYNNNYYNYYYYNNYYYYYNYYYYNNYYYNNNYYYYNYYNYYYYNYNYYNYYNYYYYYNNYNNYYYYNNNYNNNYNYYNNYNYYNNYYYNNYYYYYNYYNYNYYNYYNYNYYYNYYYYYYNYYYYNYYYYYYNYYNNNYYYNYYYYNYYYYYYNNYNYYYNYNYYYYNNYYNYYYYNYYYNYNNYNNYNYYYYYNYYNYNNYYYYYYNYYNNYNYYYYNYNNYYYNYNNYYYYYYNYYNNNNYY
|
103 |
+
Case #103: NYNYYYYNYNNYNNYYNNYNYYNYNYYYNNYNYNNNNYNNNYNNYYYYYYNNYNNYNYNNYNNNYNNNNNNYYYYNYYYNYNNYYNYYNNYNNNNYYNNNYYYNYNNNYNYNNNYYNNYYYNNYNNYYYNYYYNYNYYYYNYNYYNYYNYNYYNNYNYNYNNNNNNNYNYNNNNNNNYNNNYNYNNNYYYYNYYNYNYYYNNYNNNNYYYYYYYNNNYNNYNY
|
104 |
+
Case #104: YYYNNYYNYYNYNNNYNNNYNNYYYNYYNYYNNNNNYNNYYNNYYYNYNNYNYYNYNYYNYYNNNNNNYYNNYNYNYYYYYNNYYNNYYYNNNYYNNYYNNYYYYYYYYYNYNNYNNNYYNNYNYYNNYNNNNNYNNYYYYYYNYNNYYYNY
|
105 |
+
Case #105: YYYYYNNNNYYYNYYNYYYYYNNNYYYYNYNYNNYNNYNNYYNNNYNYYYYNYYYYYNYYYYYNYNYYYYYNYYYYYNYYNYYYYYNYYYYNYYYYYNYYYNNYNYNYNNYNNYYYNYYNNYNYYYYYYYYNYNYYYYYYNNYNYYYYYYYYYYYYYYNNNYNYNNNNYYNNYYYYNYYYYYNNYYYYYYYNYYYYNYYNY
|
106 |
+
Case #106: YNNNYNYNYNYNNNYYYNYYNYNNYNYNYNYYNYNNNYYYYYNYNYNNYNYYNNNYNNYYNYNYYNYYYNYYNNYNNYNNNNNNYYYNYYYNNNYNNNNNYNYYNNNNNNYYNNNYNNYNNNYYNNNYNYYNNNNYNNNYYYYYNYNYNYYNNNYNYNYYYNNYNNYYYNNYYNNYNNYNYNNYYNYYNNYNYNNNNNNNYYNYNNNYYNYNYNNNNYNYYYNYNNYYNYYYYYYNYNYYYYNYYNNYYNNYNNYNNYYNNNYN
|
107 |
+
Case #107: YNNNYYNNNNNYYNNNNYNNNNNNYYYNNYNNYYYNYYNNYYYNYYYNYNYNYNYYNYYNNNNYYYYNYNYNYNNYYNYNNYNNYYYNYYNYYYNNNYYNYYNNYYYYYYNNYYYYNYYYNNYYYNNNYNYNNYNYYNNNNNNYNNNYYNNNNYNNYYNYYYNNYNNNNYYNYNNNYYNYNYNNYYYNNYNNYYNYYYNYYYYNYNYNYYNNNNNYYNNYNNYYNYYYNYYNNNNNYNNNYN
|
108 |
+
Case #108: YYYYYYYNNNYYYYNNYYNYYYYNYYNYYYYYYYYYYYYYYNNYYNYNYYNNYNNNYYNNYYYYNNYYNYYYNYNNYNYNYYYYYYNNYYYYYYYNYNYYNYYYNYYYYYYNNYYYYYNNNYNYYYNNYYYYYYYNYYYYYYYYNNYYNYYYYYNYYYYYYYYYYYNYYYYYYYYNNYYYYYYNYYYNYNYYYYYYYYYYNYYYYNYYYYYYYYYYNYYYYYNNYYNYYYYNYNYYNYYYYYYNYYNYYNYYNNYYNYYYYYYYNNYNYYYNNYY
|
109 |
+
Case #109: NNYYYNYNYYYYNNNYNNNYNNNNNYNYYNNNNNNNNNYYYYNYYNYYNYNNNNYNYYNNNYNYNNYNYYNNYNNNYYNNNNYYNNYYNYYYNYNYNNYNYYYYNNNYNYNYNYYYNNYNNNYYNNYNNYNYYNNNNYNN
|
110 |
+
Case #110: YNNNNYYYYNNNNYNYNYNNYYNNYNNNNYNNNNYNYYYYYNNYNYYYNYYNNYYNNYNNYNYYYYYNYNYNYYNYNNNNYYNNYNYNNNYYNNNNNNYYNNNNYNYNYYNNNYNYYYYNYNNNNNYNYNYYYNNNNNYNYNYNYNYNYYYYNYYNYYYYNNNYYYNYNNNYYNNYNNYYYYYNNYNYNNNNNNYNYNNNNNNNNYNYNYNYNYYYYNYNYNNNNYYYYNYNYYYYYNYYYNYNYYYNYNYY
|
111 |
+
Case #111: YNYYYNYNYYYNYYYYNYNYYNNNYYYYYNYYYNYYYYYNNNYYYNYNNYYYYYNYNYYYNYYYYNYYYYYYYYYYNNYNYYYNYNYNYNYNNNYYYNYNNYYNYNNNYYYYYYYYYYNYNYNYYYYNYYYNYYNYNYYYNYYYYYYNYNYYYNYNYYYYYYYYYYYYNYYYNNY
|
112 |
+
Case #112: NYNNYNNYNYYYNNNYNNYYYYNNYYNYNNNNNNYNYYYYNYYYNNYYYYNNYYYNNYNYNNYNYNY
|
113 |
+
Case #113: YYYYYYYYYNNNYNNNYYNYNNYNYNNYYYNYNYYNYYYNYNYYNNNYNNYYNNYYNNNNYNNYNNYYNNNNNYNNNYYNYNNNNYYNNYYYYNYNYYYYNNNNNYNNYNYNNYYNNYYNNNYNYNNNYNYYNNNNYNYNNNYNNNYYYNNYNYNNNNNYYYNYYNYNYYYNYNYYYYNYNYYNNNYNNYYYNYYNYNNYYNNYYNYYNYYYYYNYYYYNYYNNNYNYNNYYNYNYYNNYYYYNNNNNYYYNNYYYNNNNYNNNYYNYNYNNYYNYYYNYN
|
114 |
+
Case #114: NNNNYYNYYNYYYYYYYYYNYNYNYYYYYYYYYNNYYYYYYYYYYYYYYNNYYYNYNYYYNYYYYYYYYYYNYNYYNYNNNYNYYYYYYYYNYNYNYNYYYYNYNYYYYYNYNYNNYYNYNYNNYYYYYYYYYYNYYNYYYYYYNYNYYYNNNYNYYYNYNYYYNYN
|
115 |
+
Case #115: NYYNNNYNNNYYYYNYYYYYYYYYYYYYYYYYYYNYNYNYNYYYYYNYYYYNNNNYYNYNYYNYYNYYYYNYYNNYNYNYYYYYYNNYNNYYNYYYNYNYYYYYNNYYNYYYYNYYYNYYYYYYYYYNNYYYYYYYNNYYNNYYYYYYYYNYYYYYYYYYYNYNNNNYYNNYNNYNYYNYYYNYYYNYYNNYYN
|
116 |
+
Case #116: YNYYNYYNYNNYNYNYYNNNNYYNNYYYNYYNY
|
117 |
+
Case #117: YYYNNNYYYYYNYYYYNN
|
118 |
+
Case #118: YYNYNYYNYYYYYNYYYYYNYYYYYYYNYYYYYNYYYYYYYYNYNYYNYNYYYYYYNYYYNYNNNNYYYYYYNNNYYNNYNNYYYNYNYNYYYYYNYYYYYYYYYYYYYYYYYYYNYYYYYYYYNYYYNNYNYYYYYYNYYYNYNYYYYYNYYYNNNYNYNYNYNYNYYYYYYYYYYYYNYYYNNNYYNYNYYNYNNNYNYNYYYYYYYYYYYNYYYYYYNNYNYYYNYYYYNNYNNNYYYNYYYNYNYY
|
119 |
+
Case #119: YYYYYYNNNYYYNYYYYYYNYYYYYYYYNYYNNYNNYNYYYYNYYYYYYYYYYYYYYYNNNYYNYYYYNYYNNNYYNYNYNYYYNYYYYYNNNYYNYYYYNYNYNNYYYYNYNYNYYNNYYYNYYYYNYYYNNNYNYYYYNYNYNYYNYNYYYNNNYNYYYYYNNYYYYYYYNYYNYNYYYYNYNY
|
120 |
+
Case #120: NNYNYYYYYNYYYYYYNNNNYNNNNNYNYNNNNYNYNY
|
121 |
+
Case #121: YYNNYNNNYYNNYYYNYNYYYNYNYYYNYYYYNNYYYYYYYNYYNYNYNNYNYNYYNYYNYYYNYYYYYYYYNNNNNNNYYNNYYYYNYNYNYYYYN
|
122 |
+
Case #122: YNYYNYNYYYYNYNYYYNYYYNYYYYYNYYYYYYNYNYYYYYYYYYYYYNNYYNYYYNYYNNNYNYYYYNYYYYYNYNYYYYYNNYYYYNYYYYNYYYNYNYYNYYNNYYYNYYYYNNYYYYYYYYNYYYNYYYYNNYNYNYYYYNNNNNNYYYNNYYYYYYYYYNYYYNYYNYYYYYNYNYYYYYYYYNNNYYNYYYYYYYYYYNY
|
123 |
+
Case #123: NNYYYYYNYNNNNNNYNYYNYYNNYYNNNNNYYYYNNYNNNYNNYNYNNYYYYYNNNYYNYNYYYYYYNNNNYNYYNNNYYYYNYY
|
124 |
+
Case #124: NYNNNNNNNYYYYNNNYNYYNYNYYYNYYYYNNYNYYYYNYNYYYYYYYNNYNNYYYNYYYYYYYYYYYYYNYNYYYYYNYNYYNYNNYNYYNNNN
|
2019/finals/khajiit.cpp
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Khajiit
|
2 |
+
// Solution by Jacob Plachta
|
3 |
+
|
4 |
+
#define DEBUG 0
|
5 |
+
|
6 |
+
#include <algorithm>
|
7 |
+
#include <functional>
|
8 |
+
#include <numeric>
|
9 |
+
#include <iostream>
|
10 |
+
#include <iomanip>
|
11 |
+
#include <cstdio>
|
12 |
+
#include <cmath>
|
13 |
+
#include <complex>
|
14 |
+
#include <cstdlib>
|
15 |
+
#include <ctime>
|
16 |
+
#include <cstring>
|
17 |
+
#include <cassert>
|
18 |
+
#include <string>
|
19 |
+
#include <vector>
|
20 |
+
#include <list>
|
21 |
+
#include <map>
|
22 |
+
#include <set>
|
23 |
+
#include <unordered_map>
|
24 |
+
#include <unordered_set>
|
25 |
+
#include <deque>
|
26 |
+
#include <queue>
|
27 |
+
#include <stack>
|
28 |
+
#include <bitset>
|
29 |
+
#include <sstream>
|
30 |
+
using namespace std;
|
31 |
+
|
32 |
+
#define LL long long
|
33 |
+
#define LD long double
|
34 |
+
#define PR pair<int,int>
|
35 |
+
|
36 |
+
#define Fox(i,n) for (i=0; i<n; i++)
|
37 |
+
#define Fox1(i,n) for (i=1; i<=n; i++)
|
38 |
+
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
39 |
+
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
40 |
+
#define FoxR1(i,n) for (i=n; i>0; i--)
|
41 |
+
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
42 |
+
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
43 |
+
#define Min(a,b) a=min(a,b)
|
44 |
+
#define Max(a,b) a=max(a,b)
|
45 |
+
#define Sz(s) int((s).size())
|
46 |
+
#define All(s) (s).begin(),(s).end()
|
47 |
+
#define Fill(s,v) memset(s,v,sizeof(s))
|
48 |
+
#define pb push_back
|
49 |
+
#define mp make_pair
|
50 |
+
#define x first
|
51 |
+
#define y second
|
52 |
+
|
53 |
+
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
|
54 |
+
template<typename T> T Sqr(T x) { return(x * x); }
|
55 |
+
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
|
56 |
+
|
57 |
+
const int INF = (int)1e9;
|
58 |
+
const LD EPS = 1e-12;
|
59 |
+
const LD PI = acos(-1.0);
|
60 |
+
|
61 |
+
#if DEBUG
|
62 |
+
#define GETCHAR getchar
|
63 |
+
#else
|
64 |
+
#define GETCHAR getchar_unlocked
|
65 |
+
#endif
|
66 |
+
|
67 |
+
bool Read(int& x) {
|
68 |
+
char c, r = 0, n = 0;
|
69 |
+
x = 0;
|
70 |
+
for (;;) {
|
71 |
+
c = GETCHAR();
|
72 |
+
if ((c < 0) && (!r))
|
73 |
+
return(0);
|
74 |
+
if ((c == '-') && (!r))
|
75 |
+
n = 1;
|
76 |
+
else if ((c >= '0') && (c <= '9'))
|
77 |
+
x = x * 10 + c - '0', r = 1;
|
78 |
+
else if (r)
|
79 |
+
break;
|
80 |
+
}
|
81 |
+
if (n)
|
82 |
+
x = -x;
|
83 |
+
return(1);
|
84 |
+
}
|
85 |
+
|
86 |
+
bool ReadLL(LL& x) {
|
87 |
+
char c, r = 0, n = 0;
|
88 |
+
x = 0;
|
89 |
+
for (;;) {
|
90 |
+
c = GETCHAR();
|
91 |
+
if ((c < 0) && (!r))
|
92 |
+
return(0);
|
93 |
+
if ((c == '-') && (!r))
|
94 |
+
n = 1;
|
95 |
+
else if ((c >= '0') && (c <= '9'))
|
96 |
+
x = x * 10 + c - '0', r = 1;
|
97 |
+
else if (r)
|
98 |
+
break;
|
99 |
+
}
|
100 |
+
if (n)
|
101 |
+
x = -x;
|
102 |
+
return(1);
|
103 |
+
}
|
104 |
+
|
105 |
+
#define MOD 1000000007
|
106 |
+
#define LIM 1000005
|
107 |
+
|
108 |
+
int N, M;
|
109 |
+
char X[LIM], Y[LIM];
|
110 |
+
|
111 |
+
LL Solve(int s) {
|
112 |
+
int i;
|
113 |
+
LL sum = 0;
|
114 |
+
int hasA = 0, needsA = 0;
|
115 |
+
FoxR(i, M) {
|
116 |
+
if (X[s + i] == 'A')
|
117 |
+
hasA++;
|
118 |
+
if (Y[s + i] == 'A')
|
119 |
+
needsA++;
|
120 |
+
sum += Abs(hasA - needsA);
|
121 |
+
}
|
122 |
+
return(sum);
|
123 |
+
}
|
124 |
+
|
125 |
+
int main() {
|
126 |
+
if (DEBUG)
|
127 |
+
freopen("in.txt", "r", stdin);
|
128 |
+
// vars
|
129 |
+
int T, t;
|
130 |
+
int i;
|
131 |
+
// testcase loop
|
132 |
+
Read(T);
|
133 |
+
Fox1(t, T) {
|
134 |
+
// input
|
135 |
+
Read(N), Read(M);
|
136 |
+
scanf("%s%s", &X, &Y);
|
137 |
+
// handle each spoke
|
138 |
+
LL ans = 0;
|
139 |
+
Fox(i, N)
|
140 |
+
ans += Solve(i * M + 1);
|
141 |
+
// output
|
142 |
+
printf("Case #%d: %lld\n", t, ans);
|
143 |
+
}
|
144 |
+
return(0);
|
145 |
+
}
|
2019/finals/khajiit.html
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
The far-off land of Tamriel is brimming with opportunity! Opportunity for adventure, politics, romance... and, perhaps most importantly of all, commerce.
|
3 |
+
</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
A group of Khajiit merchants, traditionally known for roaming the countryside selling their wares, have recently set up permanent bazaars in a number of towns.
|
7 |
+
Having gotten their cat-like paws on a large supply of raw amber and bronze, they're prepared to strategically work together to maximize their profits selling it!
|
8 |
+
</p>
|
9 |
+
|
10 |
+
<p>
|
11 |
+
One bazaar has been set up in each of <strong>N</strong>*<strong>M</strong>+1 towns. The towns are numbered from 0 to <strong>N</strong>*<strong>M</strong>, inclusive,
|
12 |
+
and are connected by roads in a hub-and-spokes arrangement, with town 0 in the center and <strong>N</strong> lines of <strong>M</strong> towns each arranged around it.
|
13 |
+
The <em>i</em>th such line consists of towns <strong>M</strong>*(<em>i</em>-1)+1 to <strong>M</strong>*<em>i</em>, inclusive,
|
14 |
+
connected together in order by <strong>M</strong>-1 roads (with one between towns <strong>M</strong>*(<em>i</em>-1)+1 and <strong>M</strong>*(<em>i</em>-1)+2,
|
15 |
+
another between towns <strong>M</strong>*(<em>i</em>-1)+2 and <strong>M</strong>*(<em>i</em>-1)+3, and so on).
|
16 |
+
For each line <em>i</em>, there is furthermore a road connecting its first town (<strong>M</strong>*(<em>i</em>-1)+1) to town 0.
|
17 |
+
Note that each of the <strong>N</strong>*<strong>M</strong> roads may be travelled in either direction,
|
18 |
+
and that each town may be reached from each other town by following a sequence of roads.
|
19 |
+
</p>
|
20 |
+
|
21 |
+
<p>
|
22 |
+
For example, if <strong>N</strong>=4 and <strong>M</strong>=2, the arrangement of towns and roads would look as follows:
|
23 |
+
</p>
|
24 |
+
|
25 |
+
<img src={{PHOTO_ID:291992558607686}} width="200px" />
|
26 |
+
|
27 |
+
<p>
|
28 |
+
Initially, the bazaar in each town <em>i</em> is stocked with either amber (if <strong>X<sub>i</sub></strong> = "A") or bronze (if <strong>X<sub>i</sub></strong> = "B").
|
29 |
+
However, in order to satisfy demand, it should end up stocked with a potentially different ware, either amber
|
30 |
+
(if <strong>Y<sub>i</sub></strong> = "A") or bronze (if <strong>Y<sub>i</sub></strong> = "B").
|
31 |
+
It's guaranteed that the number of bazaars initially stocked with amber is equal to the number of bazaars which should end up stocked with amber (consequently, the same holds true for bronze).
|
32 |
+
</p>
|
33 |
+
|
34 |
+
<p>
|
35 |
+
In order to accomplish their goal, the Khajiit merchants may repeatedly select a pair of towns which are directly connected by a road, and swap their bazaars' wares.
|
36 |
+
Please help them determine the minimum number of such swaps required for all <strong>N</strong>*<strong>M</strong>+1 bazaars to end up stocked with the required wares!
|
37 |
+
This is guaranteed to be possible for every possible valid input.
|
38 |
+
</p>
|
39 |
+
|
40 |
+
|
41 |
+
<h3>Input</h3>
|
42 |
+
|
43 |
+
<p>
|
44 |
+
Input begins with an integer <strong>T</strong>, the number of Khajiit groups.
|
45 |
+
<br />For each group, there is first a line containing the space-separated integers <strong>N</strong> and <strong>M</strong>.
|
46 |
+
<br />Then follows a line with the length-(<strong>N</strong> * <strong>M</strong> + 1) string <strong>X</strong>,
|
47 |
+
the characters <strong>X<sub>0</sub></strong> through <strong>X<sub>N*M</sub></strong>.
|
48 |
+
<br />Then follows a line with the length-(<strong>N</strong> * <strong>M</strong> + 1) string <strong>Y</strong>,
|
49 |
+
the characters <strong>Y<sub>0</sub></strong> through <strong>Y<sub>N*M</sub></strong>.
|
50 |
+
</p>
|
51 |
+
|
52 |
+
|
53 |
+
<h3>Output</h3>
|
54 |
+
|
55 |
+
<p>
|
56 |
+
For the <em>i</em>th group, print a line containing "Case #<em>i</em>: " followed by
|
57 |
+
one integer, the minimum number of swaps required to stock all of the bazaars with the required wares.
|
58 |
+
</p>
|
59 |
+
|
60 |
+
|
61 |
+
<h3>Constraints</h3>
|
62 |
+
|
63 |
+
<p>
|
64 |
+
1 ≤ <strong>T</strong> ≤ 80 <br />
|
65 |
+
1 ≤ <strong>N</strong>, <strong>M</strong> ≤ 1,000,000 <br />
|
66 |
+
1 ≤ <strong>N</strong> * <strong>M</strong> ≤ 1,000,000 <br />
|
67 |
+
</p>
|
68 |
+
|
69 |
+
<p>
|
70 |
+
The sum of <strong>N</strong> * <strong>M</strong> across all <strong>T</strong> test cases is no greater than 10,000,000.
|
71 |
+
</p>
|
72 |
+
|
73 |
+
|
74 |
+
<h3>Explanation of Sample</h3>
|
75 |
+
|
76 |
+
<p>
|
77 |
+
In the first case, no swaps are required.
|
78 |
+
</p>
|
79 |
+
|
80 |
+
<p>
|
81 |
+
In the second case, bazaars 1 and 2 should swap their goods.
|
82 |
+
</p>
|
83 |
+
|
84 |
+
<p>
|
85 |
+
In the third case, the bazaars are initially set up as follows (with ones carrying amber marked in yellow, and ones carrying bronze marked in orange):
|
86 |
+
</p>
|
87 |
+
|
88 |
+
<img src={{PHOTO_ID:266243124686458}} width="300px"/>
|
89 |
+
|
90 |
+
|
91 |
+
<p>
|
92 |
+
The following sequence of 3 swaps could then be performed to arrive at the required configuration:
|
93 |
+
</p>
|
94 |
+
|
95 |
+
<img src={{PHOTO_ID:637978470132709}} width="300px"/><br />
|
96 |
+
<img src={{PHOTO_ID:950762542025264}} width="300px"/><br />
|
97 |
+
<img src={{PHOTO_ID:635336360404128}} width="300px"/><br />
|
2019/finals/khajiit.in
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63da73bdb5a27d5fc5b6a9af3ef777ccdcf5b8f97d6e91e291b31d7d6f461e5c
|
3 |
+
size 12722187
|
2019/finals/khajiit.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The far-off land of Tamriel is brimming with opportunity! Opportunity for
|
2 |
+
adventure, politics, romance... and, perhaps most importantly of all,
|
3 |
+
commerce.
|
4 |
+
|
5 |
+
A group of Khajiit merchants, traditionally known for roaming the countryside
|
6 |
+
selling their wares, have recently set up permanent bazaars in a number of
|
7 |
+
towns. Having gotten their cat-like paws on a large supply of raw amber and
|
8 |
+
bronze, they're prepared to strategically work together to maximize their
|
9 |
+
profits selling it!
|
10 |
+
|
11 |
+
One bazaar has been set up in each of **N*****M**+1 towns. The towns are
|
12 |
+
numbered from 0 to **N*****M**, inclusive, and are connected by roads in a
|
13 |
+
hub-and-spokes arrangement, with town 0 in the center and **N** lines of **M**
|
14 |
+
towns each arranged around it. The _i_th such line consists of towns
|
15 |
+
**M***(_i_-1)+1 to **M***_i_, inclusive, connected together in order by
|
16 |
+
**M**-1 roads (with one between towns **M***(_i_-1)+1 and **M***(_i_-1)+2,
|
17 |
+
another between towns **M***(_i_-1)+2 and **M***(_i_-1)+3, and so on). For
|
18 |
+
each line _i_, there is furthermore a road connecting its first town
|
19 |
+
(**M***(_i_-1)+1) to town 0. Note that each of the **N*****M** roads may be
|
20 |
+
travelled in either direction, and that each town may be reached from each
|
21 |
+
other town by following a sequence of roads.
|
22 |
+
|
23 |
+
For example, if **N**=4 and **M**=2, the arrangement of towns and roads would
|
24 |
+
look as follows:
|
25 |
+
|
26 |
+
![]({{PHOTO_ID:291992558607686}})
|
27 |
+
|
28 |
+
Initially, the bazaar in each town _i_ is stocked with either amber (if **Xi**
|
29 |
+
= "A") or bronze (if **Xi** = "B"). However, in order to satisfy demand, it
|
30 |
+
should end up stocked with a potentially different ware, either amber (if
|
31 |
+
**Yi** = "A") or bronze (if **Yi** = "B"). It's guaranteed that the number of
|
32 |
+
bazaars initially stocked with amber is equal to the number of bazaars which
|
33 |
+
should end up stocked with amber (consequently, the same holds true for
|
34 |
+
bronze).
|
35 |
+
|
36 |
+
In order to accomplish their goal, the Khajiit merchants may repeatedly select
|
37 |
+
a pair of towns which are directly connected by a road, and swap their
|
38 |
+
bazaars' wares. Please help them determine the minimum number of such swaps
|
39 |
+
required for all **N*****M**+1 bazaars to end up stocked with the required
|
40 |
+
wares! This is guaranteed to be possible for every possible valid input.
|
41 |
+
|
42 |
+
### Input
|
43 |
+
|
44 |
+
Input begins with an integer **T**, the number of Khajiit groups.
|
45 |
+
For each group, there is first a line containing the space-separated integers
|
46 |
+
**N** and **M**.
|
47 |
+
Then follows a line with the length-(**N** * **M** \+ 1) string **X**, the
|
48 |
+
characters **X0** through **XN*M**.
|
49 |
+
Then follows a line with the length-(**N** * **M** \+ 1) string **Y**, the
|
50 |
+
characters **Y0** through **YN*M**.
|
51 |
+
|
52 |
+
### Output
|
53 |
+
|
54 |
+
For the _i_th group, print a line containing "Case #_i_: " followed by one
|
55 |
+
integer, the minimum number of swaps required to stock all of the bazaars with
|
56 |
+
the required wares.
|
57 |
+
|
58 |
+
### Constraints
|
59 |
+
|
60 |
+
1 ≤ **T** ≤ 80
|
61 |
+
1 ≤ **N**, **M** ≤ 1,000,000
|
62 |
+
1 ≤ **N** * **M** ≤ 1,000,000
|
63 |
+
|
64 |
+
The sum of **N** * **M** across all **T** test cases is no greater than
|
65 |
+
10,000,000.
|
66 |
+
|
67 |
+
### Explanation of Sample
|
68 |
+
|
69 |
+
In the first case, no swaps are required.
|
70 |
+
|
71 |
+
In the second case, bazaars 1 and 2 should swap their goods.
|
72 |
+
|
73 |
+
In the third case, the bazaars are initially set up as follows (with ones
|
74 |
+
carrying amber marked in yellow, and ones carrying bronze marked in orange):
|
75 |
+
|
76 |
+
![]({{PHOTO_ID:266243124686458}})
|
77 |
+
|
78 |
+
The following sequence of 3 swaps could then be performed to arrive at the
|
79 |
+
required configuration:
|
80 |
+
|
81 |
+
![]({{PHOTO_ID:637978470132709}})
|
82 |
+
![]({{PHOTO_ID:950762542025264}})
|
83 |
+
![]({{PHOTO_ID:635336360404128}})
|
84 |
+
|
2019/finals/khajiit.out
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 0
|
2 |
+
Case #2: 1
|
3 |
+
Case #3: 3
|
4 |
+
Case #4: 6
|
5 |
+
Case #5: 13
|
6 |
+
Case #6: 36
|
7 |
+
Case #7: 54
|
8 |
+
Case #8: 0
|
9 |
+
Case #9: 250000500000
|
10 |
+
Case #10: 247439996515
|
11 |
+
Case #11: 137532384990
|
12 |
+
Case #12: 990173
|
13 |
+
Case #13: 6712972
|
14 |
+
Case #14: 30583
|
15 |
+
Case #15: 19752
|
16 |
+
Case #16: 12
|
17 |
+
Case #17: 51000
|
18 |
+
Case #18: 9446
|
19 |
+
Case #19: 28856
|
20 |
+
Case #20: 243
|
21 |
+
Case #21: 62831
|
22 |
+
Case #22: 219140
|
23 |
+
Case #23: 75630
|
24 |
+
Case #24: 75328
|
25 |
+
Case #25: 1
|
26 |
+
Case #26: 115571
|
27 |
+
Case #27: 54768
|
28 |
+
Case #28: 7181
|
29 |
+
Case #29: 40292
|
30 |
+
Case #30: 11064
|
31 |
+
Case #31: 76372
|
32 |
+
Case #32: 21252
|
33 |
+
Case #33: 121615
|
34 |
+
Case #34: 7480
|
35 |
+
Case #35: 205037
|
36 |
+
Case #36: 45380
|
37 |
+
Case #37: 99952
|
38 |
+
Case #38: 96162
|
39 |
+
Case #39: 393152
|
40 |
+
Case #40: 135921
|
41 |
+
Case #41: 115531
|
42 |
+
Case #42: 88951
|
43 |
+
Case #43: 57276
|
44 |
+
Case #44: 2922
|
45 |
+
Case #45: 60962
|
46 |
+
Case #46: 181620
|
47 |
+
Case #47: 11094
|
48 |
+
Case #48: 11835
|
49 |
+
Case #49: 155512
|
50 |
+
Case #50: 153429
|
51 |
+
Case #51: 25614
|
52 |
+
Case #52: 46346
|
53 |
+
Case #53: 41740
|
54 |
+
Case #54: 701
|
55 |
+
Case #55: 179930
|
56 |
+
Case #56: 346
|
57 |
+
Case #57: 57312
|
58 |
+
Case #58: 30808
|
59 |
+
Case #59: 13601
|
60 |
+
Case #60: 37852
|
61 |
+
Case #61: 87552
|
62 |
+
Case #62: 11455
|
63 |
+
Case #63: 122374
|
64 |
+
Case #64: 25883
|
65 |
+
Case #65: 59589
|
66 |
+
Case #66: 5149
|
67 |
+
Case #67: 22447
|
68 |
+
Case #68: 177181
|
69 |
+
Case #69: 32399
|
70 |
+
Case #70: 40144
|
71 |
+
Case #71: 129059
|
72 |
+
Case #72: 6285
|
73 |
+
Case #73: 51006
|
74 |
+
Case #74: 64574
|
75 |
+
Case #75: 354972
|
76 |
+
Case #76: 123528
|
77 |
+
Case #77: 3483
|
78 |
+
Case #78: 26835
|
79 |
+
Case #79: 90120
|
80 |
+
Case #80: 206821
|
2019/finals/little_boat_on_the_sea.html
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
Recently, Melody built a little boat, as cute as it could be. And she put a number of animals, two-by-two, on her little boat on the sea!
|
3 |
+
</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
Melody's boat features <strong>N</strong> rooms, numbered from 1 to <strong>N</strong>.
|
7 |
+
The contents of the <em>i</em>th room are described by the string <strong>A<sub>i</sub></strong>.
|
8 |
+
If <strong>A<sub>i</sub></strong> = "-", then the room is empty, while otherwise the room contains an animal of species <strong>A<sub>i</sub></strong>
|
9 |
+
(where <strong>A<sub>i</sub></strong> is a case-sensitive alphanumeric string made up of lowercase letters "a"..."z", uppercase letters "A"..."Z", and digits "0"..."9").
|
10 |
+
There are <strong>at most two animals of any given species</strong> on the boat.
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p>
|
14 |
+
There are <strong>N</strong>-1 corridors in the boat, the <em>i</em>th of which allows Melody and the animals to travel in either direction between rooms
|
15 |
+
<strong>X<sub>i</sub></strong> and <strong>Y<sub>i</sub></strong>. Each room is reachable from each other room by following a sequence of corridors.
|
16 |
+
</p>
|
17 |
+
|
18 |
+
<p>
|
19 |
+
It's time for Melody's daily walk through her boat! She'd like to choose one room to start in and a different room to end in, and walk from the former to the latter.
|
20 |
+
She'll take the unique path which allows her to do so without visiting any room multiple times. Along the way, any time she finds herself in a room containing an animal
|
21 |
+
(including the starting or ending room), that animal will join her for the remainder of her walk. Normally, both Melody and the animals will keep quiet, which is just how she likes it.
|
22 |
+
However, if two animals of any given species ever end up joining her, they'll promptly make a racket talking to one another, which is no good!
|
23 |
+
As such, she'll refuse to take a walk which would result in encountering two of any species of animal.
|
24 |
+
</p>
|
25 |
+
|
26 |
+
<p>
|
27 |
+
For how many of the <strong>N</strong>*(<strong>N</strong>-1) possible ordered pairs of starting/ending rooms would it be possible for Melody to enjoy a quiet walk from one to the other?
|
28 |
+
</p>
|
29 |
+
|
30 |
+
|
31 |
+
<h3>Input</h3>
|
32 |
+
|
33 |
+
<p>
|
34 |
+
Input begins with an integer <strong>T</strong>, the number of boats.
|
35 |
+
<br />For each boat, there is first a line containing the integer <strong>N</strong>.
|
36 |
+
<br />Then, <strong>N</strong> lines follow, the <em>i</em>th of which contains the string <strong>A<sub>i</sub></strong>.
|
37 |
+
<br />Then, <strong>N</strong> - 1 lines follow, the <em>i</em>th of which contains the space-separated integers <strong>X<sub>i</sub></strong> and <strong>Y<sub>i</sub></strong>.
|
38 |
+
</p>
|
39 |
+
|
40 |
+
|
41 |
+
<h3>Output</h3>
|
42 |
+
|
43 |
+
<p>
|
44 |
+
For the <em>i</em>th boat, print a line containing "Case #<em>i</em>: " followed by
|
45 |
+
one integer, the number of valid ordered pairs of starting and ending rooms for Melody's walk.
|
46 |
+
</p>
|
47 |
+
|
48 |
+
|
49 |
+
<h3>Constraints</h3>
|
50 |
+
|
51 |
+
<p>
|
52 |
+
1 ≤ <strong>T</strong> ≤ 95 <br />
|
53 |
+
2 ≤ <strong>N</strong> ≤ 800,000 <br />
|
54 |
+
1 ≤ <strong>X<sub>i</sub></strong>, <strong>Y<sub>i</sub></strong> ≤ <strong>N</strong> <br />
|
55 |
+
1 ≤ |<strong>A<sub>i</sub></strong>| ≤ 10 <br />
|
56 |
+
</p>
|
57 |
+
|
58 |
+
<p>
|
59 |
+
The sum of <strong>N</strong> across all <strong>T</strong> test cases is no greater than 4,000,000.
|
60 |
+
</p>
|
61 |
+
|
62 |
+
|
63 |
+
<h3>Explanation of Sample</h3>
|
64 |
+
|
65 |
+
<p>
|
66 |
+
In the first case, the 4 starting/ending room pairs (1, 2), (2, 1), (2, 3), and (3, 2) are valid.
|
67 |
+
On the other hand, the pairs (1, 3) and (3, 1) are not. For example, on the way from room 1 to room 3, a Fox would begin following Melody around in room 1, and upon being joined by another Fox in room 3, the two Foxen would begin making strange noises towards one another.
|
68 |
+
</p>
|
69 |
+
|
70 |
+
<p>
|
71 |
+
In the second case, both possible starting/ending room pairs ((1, 2) and (2, 1)) are no good, as they would involve encountering two talkative Turtles.
|
72 |
+
</p>
|
73 |
+
|
74 |
+
<p>
|
75 |
+
In the third case, both possible starting/ending room pairs will do, as no two animals of any given species can be encountered.
|
76 |
+
</p>
|
77 |
+
|
2019/finals/little_boat_on_the_sea.in
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07006c7e87cc24203590a9edac2d350f17e74d530741b180136e90d265722196
|
3 |
+
size 60455824
|
2019/finals/little_boat_on_the_sea.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Recently, Melody built a little boat, as cute as it could be. And she put a
|
2 |
+
number of animals, two-by-two, on her little boat on the sea!
|
3 |
+
|
4 |
+
Melody's boat features **N** rooms, numbered from 1 to **N**. The contents of
|
5 |
+
the _i_th room are described by the string **Ai**. If **Ai** = "-", then the
|
6 |
+
room is empty, while otherwise the room contains an animal of species **Ai**
|
7 |
+
(where **Ai** is a case-sensitive alphanumeric string made up of lowercase
|
8 |
+
letters "a"..."z", uppercase letters "A"..."Z", and digits "0"..."9"). There
|
9 |
+
are **at most two animals of any given species** on the boat.
|
10 |
+
|
11 |
+
There are **N**-1 corridors in the boat, the _i_th of which allows Melody and
|
12 |
+
the animals to travel in either direction between rooms **Xi** and **Yi**.
|
13 |
+
Each room is reachable from each other room by following a sequence of
|
14 |
+
corridors.
|
15 |
+
|
16 |
+
It's time for Melody's daily walk through her boat! She'd like to choose one
|
17 |
+
room to start in and a different room to end in, and walk from the former to
|
18 |
+
the latter. She'll take the unique path which allows her to do so without
|
19 |
+
visiting any room multiple times. Along the way, any time she finds herself in
|
20 |
+
a room containing an animal (including the starting or ending room), that
|
21 |
+
animal will join her for the remainder of her walk. Normally, both Melody and
|
22 |
+
the animals will keep quiet, which is just how she likes it. However, if two
|
23 |
+
animals of any given species ever end up joining her, they'll promptly make a
|
24 |
+
racket talking to one another, which is no good! As such, she'll refuse to
|
25 |
+
take a walk which would result in encountering two of any species of animal.
|
26 |
+
|
27 |
+
For how many of the **N***(**N**-1) possible ordered pairs of starting/ending
|
28 |
+
rooms would it be possible for Melody to enjoy a quiet walk from one to the
|
29 |
+
other?
|
30 |
+
|
31 |
+
### Input
|
32 |
+
|
33 |
+
Input begins with an integer **T**, the number of boats.
|
34 |
+
For each boat, there is first a line containing the integer **N**.
|
35 |
+
Then, **N** lines follow, the _i_th of which contains the string **Ai**.
|
36 |
+
Then, **N** \- 1 lines follow, the _i_th of which contains the space-separated
|
37 |
+
integers **Xi** and **Yi**.
|
38 |
+
|
39 |
+
### Output
|
40 |
+
|
41 |
+
For the _i_th boat, print a line containing "Case #_i_: " followed by one
|
42 |
+
integer, the number of valid ordered pairs of starting and ending rooms for
|
43 |
+
Melody's walk.
|
44 |
+
|
45 |
+
### Constraints
|
46 |
+
|
47 |
+
1 ≤ **T** ≤ 95
|
48 |
+
2 ≤ **N** ≤ 800,000
|
49 |
+
1 ≤ **Xi**, **Yi** ≤ **N**
|
50 |
+
1 ≤ |**Ai**| ≤ 10
|
51 |
+
|
52 |
+
The sum of **N** across all **T** test cases is no greater than 4,000,000.
|
53 |
+
|
54 |
+
### Explanation of Sample
|
55 |
+
|
56 |
+
In the first case, the 4 starting/ending room pairs (1, 2), (2, 1), (2, 3),
|
57 |
+
and (3, 2) are valid. On the other hand, the pairs (1, 3) and (3, 1) are not.
|
58 |
+
For example, on the way from room 1 to room 3, a Fox would begin following
|
59 |
+
Melody around in room 1, and upon being joined by another Fox in room 3, the
|
60 |
+
two Foxen would begin making strange noises towards one another.
|
61 |
+
|
62 |
+
In the second case, both possible starting/ending room pairs ((1, 2) and (2,
|
63 |
+
1)) are no good, as they would involve encountering two talkative Turtles.
|
64 |
+
|
65 |
+
In the third case, both possible starting/ending room pairs will do, as no two
|
66 |
+
animals of any given species can be encountered.
|
67 |
+
|
2019/finals/little_boat_on_the_sea.out
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 4
|
2 |
+
Case #2: 0
|
3 |
+
Case #3: 2
|
4 |
+
Case #4: 8
|
5 |
+
Case #5: 48
|
6 |
+
Case #6: 358
|
7 |
+
Case #7: 1801672158
|
8 |
+
Case #8: 1892171288
|
9 |
+
Case #9: 1851118504
|
10 |
+
Case #10: 635640308616
|
11 |
+
Case #11: 235104
|
12 |
+
Case #12: 346054
|
13 |
+
Case #13: 1984
|
14 |
+
Case #14: 16584
|
15 |
+
Case #15: 25254
|
16 |
+
Case #16: 776864
|
17 |
+
Case #17: 311244
|
18 |
+
Case #18: 569040
|
19 |
+
Case #19: 97144
|
20 |
+
Case #20: 7112
|
21 |
+
Case #21: 725062
|
22 |
+
Case #22: 114124
|
23 |
+
Case #23: 49252
|
24 |
+
Case #24: 446268
|
25 |
+
Case #25: 650854
|
26 |
+
Case #26: 15922
|
27 |
+
Case #27: 2902
|
28 |
+
Case #28: 295858
|
29 |
+
Case #29: 691768
|
30 |
+
Case #30: 963564
|
31 |
+
Case #31: 37720
|
32 |
+
Case #32: 396818
|
33 |
+
Case #33: 166556
|
34 |
+
Case #34: 120910
|
35 |
+
Case #35: 127884
|
36 |
+
Case #36: 777402
|
37 |
+
Case #37: 16368
|
38 |
+
Case #38: 365376
|
39 |
+
Case #39: 303266
|
40 |
+
Case #40: 55382
|
41 |
+
Case #41: 255716
|
42 |
+
Case #42: 1092
|
43 |
+
Case #43: 370480
|
44 |
+
Case #44: 48566
|
45 |
+
Case #45: 222910
|
46 |
+
Case #46: 19270
|
47 |
+
Case #47: 411790
|
48 |
+
Case #48: 185492
|
49 |
+
Case #49: 391326
|
50 |
+
Case #50: 146310
|
51 |
+
Case #51: 113264
|
52 |
+
Case #52: 130156
|
53 |
+
Case #53: 937168
|
54 |
+
Case #54: 120118
|
55 |
+
Case #55: 162184
|
56 |
+
Case #56: 363434
|
57 |
+
Case #57: 159916
|
58 |
+
Case #58: 738966
|
59 |
+
Case #59: 765880
|
60 |
+
Case #60: 865888
|
61 |
+
Case #61: 209644
|
62 |
+
Case #62: 918060
|
63 |
+
Case #63: 184
|
64 |
+
Case #64: 193880
|
65 |
+
Case #65: 652442
|
66 |
+
Case #66: 393916
|
67 |
+
Case #67: 238342
|
68 |
+
Case #68: 176160
|
69 |
+
Case #69: 3480
|
70 |
+
Case #70: 811600
|
71 |
+
Case #71: 84352
|
72 |
+
Case #72: 431904
|
73 |
+
Case #73: 680032
|
74 |
+
Case #74: 166928
|
75 |
+
Case #75: 968366
|
76 |
+
Case #76: 31468
|
77 |
+
Case #77: 507080
|
78 |
+
Case #78: 131174
|
79 |
+
Case #79: 1570
|
80 |
+
Case #80: 21304
|
81 |
+
Case #81: 53536
|
82 |
+
Case #82: 289132
|
83 |
+
Case #83: 654002
|
84 |
+
Case #84: 12904
|
85 |
+
Case #85: 33254
|
86 |
+
Case #86: 315626
|
87 |
+
Case #87: 212330
|
88 |
+
Case #88: 473848
|
89 |
+
Case #89: 558506
|
90 |
+
Case #90: 710960
|
91 |
+
Case #91: 533980
|
92 |
+
Case #92: 555138
|
93 |
+
Case #93: 3474
|
94 |
+
Case #94: 639088
|
95 |
+
Case #95: 121638
|
96 |
+
Case #96: 218092
|
97 |
+
Case #97: 603820
|
98 |
+
Case #98: 616360
|
99 |
+
Case #99: 89778
|
100 |
+
Case #100: 20418
|
101 |
+
Case #101: 144440
|
102 |
+
Case #102: 766934
|
103 |
+
Case #103: 28700
|
104 |
+
Case #104: 558936
|
105 |
+
Case #105: 128732
|
106 |
+
Case #106: 905352
|
2019/finals/scoreboard.html
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
The 2019 Hacker Cup Finals have just concluded! There were <strong>N</strong> participants (numbered 1 to <strong>N</strong>),
|
3 |
+
including yourself (competing as participant 1), and <strong>M</strong> problems (numbered 1 to <strong>M</strong>).
|
4 |
+
</p>
|
5 |
+
|
6 |
+
<p>
|
7 |
+
Participant <em>i</em> solved problem <em>j</em> if <strong>S<sub>i,j</sub></strong> = "Y", and otherwise they didn't solve it (if <strong>S<sub>i,j</sub></strong> = "N").
|
8 |
+
Problem <em>i</em>'s point value is 2<sup>i</sup>, and each participant's score is the sum of the point values of the problems that they solved.
|
9 |
+
No two participants solved exactly the same set of problems, which also means that all participants have distinct scores.
|
10 |
+
</p>
|
11 |
+
|
12 |
+
<p>
|
13 |
+
Before the final results get announced, you have an opportunity to rearrange the <strong>M</strong> columns of the scoreboard <strong>S</strong>
|
14 |
+
into any permutation of problems 1 to <strong>M</strong>.
|
15 |
+
For example, if you swap columns 1 and 2, then everybody who had originally solved problem 1 will now be considered to have solved problem 2
|
16 |
+
(thus earning 4 points for it rather than 2), and vice versa.
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<p>
|
20 |
+
Of course, you'd like to use this opportunity to your benefit — it would be irresponsible to just let it pass by!
|
21 |
+
However, it would be too suspicious if you simply made yourself win the whole competition.
|
22 |
+
As such, you'd like to cause yourself to end up in 2nd place, such that you (participant 1) have exactly the second-highest score out of all <strong>N</strong> participants.
|
23 |
+
Now you just need to determine whether or not this is achievable...
|
24 |
+
</p>
|
25 |
+
|
26 |
+
|
27 |
+
<h3>Input</h3>
|
28 |
+
|
29 |
+
<p>
|
30 |
+
Input begins with an integer <strong>T</strong>, the number of scoreboards.
|
31 |
+
<br />For each scoreboard, there is first a line containing the space-separated integers <strong>N</strong> and <strong>M</strong>.
|
32 |
+
<br />Then, <strong>N</strong> lines follow, the <em>i</em>th of which contains a length-<strong>M</strong> string, the characters
|
33 |
+
<strong>S<sub>i,1</sub></strong> through <strong>S<sub>i,M</sub></strong>.
|
34 |
+
</p>
|
35 |
+
|
36 |
+
|
37 |
+
<h3>Output</h3>
|
38 |
+
|
39 |
+
<p>
|
40 |
+
For the <em>i</em>th scoreboard, print a line containing "Case #<em>i</em>: " followed by
|
41 |
+
one character, either "Y" if you can end up in 2nd place, or "N" otherwise.
|
42 |
+
</p>
|
43 |
+
|
44 |
+
|
45 |
+
<h3>Constraints</h3>
|
46 |
+
|
47 |
+
<p>
|
48 |
+
1 ≤ <strong>T</strong> ≤ 200 <br />
|
49 |
+
2 ≤ <strong>N</strong> ≤ 400 <br />
|
50 |
+
1 ≤ <strong>M</strong> ≤ 400 <br />
|
51 |
+
</p>
|
52 |
+
|
53 |
+
<p>
|
54 |
+
The sum of <strong>N</strong> * <strong>M</strong> across all <strong>T</strong> test cases is no greater than 1,000,000.
|
55 |
+
</p>
|
56 |
+
|
57 |
+
|
58 |
+
<h3>Explanation of Sample</h3>
|
59 |
+
|
60 |
+
<p>
|
61 |
+
In the first case, there's only one possible permutation of problems: [1]. This results in you having a score of 2 and participant 2 having a score of 0, which puts you in 1st place rather than 2nd.
|
62 |
+
</p>
|
63 |
+
|
64 |
+
<p>
|
65 |
+
In the second case, if you preserve the original permutation of problems, [1, 2], you'll have a score of 2 while participant 2 has a score of 4, putting you in 2nd place, as required.
|
66 |
+
The permutation [2, 1] would have put you in 1st place instead.
|
67 |
+
</p>
|
68 |
+
|
69 |
+
<p>
|
70 |
+
In the third case, if you choose the problem permutation [2, 1], the 4 participants' scores will be 4, 0, 6, and 2, respectively. This puts you in 2nd place, as required.
|
71 |
+
The problem permutation [1, 2] would have put you in 3rd place instead.
|
72 |
+
</p>
|
73 |
+
|
2019/finals/scoreboard.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/finals/scoreboard.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The 2019 Hacker Cup Finals have just concluded! There were **N** participants
|
2 |
+
(numbered 1 to **N**), including yourself (competing as participant 1), and
|
3 |
+
**M** problems (numbered 1 to **M**).
|
4 |
+
|
5 |
+
Participant _i_ solved problem _j_ if **Si,j** = "Y", and otherwise they
|
6 |
+
didn't solve it (if **Si,j** = "N"). Problem _i_'s point value is 2i, and each
|
7 |
+
participant's score is the sum of the point values of the problems that they
|
8 |
+
solved. No two participants solved exactly the same set of problems, which
|
9 |
+
also means that all participants have distinct scores.
|
10 |
+
|
11 |
+
Before the final results get announced, you have an opportunity to rearrange
|
12 |
+
the **M** columns of the scoreboard **S** into any permutation of problems 1
|
13 |
+
to **M**. For example, if you swap columns 1 and 2, then everybody who had
|
14 |
+
originally solved problem 1 will now be considered to have solved problem 2
|
15 |
+
(thus earning 4 points for it rather than 2), and vice versa.
|
16 |
+
|
17 |
+
Of course, you'd like to use this opportunity to your benefit — it would be
|
18 |
+
irresponsible to just let it pass by! However, it would be too suspicious if
|
19 |
+
you simply made yourself win the whole competition. As such, you'd like to
|
20 |
+
cause yourself to end up in 2nd place, such that you (participant 1) have
|
21 |
+
exactly the second-highest score out of all **N** participants. Now you just
|
22 |
+
need to determine whether or not this is achievable...
|
23 |
+
|
24 |
+
### Input
|
25 |
+
|
26 |
+
Input begins with an integer **T**, the number of scoreboards.
|
27 |
+
For each scoreboard, there is first a line containing the space-separated
|
28 |
+
integers **N** and **M**.
|
29 |
+
Then, **N** lines follow, the _i_th of which contains a length-**M** string,
|
30 |
+
the characters **Si,1** through **Si,M**.
|
31 |
+
|
32 |
+
### Output
|
33 |
+
|
34 |
+
For the _i_th scoreboard, print a line containing "Case #_i_: " followed by
|
35 |
+
one character, either "Y" if you can end up in 2nd place, or "N" otherwise.
|
36 |
+
|
37 |
+
### Constraints
|
38 |
+
|
39 |
+
1 ≤ **T** ≤ 200
|
40 |
+
2 ≤ **N** ≤ 400
|
41 |
+
1 ≤ **M** ≤ 400
|
42 |
+
|
43 |
+
The sum of **N** * **M** across all **T** test cases is no greater than
|
44 |
+
1,000,000.
|
45 |
+
|
46 |
+
### Explanation of Sample
|
47 |
+
|
48 |
+
In the first case, there's only one possible permutation of problems: [1].
|
49 |
+
This results in you having a score of 2 and participant 2 having a score of 0,
|
50 |
+
which puts you in 1st place rather than 2nd.
|
51 |
+
|
52 |
+
In the second case, if you preserve the original permutation of problems, [1,
|
53 |
+
2], you'll have a score of 2 while participant 2 has a score of 4, putting you
|
54 |
+
in 2nd place, as required. The permutation [2, 1] would have put you in 1st
|
55 |
+
place instead.
|
56 |
+
|
57 |
+
In the third case, if you choose the problem permutation [2, 1], the 4
|
58 |
+
participants' scores will be 4, 0, 6, and 2, respectively. This puts you in
|
59 |
+
2nd place, as required. The problem permutation [1, 2] would have put you in
|
60 |
+
3rd place instead.
|
61 |
+
|
2019/finals/scoreboard.out
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: N
|
2 |
+
Case #2: Y
|
3 |
+
Case #3: Y
|
4 |
+
Case #4: N
|
5 |
+
Case #5: Y
|
6 |
+
Case #6: N
|
7 |
+
Case #7: Y
|
8 |
+
Case #8: Y
|
9 |
+
Case #9: N
|
10 |
+
Case #10: N
|
11 |
+
Case #11: N
|
12 |
+
Case #12: N
|
13 |
+
Case #13: N
|
14 |
+
Case #14: N
|
15 |
+
Case #15: N
|
16 |
+
Case #16: N
|
17 |
+
Case #17: N
|
18 |
+
Case #18: N
|
19 |
+
Case #19: N
|
20 |
+
Case #20: N
|
21 |
+
Case #21: N
|
22 |
+
Case #22: N
|
23 |
+
Case #23: N
|
24 |
+
Case #24: N
|
25 |
+
Case #25: N
|
26 |
+
Case #26: N
|
27 |
+
Case #27: N
|
28 |
+
Case #28: N
|
29 |
+
Case #29: Y
|
30 |
+
Case #30: Y
|
31 |
+
Case #31: Y
|
32 |
+
Case #32: Y
|
33 |
+
Case #33: Y
|
34 |
+
Case #34: Y
|
35 |
+
Case #35: Y
|
36 |
+
Case #36: Y
|
37 |
+
Case #37: Y
|
38 |
+
Case #38: N
|
39 |
+
Case #39: N
|
40 |
+
Case #40: Y
|
41 |
+
Case #41: Y
|
42 |
+
Case #42: Y
|
43 |
+
Case #43: Y
|
44 |
+
Case #44: Y
|
45 |
+
Case #45: N
|
46 |
+
Case #46: Y
|
47 |
+
Case #47: N
|
48 |
+
Case #48: Y
|
49 |
+
Case #49: Y
|
50 |
+
Case #50: N
|
51 |
+
Case #51: N
|
52 |
+
Case #52: Y
|
53 |
+
Case #53: Y
|
54 |
+
Case #54: Y
|
55 |
+
Case #55: Y
|
56 |
+
Case #56: Y
|
57 |
+
Case #57: Y
|
58 |
+
Case #58: Y
|
59 |
+
Case #59: N
|
60 |
+
Case #60: Y
|
61 |
+
Case #61: Y
|
62 |
+
Case #62: Y
|
63 |
+
Case #63: Y
|
64 |
+
Case #64: Y
|
65 |
+
Case #65: Y
|
66 |
+
Case #66: Y
|
67 |
+
Case #67: Y
|
68 |
+
Case #68: Y
|
69 |
+
Case #69: Y
|
70 |
+
Case #70: Y
|
71 |
+
Case #71: Y
|
72 |
+
Case #72: Y
|
73 |
+
Case #73: Y
|
74 |
+
Case #74: Y
|
75 |
+
Case #75: Y
|
76 |
+
Case #76: Y
|
77 |
+
Case #77: Y
|
78 |
+
Case #78: Y
|
79 |
+
Case #79: Y
|
80 |
+
Case #80: N
|
81 |
+
Case #81: Y
|
82 |
+
Case #82: Y
|
83 |
+
Case #83: N
|
84 |
+
Case #84: Y
|
85 |
+
Case #85: Y
|
86 |
+
Case #86: Y
|
87 |
+
Case #87: Y
|
88 |
+
Case #88: Y
|
89 |
+
Case #89: Y
|
90 |
+
Case #90: Y
|
91 |
+
Case #91: Y
|
92 |
+
Case #92: Y
|
93 |
+
Case #93: Y
|
94 |
+
Case #94: Y
|
95 |
+
Case #95: Y
|
96 |
+
Case #96: Y
|
97 |
+
Case #97: Y
|
98 |
+
Case #98: Y
|
99 |
+
Case #99: Y
|
100 |
+
Case #100: Y
|
101 |
+
Case #101: N
|
102 |
+
Case #102: Y
|
103 |
+
Case #103: Y
|
104 |
+
Case #104: Y
|
105 |
+
Case #105: Y
|
106 |
+
Case #106: Y
|
107 |
+
Case #107: Y
|
108 |
+
Case #108: Y
|
109 |
+
Case #109: Y
|
110 |
+
Case #110: Y
|
111 |
+
Case #111: Y
|
112 |
+
Case #112: Y
|
113 |
+
Case #113: Y
|
114 |
+
Case #114: Y
|
115 |
+
Case #115: Y
|
116 |
+
Case #116: Y
|
117 |
+
Case #117: N
|
118 |
+
Case #118: Y
|
119 |
+
Case #119: Y
|
120 |
+
Case #120: Y
|
121 |
+
Case #121: Y
|
122 |
+
Case #122: Y
|
123 |
+
Case #123: Y
|
124 |
+
Case #124: Y
|
125 |
+
Case #125: Y
|
126 |
+
Case #126: Y
|
127 |
+
Case #127: Y
|
128 |
+
Case #128: Y
|
129 |
+
Case #129: Y
|
130 |
+
Case #130: Y
|
131 |
+
Case #131: Y
|
132 |
+
Case #132: Y
|
133 |
+
Case #133: Y
|
134 |
+
Case #134: Y
|
135 |
+
Case #135: Y
|
136 |
+
Case #136: Y
|
137 |
+
Case #137: N
|
138 |
+
Case #138: N
|
139 |
+
Case #139: Y
|
140 |
+
Case #140: Y
|
141 |
+
Case #141: N
|
142 |
+
Case #142: Y
|
143 |
+
Case #143: Y
|
144 |
+
Case #144: Y
|
145 |
+
Case #145: Y
|
146 |
+
Case #146: Y
|
147 |
+
Case #147: N
|
148 |
+
Case #148: Y
|
149 |
+
Case #149: Y
|
150 |
+
Case #150: Y
|
151 |
+
Case #151: Y
|
152 |
+
Case #152: Y
|
153 |
+
Case #153: Y
|
154 |
+
Case #154: Y
|
155 |
+
Case #155: Y
|
156 |
+
Case #156: Y
|
157 |
+
Case #157: Y
|
158 |
+
Case #158: Y
|
159 |
+
Case #159: Y
|
160 |
+
Case #160: Y
|
161 |
+
Case #161: N
|
162 |
+
Case #162: Y
|
163 |
+
Case #163: Y
|
164 |
+
Case #164: Y
|
165 |
+
Case #165: Y
|
166 |
+
Case #166: Y
|
167 |
+
Case #167: N
|
168 |
+
Case #168: Y
|
169 |
+
Case #169: Y
|
170 |
+
Case #170: N
|
171 |
+
Case #171: Y
|
172 |
+
Case #172: Y
|
173 |
+
Case #173: Y
|
174 |
+
Case #174: Y
|
175 |
+
Case #175: Y
|
176 |
+
Case #176: Y
|
177 |
+
Case #177: Y
|
178 |
+
Case #178: Y
|
179 |
+
Case #179: Y
|
180 |
+
Case #180: Y
|
181 |
+
Case #181: N
|
182 |
+
Case #182: Y
|
183 |
+
Case #183: Y
|
184 |
+
Case #184: Y
|
185 |
+
Case #185: Y
|
186 |
+
Case #186: Y
|
187 |
+
Case #187: Y
|
188 |
+
Case #188: N
|
189 |
+
Case #189: Y
|
190 |
+
Case #190: Y
|
191 |
+
Case #191: Y
|
192 |
+
Case #192: Y
|
193 |
+
Case #193: Y
|
194 |
+
Case #194: N
|
195 |
+
Case #195: Y
|
196 |
+
Case #196: Y
|
197 |
+
Case #197: Y
|
198 |
+
Case #198: Y
|
199 |
+
Case #199: Y
|
200 |
+
Case #200: Y
|
201 |
+
Case #201: Y
|
202 |
+
Case #202: Y
|
203 |
+
Case #203: Y
|
204 |
+
Case #204: N
|
205 |
+
Case #205: Y
|
206 |
+
Case #206: Y
|
207 |
+
Case #207: Y
|
208 |
+
Case #208: Y
|
209 |
+
Case #209: Y
|
210 |
+
Case #210: N
|
211 |
+
Case #211: Y
|
212 |
+
Case #212: Y
|
213 |
+
Case #213: Y
|
214 |
+
Case #214: Y
|
215 |
+
Case #215: Y
|
216 |
+
Case #216: Y
|
217 |
+
Case #217: Y
|
218 |
+
Case #218: N
|
219 |
+
Case #219: Y
|
220 |
+
Case #220: Y
|
221 |
+
Case #221: N
|
222 |
+
Case #222: Y
|
223 |
+
Case #223: Y
|
224 |
+
Case #224: Y
|
225 |
+
Case #225: Y
|
226 |
+
Case #226: Y
|
227 |
+
Case #227: Y
|
228 |
+
Case #228: Y
|
2019/finals/strings_as_a_service.html
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
Carlos has been working in technology so long that he's starting to feel a bit
|
3 |
+
burnt out. Hoping to rejuvenate himself, Carlos has been seeking out more
|
4 |
+
artistic opportunities.
|
5 |
+
</p>
|
6 |
+
|
7 |
+
<p>
|
8 |
+
Yamaha, the well-known creator of musical apparatus, has approached Carlos with
|
9 |
+
a request that might be right up his alley: they'd like him to design a brand new
|
10 |
+
instrument. Immediately, Carlos knows what to do.
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p><em>
|
14 |
+
"You may have seen Pat Metheny's 42-string guitar, but that's nothing compared
|
15 |
+
to what we're going to make together."
|
16 |
+
</em></p>
|
17 |
+
|
18 |
+
<p>
|
19 |
+
Carlos presents his plan for a 1,000-string guitar, complete with programmatic
|
20 |
+
tuning so that you don't need to turn 1,000 knobs by hand. Yamaha's market
|
21 |
+
research suggests that these sorts of guitars would be great for playing
|
22 |
+
palindromic chords, chords where the first string plays the same note as the
|
23 |
+
last string, the second string plays the same note as the second-to-last
|
24 |
+
string, and so on. Carlos is quickly tasked with developing default tunings for
|
25 |
+
the strings so that the guitars are ready to play right out of the box.
|
26 |
+
</p>
|
27 |
+
|
28 |
+
<p>
|
29 |
+
For various integers <strong>K</strong>, Carlos wants to find a set of at most 1,000 strings on which
|
30 |
+
exactly <strong>K</strong> distinct palindromic chords can be played. The guitar's strings are
|
31 |
+
arranged in a line, and each one must be tuned to a note from the set {A, B, C, D, E, F, G}.
|
32 |
+
A chord is then played by strumming a contiguous subset of
|
33 |
+
1 or more strings. Two chords are considered to be distinct if there is at least one
|
34 |
+
string that is used in one chord but not the other; chords involving the same notes but
|
35 |
+
different strings are considered different.
|
36 |
+
</p>
|
37 |
+
|
38 |
+
<p>
|
39 |
+
For example, if <strong>K</strong> = 9, a set of 7 strings could be tuned to the notes
|
40 |
+
C, A, B, B, A, G, E in order from left to right. You can play 7 different palindromic
|
41 |
+
chords by strumming single strings, the chord BB by strumming the 3rd and 4th
|
42 |
+
strings, and the chord ABBA by strumming the 2nd, 3rd, 4th, and 5th strings.
|
43 |
+
This is a total of 9 distinct palindromic chords.
|
44 |
+
</strong>
|
45 |
+
|
46 |
+
<p>
|
47 |
+
Output any non-empty string of valid musical notes, with length at most 1,000,
|
48 |
+
representing the tunings of sequential strings. An aspiring musician must be able
|
49 |
+
to play exactly <strong>K</strong> distinct palindromic chords on these strings. It's guaranteed
|
50 |
+
that there is at least one valid output for each possible valid input.
|
51 |
+
</p>
|
52 |
+
|
53 |
+
|
54 |
+
<h3>Input</h3>
|
55 |
+
|
56 |
+
<p>
|
57 |
+
Input begins with an integer <strong>T</strong>, the number of tunings that Carlos needs to figure out.
|
58 |
+
<br />For each tuning, there is a single line containing the integer <strong>K</strong>.
|
59 |
+
</p>
|
60 |
+
|
61 |
+
|
62 |
+
<h3>Output</h3>
|
63 |
+
|
64 |
+
<p>
|
65 |
+
For the <em>i</em>th tuning, print a line containing "Case #<em>i</em>: " followed by a string of up to 1,000 characters representing
|
66 |
+
a tuning of strings as described above on which exactly <strong>K</strong> distinct palindromic chords can be played.
|
67 |
+
</p>
|
68 |
+
|
69 |
+
|
70 |
+
<h3>Constraints</h3>
|
71 |
+
|
72 |
+
<p>
|
73 |
+
1 ≤ <strong>T</strong> ≤ 500 <br />
|
74 |
+
1 ≤ <strong>K</strong> ≤ 100,000 <br />
|
75 |
+
</p>
|
76 |
+
|
77 |
+
<h3>Explanation of Sample</h3>
|
78 |
+
|
79 |
+
<p>
|
80 |
+
In the first case, "ACE" is a valid output as it contains exactly 3 palindromes: "A", "C", and "E". On the other hand, "DAD" would not be valid as it contains 4 palindromes.
|
81 |
+
</p>
|
82 |
+
|
83 |
+
<p>
|
84 |
+
In the second case, "GAGA" is a valid output as it contains exactly 6 palindromes: "G", "A", "G", "A", "GAG", and "AGA".
|
85 |
+
</p>
|
86 |
+
|
87 |
+
<p>
|
88 |
+
<strong><i>Note that other outputs would also be accepted for each sample case.</i></strong>
|
89 |
+
</p>
|
90 |
+
|
2019/finals/strings_as_a_service.in
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
505
|
2 |
+
3
|
3 |
+
6
|
4 |
+
7
|
5 |
+
9
|
6 |
+
16
|
7 |
+
1
|
8 |
+
2
|
9 |
+
3
|
10 |
+
4
|
11 |
+
5
|
12 |
+
6
|
13 |
+
7
|
14 |
+
8
|
15 |
+
9
|
16 |
+
10
|
17 |
+
11
|
18 |
+
12
|
19 |
+
13
|
20 |
+
14
|
21 |
+
15
|
22 |
+
16
|
23 |
+
17
|
24 |
+
18
|
25 |
+
19
|
26 |
+
20
|
27 |
+
21
|
28 |
+
22
|
29 |
+
23
|
30 |
+
24
|
31 |
+
25
|
32 |
+
26
|
33 |
+
27
|
34 |
+
28
|
35 |
+
29
|
36 |
+
30
|
37 |
+
31
|
38 |
+
32
|
39 |
+
33
|
40 |
+
34
|
41 |
+
35
|
42 |
+
36
|
43 |
+
37
|
44 |
+
38
|
45 |
+
39
|
46 |
+
40
|
47 |
+
41
|
48 |
+
42
|
49 |
+
43
|
50 |
+
44
|
51 |
+
45
|
52 |
+
46
|
53 |
+
47
|
54 |
+
48
|
55 |
+
49
|
56 |
+
50
|
57 |
+
51
|
58 |
+
52
|
59 |
+
53
|
60 |
+
54
|
61 |
+
55
|
62 |
+
56
|
63 |
+
57
|
64 |
+
58
|
65 |
+
59
|
66 |
+
60
|
67 |
+
61
|
68 |
+
62
|
69 |
+
63
|
70 |
+
64
|
71 |
+
65
|
72 |
+
66
|
73 |
+
67
|
74 |
+
68
|
75 |
+
69
|
76 |
+
70
|
77 |
+
71
|
78 |
+
72
|
79 |
+
73
|
80 |
+
74
|
81 |
+
75
|
82 |
+
76
|
83 |
+
77
|
84 |
+
78
|
85 |
+
79
|
86 |
+
80
|
87 |
+
81
|
88 |
+
82
|
89 |
+
83
|
90 |
+
84
|
91 |
+
85
|
92 |
+
86
|
93 |
+
87
|
94 |
+
88
|
95 |
+
89
|
96 |
+
90
|
97 |
+
91
|
98 |
+
92
|
99 |
+
93
|
100 |
+
94
|
101 |
+
95
|
102 |
+
96
|
103 |
+
97
|
104 |
+
98
|
105 |
+
99
|
106 |
+
100
|
107 |
+
101
|
108 |
+
102
|
109 |
+
103
|
110 |
+
104
|
111 |
+
105
|
112 |
+
106
|
113 |
+
107
|
114 |
+
108
|
115 |
+
109
|
116 |
+
110
|
117 |
+
111
|
118 |
+
112
|
119 |
+
113
|
120 |
+
114
|
121 |
+
115
|
122 |
+
116
|
123 |
+
117
|
124 |
+
118
|
125 |
+
119
|
126 |
+
120
|
127 |
+
121
|
128 |
+
122
|
129 |
+
123
|
130 |
+
124
|
131 |
+
125
|
132 |
+
126
|
133 |
+
127
|
134 |
+
128
|
135 |
+
129
|
136 |
+
130
|
137 |
+
131
|
138 |
+
132
|
139 |
+
133
|
140 |
+
134
|
141 |
+
135
|
142 |
+
136
|
143 |
+
137
|
144 |
+
138
|
145 |
+
139
|
146 |
+
140
|
147 |
+
141
|
148 |
+
142
|
149 |
+
143
|
150 |
+
144
|
151 |
+
145
|
152 |
+
146
|
153 |
+
147
|
154 |
+
148
|
155 |
+
149
|
156 |
+
150
|
157 |
+
100000
|
158 |
+
99999
|
159 |
+
99998
|
160 |
+
99997
|
161 |
+
99996
|
162 |
+
99995
|
163 |
+
99994
|
164 |
+
99993
|
165 |
+
99992
|
166 |
+
99991
|
167 |
+
99990
|
168 |
+
99989
|
169 |
+
99988
|
170 |
+
99987
|
171 |
+
99986
|
172 |
+
99985
|
173 |
+
99984
|
174 |
+
99983
|
175 |
+
99982
|
176 |
+
99981
|
177 |
+
99980
|
178 |
+
99979
|
179 |
+
99978
|
180 |
+
99977
|
181 |
+
99976
|
182 |
+
99975
|
183 |
+
99974
|
184 |
+
99973
|
185 |
+
99972
|
186 |
+
99971
|
187 |
+
99970
|
188 |
+
99969
|
189 |
+
99968
|
190 |
+
99967
|
191 |
+
99966
|
192 |
+
99965
|
193 |
+
99964
|
194 |
+
99963
|
195 |
+
99962
|
196 |
+
99961
|
197 |
+
99960
|
198 |
+
99959
|
199 |
+
99958
|
200 |
+
99957
|
201 |
+
99956
|
202 |
+
99955
|
203 |
+
99954
|
204 |
+
99953
|
205 |
+
99952
|
206 |
+
99951
|
207 |
+
99950
|
208 |
+
99949
|
209 |
+
99948
|
210 |
+
99947
|
211 |
+
99946
|
212 |
+
99945
|
213 |
+
99944
|
214 |
+
99943
|
215 |
+
99942
|
216 |
+
99941
|
217 |
+
99940
|
218 |
+
99939
|
219 |
+
99938
|
220 |
+
99937
|
221 |
+
99936
|
222 |
+
99935
|
223 |
+
99934
|
224 |
+
99933
|
225 |
+
99932
|
226 |
+
99931
|
227 |
+
99930
|
228 |
+
99929
|
229 |
+
99928
|
230 |
+
99927
|
231 |
+
99926
|
232 |
+
99925
|
233 |
+
99924
|
234 |
+
99923
|
235 |
+
99922
|
236 |
+
99921
|
237 |
+
99920
|
238 |
+
99919
|
239 |
+
99918
|
240 |
+
99917
|
241 |
+
99916
|
242 |
+
99915
|
243 |
+
99914
|
244 |
+
99913
|
245 |
+
99912
|
246 |
+
99911
|
247 |
+
99910
|
248 |
+
99909
|
249 |
+
99908
|
250 |
+
99907
|
251 |
+
99906
|
252 |
+
99905
|
253 |
+
99904
|
254 |
+
99903
|
255 |
+
99902
|
256 |
+
99901
|
257 |
+
99900
|
258 |
+
99899
|
259 |
+
99898
|
260 |
+
99897
|
261 |
+
99896
|
262 |
+
99895
|
263 |
+
99894
|
264 |
+
99893
|
265 |
+
99892
|
266 |
+
99891
|
267 |
+
99890
|
268 |
+
99889
|
269 |
+
99888
|
270 |
+
99887
|
271 |
+
99886
|
272 |
+
99885
|
273 |
+
99884
|
274 |
+
99883
|
275 |
+
99882
|
276 |
+
99881
|
277 |
+
99880
|
278 |
+
99879
|
279 |
+
99878
|
280 |
+
99877
|
281 |
+
99876
|
282 |
+
99875
|
283 |
+
99874
|
284 |
+
99873
|
285 |
+
99872
|
286 |
+
99871
|
287 |
+
99870
|
288 |
+
99869
|
289 |
+
99868
|
290 |
+
99867
|
291 |
+
99866
|
292 |
+
99865
|
293 |
+
99864
|
294 |
+
99863
|
295 |
+
99862
|
296 |
+
99861
|
297 |
+
99860
|
298 |
+
99859
|
299 |
+
99858
|
300 |
+
99857
|
301 |
+
99856
|
302 |
+
99855
|
303 |
+
99854
|
304 |
+
99853
|
305 |
+
99852
|
306 |
+
99851
|
307 |
+
28292
|
308 |
+
26487
|
309 |
+
28200
|
310 |
+
75718
|
311 |
+
94504
|
312 |
+
30221
|
313 |
+
8344
|
314 |
+
2567
|
315 |
+
41769
|
316 |
+
75836
|
317 |
+
64842
|
318 |
+
48960
|
319 |
+
82375
|
320 |
+
42091
|
321 |
+
15523
|
322 |
+
54684
|
323 |
+
68127
|
324 |
+
11839
|
325 |
+
65064
|
326 |
+
36442
|
327 |
+
20124
|
328 |
+
63038
|
329 |
+
31982
|
330 |
+
22342
|
331 |
+
3268
|
332 |
+
63593
|
333 |
+
26154
|
334 |
+
9236
|
335 |
+
16207
|
336 |
+
22653
|
337 |
+
70167
|
338 |
+
37104
|
339 |
+
15290
|
340 |
+
86487
|
341 |
+
92629
|
342 |
+
29708
|
343 |
+
54514
|
344 |
+
64705
|
345 |
+
30662
|
346 |
+
66503
|
347 |
+
1076
|
348 |
+
74062
|
349 |
+
50093
|
350 |
+
79615
|
351 |
+
37386
|
352 |
+
13477
|
353 |
+
95000
|
354 |
+
4763
|
355 |
+
33135
|
356 |
+
12117
|
357 |
+
34444
|
358 |
+
50559
|
359 |
+
64851
|
360 |
+
83630
|
361 |
+
73471
|
362 |
+
57916
|
363 |
+
25954
|
364 |
+
7967
|
365 |
+
49576
|
366 |
+
77323
|
367 |
+
56182
|
368 |
+
47882
|
369 |
+
90202
|
370 |
+
79294
|
371 |
+
53005
|
372 |
+
53024
|
373 |
+
91112
|
374 |
+
12044
|
375 |
+
21038
|
376 |
+
4362
|
377 |
+
80235
|
378 |
+
26247
|
379 |
+
54621
|
380 |
+
46429
|
381 |
+
48015
|
382 |
+
33044
|
383 |
+
11542
|
384 |
+
21169
|
385 |
+
83396
|
386 |
+
5350
|
387 |
+
57358
|
388 |
+
16743
|
389 |
+
59631
|
390 |
+
95143
|
391 |
+
5940
|
392 |
+
2804
|
393 |
+
20832
|
394 |
+
90284
|
395 |
+
74343
|
396 |
+
78958
|
397 |
+
10223
|
398 |
+
45771
|
399 |
+
41425
|
400 |
+
86449
|
401 |
+
18344
|
402 |
+
51140
|
403 |
+
74113
|
404 |
+
60207
|
405 |
+
9693
|
406 |
+
36377
|
407 |
+
15007
|
408 |
+
13738
|
409 |
+
74283
|
410 |
+
36019
|
411 |
+
86696
|
412 |
+
65239
|
413 |
+
78052
|
414 |
+
66819
|
415 |
+
4361
|
416 |
+
43905
|
417 |
+
91051
|
418 |
+
8442
|
419 |
+
74736
|
420 |
+
49871
|
421 |
+
93999
|
422 |
+
30022
|
423 |
+
18061
|
424 |
+
16779
|
425 |
+
11975
|
426 |
+
16921
|
427 |
+
35656
|
428 |
+
49216
|
429 |
+
6283
|
430 |
+
21215
|
431 |
+
10733
|
432 |
+
63655
|
433 |
+
38835
|
434 |
+
71036
|
435 |
+
35034
|
436 |
+
66822
|
437 |
+
89009
|
438 |
+
26007
|
439 |
+
52177
|
440 |
+
56558
|
441 |
+
10033
|
442 |
+
71183
|
443 |
+
9384
|
444 |
+
30847
|
445 |
+
17689
|
446 |
+
27505
|
447 |
+
23118
|
448 |
+
97162
|
449 |
+
15515
|
450 |
+
19323
|
451 |
+
87520
|
452 |
+
13179
|
453 |
+
43703
|
454 |
+
21552
|
455 |
+
98425
|
456 |
+
31824
|
457 |
+
60805
|
458 |
+
46448
|
459 |
+
31905
|
460 |
+
34587
|
461 |
+
57441
|
462 |
+
3460
|
463 |
+
30684
|
464 |
+
12944
|
465 |
+
83895
|
466 |
+
26859
|
467 |
+
92019
|
468 |
+
12411
|
469 |
+
74142
|
470 |
+
85899
|
471 |
+
36584
|
472 |
+
88401
|
473 |
+
43409
|
474 |
+
10207
|
475 |
+
43386
|
476 |
+
50033
|
477 |
+
95136
|
478 |
+
13289
|
479 |
+
26425
|
480 |
+
3304
|
481 |
+
27965
|
482 |
+
36461
|
483 |
+
40515
|
484 |
+
68645
|
485 |
+
72034
|
486 |
+
11434
|
487 |
+
38357
|
488 |
+
7383
|
489 |
+
3048
|
490 |
+
36374
|
491 |
+
30077
|
492 |
+
43481
|
493 |
+
52371
|
494 |
+
34492
|
495 |
+
93652
|
496 |
+
68951
|
497 |
+
48233
|
498 |
+
53821
|
499 |
+
23593
|
500 |
+
66633
|
501 |
+
76225
|
502 |
+
17336
|
503 |
+
28737
|
504 |
+
89561
|
505 |
+
48248
|
506 |
+
68823
|
2019/finals/strings_as_a_service.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Carlos has been working in technology so long that he's starting to feel a bit
|
2 |
+
burnt out. Hoping to rejuvenate himself, Carlos has been seeking out more
|
3 |
+
artistic opportunities.
|
4 |
+
|
5 |
+
Yamaha, the well-known creator of musical apparatus, has approached Carlos
|
6 |
+
with a request that might be right up his alley: they'd like him to design a
|
7 |
+
brand new instrument. Immediately, Carlos knows what to do.
|
8 |
+
|
9 |
+
_ "You may have seen Pat Metheny's 42-string guitar, but that's nothing
|
10 |
+
compared to what we're going to make together." _
|
11 |
+
|
12 |
+
Carlos presents his plan for a 1,000-string guitar, complete with programmatic
|
13 |
+
tuning so that you don't need to turn 1,000 knobs by hand. Yamaha's market
|
14 |
+
research suggests that these sorts of guitars would be great for playing
|
15 |
+
palindromic chords, chords where the first string plays the same note as the
|
16 |
+
last string, the second string plays the same note as the second-to-last
|
17 |
+
string, and so on. Carlos is quickly tasked with developing default tunings
|
18 |
+
for the strings so that the guitars are ready to play right out of the box.
|
19 |
+
|
20 |
+
For various integers **K**, Carlos wants to find a set of at most 1,000
|
21 |
+
strings on which exactly **K** distinct palindromic chords can be played. The
|
22 |
+
guitar's strings are arranged in a line, and each one must be tuned to a note
|
23 |
+
from the set {A, B, C, D, E, F, G}. A chord is then played by strumming a
|
24 |
+
contiguous subset of 1 or more strings. Two chords are considered to be
|
25 |
+
distinct if there is at least one string that is used in one chord but not the
|
26 |
+
other; chords involving the same notes but different strings are considered
|
27 |
+
different.
|
28 |
+
|
29 |
+
For example, if **K** = 9, a set of 7 strings could be tuned to the notes C,
|
30 |
+
A, B, B, A, G, E in order from left to right. You can play 7 different
|
31 |
+
palindromic chords by strumming single strings, the chord BB by strumming the
|
32 |
+
3rd and 4th strings, and the chord ABBA by strumming the 2nd, 3rd, 4th, and
|
33 |
+
5th strings. This is a total of 9 distinct palindromic chords. **
|
34 |
+
|
35 |
+
Output any non-empty string of valid musical notes, with length at most 1,000,
|
36 |
+
representing the tunings of sequential strings. An aspiring musician must be
|
37 |
+
able to play exactly **K** distinct palindromic chords on these strings. It's
|
38 |
+
guaranteed that there is at least one valid output for each possible valid
|
39 |
+
input.
|
40 |
+
|
41 |
+
### Input
|
42 |
+
|
43 |
+
Input begins with an integer **T**, the number of tunings that Carlos needs to
|
44 |
+
figure out.
|
45 |
+
For each tuning, there is a single line containing the integer **K**.
|
46 |
+
|
47 |
+
### Output
|
48 |
+
|
49 |
+
For the _i_th tuning, print a line containing "Case #_i_: " followed by a
|
50 |
+
string of up to 1,000 characters representing a tuning of strings as described
|
51 |
+
above on which exactly **K** distinct palindromic chords can be played.
|
52 |
+
|
53 |
+
### Constraints
|
54 |
+
|
55 |
+
1 ≤ **T** ≤ 500
|
56 |
+
1 ≤ **K** ≤ 100,000
|
57 |
+
|
58 |
+
### Explanation of Sample
|
59 |
+
|
60 |
+
In the first case, "ACE" is a valid output as it contains exactly 3
|
61 |
+
palindromes: "A", "C", and "E". On the other hand, "DAD" would not be valid as
|
62 |
+
it contains 4 palindromes.
|
63 |
+
|
64 |
+
In the second case, "GAGA" is a valid output as it contains exactly 6
|
65 |
+
palindromes: "G", "A", "G", "A", "GAG", and "AGA".
|
66 |
+
|
67 |
+
**_Note that other outputs would also be accepted for each sample case._**
|
68 |
+
|
2019/finals/strings_as_a_service.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/finals/temporal_revision.html
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
The starship Enterprise, bravely captained by Jean-Luc Picard, is on yet another mission to explore strange new worlds, seek out new life and new civilizations,
|
3 |
+
and boldly go where no one has gone before! Equipped with a state-of-the-art warp drive capable of attaining warp factor 11 and revising the Enterprise's space-time coordinates almost at will
|
4 |
+
(even sending the ship back in time), not much can stand in the explorers' way. Though, they <em>are</em> low on medical supplies, so they will need to first stock up on neurozine gas for anesthetic purposes.
|
5 |
+
</p>
|
6 |
+
|
7 |
+
<p>
|
8 |
+
The Enterprise is heading to the Alpha Omicron solar system, which consists of <strong>N</strong> planets, numbered from 1 to <strong>N</strong>.
|
9 |
+
It also features <strong>M</strong> space conduits, the <em>i</em>th of which allows the Enterprise to travel in either direction between two different planets
|
10 |
+
<strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>.
|
11 |
+
No two conduits directly link the same unordered pair of planets, and <strong>each planet is reachable from each other planet</strong> by following a sequence of conduits.
|
12 |
+
</p>
|
13 |
+
|
14 |
+
<p>
|
15 |
+
There's a geyser capable of emitting neurozine located on each planet, though all <strong>N</strong> geysers are initially inactive.
|
16 |
+
A sequence of <strong>K</strong> events will then take place, one per hour. The event at hour <em>i</em> is described by integers <strong>E<sub>i</sub></strong> and <strong>V<sub>i</sub></strong>,
|
17 |
+
with <strong>E<sub>i</sub></strong> indicating the event's type, which is one of the following:
|
18 |
+
</p>
|
19 |
+
|
20 |
+
<ul style="list-style-type:disc; padding-inline-start: 30px;">
|
21 |
+
<li><strong>E<sub>i</sub></strong> = 1: The <strong>V<sub>i</sub></strong>th conduit (1 ≤ <strong>V<sub>i</sub></strong> ≤ <strong>M</strong>) collapses,
|
22 |
+
and can no longer be used from that moment onwards. Each conduit collapses at most once. </li>
|
23 |
+
<li><strong>E<sub>i</sub></strong> = 2: The geyser on planet <strong>V<sub>i</sub></strong> (1 ≤ <strong>V<sub>i</sub></strong> ≤ <strong>N</strong>) activates,
|
24 |
+
and begins emitting neurozine. Each geyser is activated at most once. </li>
|
25 |
+
<li><strong>E<sub>i</sub></strong> = 3: The geyser on planet <strong>V<sub>i</sub></strong> (1 ≤ <strong>V<sub>i</sub></strong> ≤ <strong>N</strong>) deactivates,
|
26 |
+
and no longer emits neurozine from that moment onwards. Each geyser is deactivated at most once, and is guaranteed to not be deactivated before it has been activated. </li>
|
27 |
+
</ul>
|
28 |
+
|
29 |
+
<p>
|
30 |
+
The Enterprise will arrive in the Alpha Omicron system at some planet <em>x</em> and just before some hour <em>y</em>.
|
31 |
+
When the starship is currently at a certain planet (and a certain time), Captain Picard may issue any of the following commands to his crew:
|
32 |
+
</p>
|
33 |
+
|
34 |
+
<ul style="list-style-type:disc; padding-inline-start: 30px;">
|
35 |
+
<li>Remain at that planet and wait until any future time. </li>
|
36 |
+
<li>Travel through an uncollapsed space conduit directly from that planet to another one. Thanks to warp technology, this may be done instantly. </li>
|
37 |
+
<li>Collect neurozine from that planet's geyser, if it's currently active. This may be done instantly. </li>
|
38 |
+
<li>Remain at that planet while travelling backwards to any past time which is <strong>at most 24 hours earlier than the Enterprise's original arrival time in the solar system</strong>
|
39 |
+
(in other words, the Enterprise may end up just before hour (<em>y</em> - 24), but no earlier). However, <strong>this may only be done at most once</strong>. The Enterprise retains any neurozine that it had collected before this "temporal revision".
|
40 |
+
</ul>
|
41 |
+
|
42 |
+
<p>
|
43 |
+
Picard wants his crew to collect neurozine from as many <em>different</em> geysers as possible; there's no additional value in collecting neurozine from any given geyser multiple times,
|
44 |
+
including both before and after travelling back in time. However, Picard hasn't yet decided where and when the Enterprise should arrive in the Alpha Omicron system.
|
45 |
+
He has <strong>S</strong> such possible starting situations in mind, the <em>i</em>th of which would have the Enterprise arrive at planet
|
46 |
+
<strong>X<sub>i</sub></strong> just before hour <strong>Y<sub>i</sub></strong>.
|
47 |
+
For each hypothetical starting situation, please help Picard determine the maximum number of different geysers from which the Enterprise could then proceed to collect neurozine!
|
48 |
+
</p>
|
49 |
+
|
50 |
+
<p>
|
51 |
+
Letting <strong>ans<sub>i</sub></strong> be the answer for the <em>i</em>th starting situation, you must output the sum of <strong>ans<sub>1..S</sub></strong>
|
52 |
+
in order to minimize the size of the output. Please note that this sum may not fit within a 32-bit integer.
|
53 |
+
</p>
|
54 |
+
|
55 |
+
<p>
|
56 |
+
The starting situations must be considered one after another. In order to enforce this, rather than being given <strong>X<sub>1..S</sub></strong> and <strong>Y<sub>1..S</sub></strong>
|
57 |
+
explicitly, you must compute them based on given values <strong>X'<sub>1..S</sub></strong> and <strong>Y'<sub>1..S</sub></strong>.
|
58 |
+
For the first starting situation, <strong>X<sub>1</sub></strong> = <strong>X'<sub>1</sub></strong> and <strong>Y<sub>1</sub></strong> = <strong>Y'<sub>1</sub></strong>,
|
59 |
+
while for each subsequent starting situation <em>i</em> (2 ≤ <em>i</em> ≤ <strong>S</strong>),
|
60 |
+
<strong>X<sub>i</sub></strong> = <strong>X'<sub>i</sub></strong> xor <strong>ans<sub>i-1</sub></strong> and
|
61 |
+
<strong>Y<sub>i</sub></strong> = <strong>Y'<sub>i</sub></strong> xor <strong>ans<sub>i-1</sub></strong> (where "xor" is the bitwise xor operator, "^" in most programming languages).
|
62 |
+
</p>
|
63 |
+
|
64 |
+
|
65 |
+
<h3>Input</h3>
|
66 |
+
|
67 |
+
<p>
|
68 |
+
Input begins with an integer <strong>T</strong>, the number of missions.
|
69 |
+
<br />For each mission, there is first a line containing the space-separated integers <strong>N</strong>, <strong>M</strong>, <strong>K</strong> and <strong>S</strong>.
|
70 |
+
<br />Then, <strong>M</strong> lines follow, the <em>i</em>th of which contains the space-separated integers <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>.
|
71 |
+
<br />Then, <strong>K</strong> lines follow, the <em>i</em>th of which contains the space-separated integers <strong>E<sub>i</sub></strong> and <strong>V<sub>i</sub></strong>.
|
72 |
+
<br />Then, <strong>S</strong> lines follow, the <em>i</em>th of which contains the space-separated integers <strong>X'<sub>i</sub></strong> and <strong>Y'<sub>i</sub></strong>.
|
73 |
+
</p>
|
74 |
+
|
75 |
+
|
76 |
+
<h3>Output</h3>
|
77 |
+
|
78 |
+
<p>
|
79 |
+
For the <em>i</em>th mission, print a line containing "Case #<em>i</em>: " followed by
|
80 |
+
one integer, the sum of the answers for the <strong>S</strong> starting situations.
|
81 |
+
</p>
|
82 |
+
|
83 |
+
|
84 |
+
<h3>Constraints</h3>
|
85 |
+
|
86 |
+
<p>
|
87 |
+
1 ≤ <strong>T</strong> ≤ 100 <br />
|
88 |
+
2 ≤ <strong>N</strong> ≤ 800,000 <br />
|
89 |
+
1 ≤ <strong>M</strong>, <strong>K</strong>, <strong>S</strong> ≤ 800,000 <br />
|
90 |
+
1 ≤ <strong>A<sub>i</sub></strong>, <strong>B<sub>i</sub></strong> ≤ <strong>N</strong> <br />
|
91 |
+
1 ≤ <strong>E<sub>i</sub></strong> ≤ 3 <br />
|
92 |
+
1 ≤ <strong>X<sub>i</sub></strong> ≤ <strong>N</strong> <br />
|
93 |
+
1 ≤ <strong>Y<sub>i</sub></strong> ≤ <strong>K</strong> <br />
|
94 |
+
0 ≤ <strong>X'<sub>i</sub></strong>, <strong>Y'<sub>i</sub></strong> ≤ 1,000,000,000 <br />
|
95 |
+
</p>
|
96 |
+
|
97 |
+
<p>
|
98 |
+
The sum of <strong>N</strong> across all <strong>T</strong> test cases is no greater than 2,000,000. <br />
|
99 |
+
The sum of <strong>M</strong> across all <strong>T</strong> test cases is no greater than 2,000,000. <br />
|
100 |
+
The sum of <strong>K</strong> across all <strong>T</strong> test cases is no greater than 2,000,000. <br />
|
101 |
+
The sum of <strong>S</strong> across all <strong>T</strong> test cases is no greater than 2,000,000.
|
102 |
+
</p>
|
103 |
+
|
104 |
+
|
105 |
+
<h3>Explanation of Sample</h3>
|
106 |
+
|
107 |
+
<p>
|
108 |
+
In the first case, if the Enterprise arrives at planet 1 just before hour 3, Picard could issue the following sequence of orders to help his crew collect neurozine from both planets' geysers:
|
109 |
+
|
110 |
+
<ol>
|
111 |
+
<li>Travel through the 1st space conduit to planet 2.
|
112 |
+
<li>Wait until after hour 3.
|
113 |
+
<li>Collect neurozine from planet 2's now-active geyser.
|
114 |
+
<li>Travel back in time to just before hour 2.
|
115 |
+
<li>Travel through the 1st space conduit to planet 1.
|
116 |
+
<li>Collected neurozine from planet 1's active geyser.
|
117 |
+
</ol>
|
118 |
+
|
119 |
+
<p>
|
120 |
+
In the second case, the starting situations and corresponding answers are as follows:
|
121 |
+
</p>
|
122 |
+
|
123 |
+
<pre>
|
124 |
+
i | X<sub>i</sub> | Y<sub>i</sub> | ans<sub>i</sub>
|
125 |
+
------------------
|
126 |
+
1 | 2 | 1 | 3
|
127 |
+
2 | 1 | 6 | 2
|
128 |
+
3 | 3 | 5 | 3
|
129 |
+
</pre>
|
130 |
+
|
131 |
+
<p>
|
132 |
+
For the first starting situation, the Enterprise could remain on planet 2 until its geyser activates at hour 6, collect its neurozine, travel back in time to just before hour 2, travel to planet 1 and collect its neurozine, travel to planet 2 and then to planet 3, and remain there to collect its neurozine after hour 5. On the other hand, for the second starting situation, neurozine from all 3 geysers cannot be collected.
|
133 |
+
</p>
|
134 |
+
|
135 |
+
<p>
|
136 |
+
In the third case, the starting situations and corresponding answers are as follows:
|
137 |
+
</p>
|
138 |
+
|
139 |
+
<pre>
|
140 |
+
i | X<sub>i</sub> | Y<sub>i</sub> | ans<sub>i</sub>
|
141 |
+
------------------
|
142 |
+
1 | 1 | 4 | 4
|
143 |
+
2 | 5 | 8 | 3
|
144 |
+
3 | 2 | 9 | 3
|
145 |
+
4 | 3 | 6 | 4
|
146 |
+
</pre>
|
147 |
+
|
148 |
+
<p>
|
149 |
+
In the fourth case, the starting situations and corresponding answers are as follows:
|
150 |
+
</p>
|
151 |
+
|
152 |
+
<pre>
|
153 |
+
i | X<sub>i</sub> | Y<sub>i</sub> | ans<sub>i</sub>
|
154 |
+
------------------
|
155 |
+
1 | 6 | 16 | 7
|
156 |
+
2 | 4 | 6 | 8
|
157 |
+
3 | 10 | 22 | 7
|
158 |
+
4 | 3 | 13 | 7
|
159 |
+
5 | 6 | 11 | 8
|
160 |
+
6 | 5 | 17 | 6
|
161 |
+
7 | 2 | 21 | 7
|
162 |
+
</pre>
|
163 |
+
|
164 |
+
<p>
|
165 |
+
In the fifth case, the first 5 starting situations and corresponding answers are as follows:
|
166 |
+
</p>
|
167 |
+
|
168 |
+
<pre>
|
169 |
+
i | X<sub>i</sub> | Y<sub>i</sub> | ans<sub>i</sub>
|
170 |
+
------------------
|
171 |
+
1 | 20 | 47 | 2
|
172 |
+
2 | 4 | 49 | 7
|
173 |
+
3 | 24 | 47 | 1
|
174 |
+
4 | 20 | 9 | 13
|
175 |
+
5 | 3 | 38 | 9
|
176 |
+
</pre>
|
2019/finals/temporal_revision.in
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa70fab4188368dde6802bbfdd1a06688cdf19812c546421ac0fe2b3c94d79e7
|
3 |
+
size 58317500
|
2019/finals/temporal_revision.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The starship Enterprise, bravely captained by Jean-Luc Picard, is on yet
|
2 |
+
another mission to explore strange new worlds, seek out new life and new
|
3 |
+
civilizations, and boldly go where no one has gone before! Equipped with a
|
4 |
+
state-of-the-art warp drive capable of attaining warp factor 11 and revising
|
5 |
+
the Enterprise's space-time coordinates almost at will (even sending the ship
|
6 |
+
back in time), not much can stand in the explorers' way. Though, they _are_
|
7 |
+
low on medical supplies, so they will need to first stock up on neurozine gas
|
8 |
+
for anesthetic purposes.
|
9 |
+
|
10 |
+
The Enterprise is heading to the Alpha Omicron solar system, which consists of
|
11 |
+
**N** planets, numbered from 1 to **N**. It also features **M** space
|
12 |
+
conduits, the _i_th of which allows the Enterprise to travel in either
|
13 |
+
direction between two different planets **Ai** and **Bi**. No two conduits
|
14 |
+
directly link the same unordered pair of planets, and **each planet is
|
15 |
+
reachable from each other planet** by following a sequence of conduits.
|
16 |
+
|
17 |
+
There's a geyser capable of emitting neurozine located on each planet, though
|
18 |
+
all **N** geysers are initially inactive. A sequence of **K** events will then
|
19 |
+
take place, one per hour. The event at hour _i_ is described by integers
|
20 |
+
**Ei** and **Vi**, with **Ei** indicating the event's type, which is one of
|
21 |
+
the following:
|
22 |
+
|
23 |
+
* **Ei** = 1: The **Vi**th conduit (1 ≤ **Vi** ≤ **M**) collapses, and can no longer be used from that moment onwards. Each conduit collapses at most once.
|
24 |
+
* **Ei** = 2: The geyser on planet **Vi** (1 ≤ **Vi** ≤ **N**) activates, and begins emitting neurozine. Each geyser is activated at most once.
|
25 |
+
* **Ei** = 3: The geyser on planet **Vi** (1 ≤ **Vi** ≤ **N**) deactivates, and no longer emits neurozine from that moment onwards. Each geyser is deactivated at most once, and is guaranteed to not be deactivated before it has been activated.
|
26 |
+
|
27 |
+
The Enterprise will arrive in the Alpha Omicron system at some planet _x_ and
|
28 |
+
just before some hour _y_. When the starship is currently at a certain planet
|
29 |
+
(and a certain time), Captain Picard may issue any of the following commands
|
30 |
+
to his crew:
|
31 |
+
|
32 |
+
* Remain at that planet and wait until any future time.
|
33 |
+
* Travel through an uncollapsed space conduit directly from that planet to another one. Thanks to warp technology, this may be done instantly.
|
34 |
+
* Collect neurozine from that planet's geyser, if it's currently active. This may be done instantly.
|
35 |
+
* Remain at that planet while travelling backwards to any past time which is **at most 24 hours earlier than the Enterprise's original arrival time in the solar system** (in other words, the Enterprise may end up just before hour (_y_ \- 24), but no earlier). However, **this may only be done at most once**. The Enterprise retains any neurozine that it had collected before this "temporal revision".
|
36 |
+
|
37 |
+
Picard wants his crew to collect neurozine from as many _different_ geysers as
|
38 |
+
possible; there's no additional value in collecting neurozine from any given
|
39 |
+
geyser multiple times, including both before and after travelling back in
|
40 |
+
time. However, Picard hasn't yet decided where and when the Enterprise should
|
41 |
+
arrive in the Alpha Omicron system. He has **S** such possible starting
|
42 |
+
situations in mind, the _i_th of which would have the Enterprise arrive at
|
43 |
+
planet **Xi** just before hour **Yi**. For each hypothetical starting
|
44 |
+
situation, please help Picard determine the maximum number of different
|
45 |
+
geysers from which the Enterprise could then proceed to collect neurozine!
|
46 |
+
|
47 |
+
Letting **ansi** be the answer for the _i_th starting situation, you must
|
48 |
+
output the sum of **ans1..S** in order to minimize the size of the output.
|
49 |
+
Please note that this sum may not fit within a 32-bit integer.
|
50 |
+
|
51 |
+
The starting situations must be considered one after another. In order to
|
52 |
+
enforce this, rather than being given **X1..S** and **Y1..S** explicitly, you
|
53 |
+
must compute them based on given values **X'1..S** and **Y'1..S**. For the
|
54 |
+
first starting situation, **X1** = **X'1** and **Y1** = **Y'1**, while for
|
55 |
+
each subsequent starting situation _i_ (2 ≤ _i_ ≤ **S**), **Xi** = **X'i** xor
|
56 |
+
**ansi-1** and **Yi** = **Y'i** xor **ansi-1** (where "xor" is the bitwise xor
|
57 |
+
operator, "^" in most programming languages).
|
58 |
+
|
59 |
+
### Input
|
60 |
+
|
61 |
+
Input begins with an integer **T**, the number of missions.
|
62 |
+
For each mission, there is first a line containing the space-separated
|
63 |
+
integers **N**, **M**, **K** and **S**.
|
64 |
+
Then, **M** lines follow, the _i_th of which contains the space-separated
|
65 |
+
integers **Ai** and **Bi**.
|
66 |
+
Then, **K** lines follow, the _i_th of which contains the space-separated
|
67 |
+
integers **Ei** and **Vi**.
|
68 |
+
Then, **S** lines follow, the _i_th of which contains the space-separated
|
69 |
+
integers **X'i** and **Y'i**.
|
70 |
+
|
71 |
+
### Output
|
72 |
+
|
73 |
+
For the _i_th mission, print a line containing "Case #_i_: " followed by one
|
74 |
+
integer, the sum of the answers for the **S** starting situations.
|
75 |
+
|
76 |
+
### Constraints
|
77 |
+
|
78 |
+
1 ≤ **T** ≤ 100
|
79 |
+
2 ≤ **N** ≤ 800,000
|
80 |
+
1 ≤ **M**, **K**, **S** ≤ 800,000
|
81 |
+
1 ≤ **Ai**, **Bi** ≤ **N**
|
82 |
+
1 ≤ **Ei** ≤ 3
|
83 |
+
1 ≤ **Xi** ≤ **N**
|
84 |
+
1 ≤ **Yi** ≤ **K**
|
85 |
+
0 ≤ **X'i**, **Y'i** ≤ 1,000,000,000
|
86 |
+
|
87 |
+
The sum of **N** across all **T** test cases is no greater than 2,000,000.
|
88 |
+
The sum of **M** across all **T** test cases is no greater than 2,000,000.
|
89 |
+
The sum of **K** across all **T** test cases is no greater than 2,000,000.
|
90 |
+
The sum of **S** across all **T** test cases is no greater than 2,000,000.
|
91 |
+
|
92 |
+
### Explanation of Sample
|
93 |
+
|
94 |
+
In the first case, if the Enterprise arrives at planet 1 just before hour 3,
|
95 |
+
Picard could issue the following sequence of orders to help his crew collect
|
96 |
+
neurozine from both planets' geysers:
|
97 |
+
|
98 |
+
1. Travel through the 1st space conduit to planet 2.
|
99 |
+
2. Wait until after hour 3.
|
100 |
+
3. Collect neurozine from planet 2's now-active geyser.
|
101 |
+
4. Travel back in time to just before hour 2.
|
102 |
+
5. Travel through the 1st space conduit to planet 1.
|
103 |
+
6. Collected neurozine from planet 1's active geyser.
|
104 |
+
|
105 |
+
In the second case, the starting situations and corresponding answers are as
|
106 |
+
follows:
|
107 |
+
|
108 |
+
i | Xi | Yi | ansi
|
109 |
+
------------------
|
110 |
+
1 | 2 | 1 | 3
|
111 |
+
2 | 1 | 6 | 2
|
112 |
+
3 | 3 | 5 | 3
|
113 |
+
|
114 |
+
For the first starting situation, the Enterprise could remain on planet 2
|
115 |
+
until its geyser activates at hour 6, collect its neurozine, travel back in
|
116 |
+
time to just before hour 2, travel to planet 1 and collect its neurozine,
|
117 |
+
travel to planet 2 and then to planet 3, and remain there to collect its
|
118 |
+
neurozine after hour 5. On the other hand, for the second starting situation,
|
119 |
+
neurozine from all 3 geysers cannot be collected.
|
120 |
+
|
121 |
+
In the third case, the starting situations and corresponding answers are as
|
122 |
+
follows:
|
123 |
+
|
124 |
+
i | Xi | Yi | ansi
|
125 |
+
------------------
|
126 |
+
1 | 1 | 4 | 4
|
127 |
+
2 | 5 | 8 | 3
|
128 |
+
3 | 2 | 9 | 3
|
129 |
+
4 | 3 | 6 | 4
|
130 |
+
|
131 |
+
In the fourth case, the starting situations and corresponding answers are as
|
132 |
+
follows:
|
133 |
+
|
134 |
+
i | Xi | Yi | ansi
|
135 |
+
------------------
|
136 |
+
1 | 6 | 16 | 7
|
137 |
+
2 | 4 | 6 | 8
|
138 |
+
3 | 10 | 22 | 7
|
139 |
+
4 | 3 | 13 | 7
|
140 |
+
5 | 6 | 11 | 8
|
141 |
+
6 | 5 | 17 | 6
|
142 |
+
7 | 2 | 21 | 7
|
143 |
+
|
144 |
+
In the fifth case, the first 5 starting situations and corresponding answers
|
145 |
+
are as follows:
|
146 |
+
|
147 |
+
i | Xi | Yi | ansi
|
148 |
+
------------------
|
149 |
+
1 | 20 | 47 | 2
|
150 |
+
2 | 4 | 49 | 7
|
151 |
+
3 | 24 | 47 | 1
|
152 |
+
4 | 20 | 9 | 13
|
153 |
+
5 | 3 | 38 | 9
|
154 |
+
|
2019/finals/temporal_revision.out
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 2
|
2 |
+
Case #2: 8
|
3 |
+
Case #3: 14
|
4 |
+
Case #4: 50
|
5 |
+
Case #5: 246
|
6 |
+
Case #6: 62566449144
|
7 |
+
Case #7: 160070740347
|
8 |
+
Case #8: 1090
|
9 |
+
Case #9: 2067
|
10 |
+
Case #10: 768
|
11 |
+
Case #11: 4601
|
12 |
+
Case #12: 1795
|
13 |
+
Case #13: 721
|
14 |
+
Case #14: 2167
|
15 |
+
Case #15: 3033
|
16 |
+
Case #16: 3658
|
17 |
+
Case #17: 499
|
18 |
+
Case #18: 1197
|
19 |
+
Case #19: 3693
|
20 |
+
Case #20: 5085
|
21 |
+
Case #21: 613
|
22 |
+
Case #22: 3581
|
23 |
+
Case #23: 724
|
24 |
+
Case #24: 1036
|
25 |
+
Case #25: 6595
|
26 |
+
Case #26: 0
|
27 |
+
Case #27: 527
|
28 |
+
Case #28: 908
|
29 |
+
Case #29: 766
|
30 |
+
Case #30: 2603
|
31 |
+
Case #31: 1342
|
32 |
+
Case #32: 360
|
33 |
+
Case #33: 824
|
34 |
+
Case #34: 1751
|
35 |
+
Case #35: 2598
|
36 |
+
Case #36: 2603
|
37 |
+
Case #37: 3399
|
38 |
+
Case #38: 419
|
39 |
+
Case #39: 3818
|
40 |
+
Case #40: 354
|
41 |
+
Case #41: 365
|
42 |
+
Case #42: 990
|
43 |
+
Case #43: 2042
|
44 |
+
Case #44: 6166
|
45 |
+
Case #45: 856
|
46 |
+
Case #46: 2922
|
47 |
+
Case #47: 575
|
48 |
+
Case #48: 3600
|
49 |
+
Case #49: 368
|
50 |
+
Case #50: 1924
|
51 |
+
Case #51: 2920
|
52 |
+
Case #52: 1612
|
53 |
+
Case #53: 2536
|
54 |
+
Case #54: 3212
|
55 |
+
Case #55: 913
|
56 |
+
Case #56: 5088
|
57 |
+
Case #57: 1161
|
58 |
+
Case #58: 3514
|
59 |
+
Case #59: 844
|
60 |
+
Case #60: 2037
|
61 |
+
Case #61: 997
|
62 |
+
Case #62: 1464
|
63 |
+
Case #63: 84
|
64 |
+
Case #64: 2134
|
65 |
+
Case #65: 1608
|
66 |
+
Case #66: 1837
|
67 |
+
Case #67: 1992
|
68 |
+
Case #68: 3517
|
69 |
+
Case #69: 1279
|
70 |
+
Case #70: 1547
|
71 |
+
Case #71: 1030
|
72 |
+
Case #72: 1089
|
73 |
+
Case #73: 87
|
74 |
+
Case #74: 379
|
75 |
+
Case #75: 1811
|
76 |
+
Case #76: 1728
|
77 |
+
Case #77: 570
|
78 |
+
Case #78: 528
|
79 |
+
Case #79: 1698
|
80 |
+
Case #80: 5504
|
81 |
+
Case #81: 3123
|
82 |
+
Case #82: 124
|
83 |
+
Case #83: 2190
|
84 |
+
Case #84: 3993
|
85 |
+
Case #85: 85
|
86 |
+
Case #86: 870
|
87 |
+
Case #87: 335
|
88 |
+
Case #88: 1538
|
89 |
+
Case #89: 450
|
90 |
+
Case #90: 2524
|
91 |
+
Case #91: 3776
|
92 |
+
Case #92: 3947
|
93 |
+
Case #93: 1978
|
94 |
+
Case #94: 632
|
95 |
+
Case #95: 1298
|
96 |
+
Case #96: 2336
|
97 |
+
Case #97: 2945
|
98 |
+
Case #98: 2075
|
99 |
+
Case #99: 2215
|
100 |
+
Case #100: 1742
|
101 |
+
Case #101: 3161
|
102 |
+
Case #102: 1258
|
103 |
+
Case #103: 2993
|
104 |
+
Case #104: 2086
|
105 |
+
Case #105: 2449
|
2019/quals/leapfrog1.cpp
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Leapfrog Ch. 1
|
2 |
+
// Solution by Jacob Plachta
|
3 |
+
|
4 |
+
#define DEBUG 0
|
5 |
+
|
6 |
+
#include <algorithm>
|
7 |
+
#include <functional>
|
8 |
+
#include <numeric>
|
9 |
+
#include <iostream>
|
10 |
+
#include <iomanip>
|
11 |
+
#include <cstdio>
|
12 |
+
#include <cmath>
|
13 |
+
#include <complex>
|
14 |
+
#include <cstdlib>
|
15 |
+
#include <ctime>
|
16 |
+
#include <cstring>
|
17 |
+
#include <cassert>
|
18 |
+
#include <string>
|
19 |
+
#include <vector>
|
20 |
+
#include <list>
|
21 |
+
#include <map>
|
22 |
+
#include <set>
|
23 |
+
#include <deque>
|
24 |
+
#include <queue>
|
25 |
+
#include <stack>
|
26 |
+
#include <bitset>
|
27 |
+
#include <sstream>
|
28 |
+
using namespace std;
|
29 |
+
|
30 |
+
#define LL long long
|
31 |
+
#define LD long double
|
32 |
+
#define PR pair<int,int>
|
33 |
+
|
34 |
+
#define Fox(i,n) for (i=0; i<n; i++)
|
35 |
+
#define Fox1(i,n) for (i=1; i<=n; i++)
|
36 |
+
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
37 |
+
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
38 |
+
#define FoxR1(i,n) for (i=n; i>0; i--)
|
39 |
+
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
40 |
+
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
41 |
+
#define Min(a,b) a=min(a,b)
|
42 |
+
#define Max(a,b) a=max(a,b)
|
43 |
+
#define Sz(s) int((s).size())
|
44 |
+
#define All(s) (s).begin(),(s).end()
|
45 |
+
#define Fill(s,v) memset(s,v,sizeof(s))
|
46 |
+
#define pb push_back
|
47 |
+
#define mp make_pair
|
48 |
+
#define x first
|
49 |
+
#define y second
|
50 |
+
|
51 |
+
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
|
52 |
+
template<typename T> T Sqr(T x) { return(x*x); }
|
53 |
+
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
|
54 |
+
|
55 |
+
const int INF = (int)1e9;
|
56 |
+
const LD EPS = 1e-12;
|
57 |
+
const LD PI = acos(-1.0);
|
58 |
+
|
59 |
+
#if DEBUG
|
60 |
+
#define GETCHAR getchar
|
61 |
+
#else
|
62 |
+
#define GETCHAR getchar_unlocked
|
63 |
+
#endif
|
64 |
+
|
65 |
+
bool Read(int &x)
|
66 |
+
{
|
67 |
+
char c,r=0,n=0;
|
68 |
+
x=0;
|
69 |
+
for(;;)
|
70 |
+
{
|
71 |
+
c=GETCHAR();
|
72 |
+
if ((c<0) && (!r))
|
73 |
+
return(0);
|
74 |
+
if ((c=='-') && (!r))
|
75 |
+
n=1;
|
76 |
+
else
|
77 |
+
if ((c>='0') && (c<='9'))
|
78 |
+
x=x*10+c-'0',r=1;
|
79 |
+
else
|
80 |
+
if (r)
|
81 |
+
break;
|
82 |
+
}
|
83 |
+
if (n)
|
84 |
+
x=-x;
|
85 |
+
return(1);
|
86 |
+
}
|
87 |
+
|
88 |
+
int main()
|
89 |
+
{
|
90 |
+
if (DEBUG)
|
91 |
+
freopen("in.txt","r",stdin);
|
92 |
+
// vars
|
93 |
+
int T,t;
|
94 |
+
int N;
|
95 |
+
int i,c;
|
96 |
+
char S[5005];
|
97 |
+
// testcase loop
|
98 |
+
Read(T);
|
99 |
+
Fox1(t,T)
|
100 |
+
{
|
101 |
+
// input
|
102 |
+
scanf("%s",&S);
|
103 |
+
N=strlen(S);
|
104 |
+
// count B's
|
105 |
+
c=0;
|
106 |
+
Fox(i,N)
|
107 |
+
c+=S[i]=='B';
|
108 |
+
// output
|
109 |
+
printf("Case #%d: %c\n",t,(N/2<=c && c<=N-2)?'Y':'N');
|
110 |
+
}
|
111 |
+
return(0);
|
112 |
+
}
|
2019/quals/leapfrog1.html
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
<strong>This problem statement differs from that of Leapfrog Ch. 2 in only one spot, highlighted in bold below.</strong>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
A colony of frogs peacefully resides in a pond. The colony is led by a single Alpha Frog, and also includes 0 or more Beta Frogs.
|
7 |
+
In order to be a good leader, the Alpha Frog diligently studies the high art of fractions every day.
|
8 |
+
</p>
|
9 |
+
|
10 |
+
<p>
|
11 |
+
There are <strong>N</strong> lilypads in a row on the pond's surface, numbered 1 to <strong>N</strong> from left to right, each of which is large enough to fit at most one frog at a time.
|
12 |
+
Today, the Alpha Frog finds itself on the leftmost lilypad, and must leap its way to the rightmost lilypad before it can begin its fractions practice.
|
13 |
+
</p>
|
14 |
+
|
15 |
+
<p>
|
16 |
+
The initial state of each lilypad <em>i</em> is described by a character <strong>L<sub>i</sub></strong>, which is one of the following:
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<ul>
|
20 |
+
<li> "<code>A</code>": Occupied by the Alpha Frog (it's guaranteed that <strong>L<sub>i</sub></strong> = "<code>A</code>" if and only if <em>i</em> = 1) </li>
|
21 |
+
<li> "<code>B</code>": Occupied by a Beta Frog </li>
|
22 |
+
<li> "<code>.</code>": Unoccupied </li>
|
23 |
+
</ul>
|
24 |
+
|
25 |
+
<p>
|
26 |
+
At each point in time, one of the following things may occur:
|
27 |
+
</p>
|
28 |
+
|
29 |
+
<p>
|
30 |
+
1) The Alpha Frog may leap over one or more lilypads immediately to its right which are occupied by Beta Frogs, and land on the next unoccupied lilypad past them, if such a lilypad exists.
|
31 |
+
The Alpha Frog must leap over at least one Beta Frog; it may not just leap to an adjacent lilypad.
|
32 |
+
<strong>Note that, unlike in Leapfrog Ch. 2, the Alpha Frog may only leap to its right.</strong>
|
33 |
+
</p>
|
34 |
+
|
35 |
+
<p>
|
36 |
+
2) Any Beta Frog may leap to the next lilypad to either its left or right, if such a lilypad exists and is unoccupied.
|
37 |
+
</p>
|
38 |
+
|
39 |
+
<p>
|
40 |
+
Assuming the frogs all cooperate, determine whether or not it's possible for the Alpha Frog to ever reach the rightmost lilypad and begin its daily fractions practice.
|
41 |
+
</p>
|
42 |
+
|
43 |
+
|
44 |
+
<h3>Input</h3>
|
45 |
+
|
46 |
+
<p>
|
47 |
+
Input begins with an integer <strong>T</strong>, the number of days on which the Alpha Frog studies fractions.
|
48 |
+
For each day, there is a single line containing the length-<strong>N</strong> string <strong>L</strong>.
|
49 |
+
</p>
|
50 |
+
|
51 |
+
|
52 |
+
<h3>Output</h3>
|
53 |
+
|
54 |
+
<p>
|
55 |
+
For the <em>i</em>th day, print a line containing "Case #<em>i</em>: "
|
56 |
+
followed by a single character: "<code>Y</code>" if the Alpha Frog can reach the rightmost lilypad, or "<code>N</code>" otherwise.
|
57 |
+
</p>
|
58 |
+
|
59 |
+
|
60 |
+
<h3>Constraints</h3>
|
61 |
+
|
62 |
+
<p>
|
63 |
+
1 ≤ <strong>T</strong> ≤ 500 <br />
|
64 |
+
2 ≤ <strong>N</strong> ≤ 5,000 <br />
|
65 |
+
</p>
|
66 |
+
|
67 |
+
<h3>Explanation of Sample</h3>
|
68 |
+
|
69 |
+
<p>
|
70 |
+
In the first case, the Alpha Frog can't leap anywhere.
|
71 |
+
</p>
|
72 |
+
|
73 |
+
<p>
|
74 |
+
In the second case, the Alpha Frog can leap over the Beta Frog to reach the rightmost lilypad.
|
75 |
+
</p>
|
76 |
+
|
77 |
+
<p>
|
78 |
+
In the third case, neither the Alpha Frog nor either of the Beta Frogs can leap anywhere.
|
79 |
+
</p>
|
80 |
+
|
81 |
+
<p>
|
82 |
+
In the fourth case, if the first Beta Frog leaps one lilypad to the left, and then the second Beta Frog also leaps one lilypad to the left,
|
83 |
+
then the Alpha Frog can leap over both of them to reach the rightmost lilypad.
|
84 |
+
</p>
|
2019/quals/leapfrog1.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/quals/leapfrog1.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**This problem statement differs from that of Leapfrog Ch. 2 in only one spot, highlighted in bold below.**
|
2 |
+
|
3 |
+
A colony of frogs peacefully resides in a pond. The colony is led by a single
|
4 |
+
Alpha Frog, and also includes 0 or more Beta Frogs. In order to be a good
|
5 |
+
leader, the Alpha Frog diligently studies the high art of fractions every day.
|
6 |
+
|
7 |
+
There are **N** lilypads in a row on the pond's surface, numbered 1 to **N**
|
8 |
+
from left to right, each of which is large enough to fit at most one frog at a
|
9 |
+
time. Today, the Alpha Frog finds itself on the leftmost lilypad, and must
|
10 |
+
leap its way to the rightmost lilypad before it can begin its fractions
|
11 |
+
practice.
|
12 |
+
|
13 |
+
The initial state of each lilypad _i_ is described by a character **Li**,
|
14 |
+
which is one of the following:
|
15 |
+
|
16 |
+
* "`A`": Occupied by the Alpha Frog (it's guaranteed that **Li** = "`A`" if and only if _i_ = 1)
|
17 |
+
* "`B`": Occupied by a Beta Frog
|
18 |
+
* "`.`": Unoccupied
|
19 |
+
|
20 |
+
At each point in time, one of the following things may occur:
|
21 |
+
|
22 |
+
1) The Alpha Frog may leap over one or more lilypads immediately to its right
|
23 |
+
which are occupied by Beta Frogs, and land on the next unoccupied lilypad past
|
24 |
+
them, if such a lilypad exists. The Alpha Frog must leap over at least one
|
25 |
+
Beta Frog; it may not just leap to an adjacent lilypad. **Note that, unlike in
|
26 |
+
Leapfrog Ch. 2, the Alpha Frog may only leap to its right.**
|
27 |
+
|
28 |
+
2) Any Beta Frog may leap to the next lilypad to either its left or right, if
|
29 |
+
such a lilypad exists and is unoccupied.
|
30 |
+
|
31 |
+
Assuming the frogs all cooperate, determine whether or not it's possible for
|
32 |
+
the Alpha Frog to ever reach the rightmost lilypad and begin its daily
|
33 |
+
fractions practice.
|
34 |
+
|
35 |
+
### Input
|
36 |
+
|
37 |
+
Input begins with an integer **T**, the number of days on which the Alpha Frog
|
38 |
+
studies fractions. For each day, there is a single line containing the
|
39 |
+
length-**N** string **L**.
|
40 |
+
|
41 |
+
### Output
|
42 |
+
|
43 |
+
For the _i_th day, print a line containing "Case #_i_: " followed by a single
|
44 |
+
character: "`Y`" if the Alpha Frog can reach the rightmost lilypad, or "`N`"
|
45 |
+
otherwise.
|
46 |
+
|
47 |
+
### Constraints
|
48 |
+
|
49 |
+
1 ≤ **T** ≤ 500
|
50 |
+
2 ≤ **N** ≤ 5,000
|
51 |
+
|
52 |
+
### Explanation of Sample
|
53 |
+
|
54 |
+
In the first case, the Alpha Frog can't leap anywhere.
|
55 |
+
|
56 |
+
In the second case, the Alpha Frog can leap over the Beta Frog to reach the
|
57 |
+
rightmost lilypad.
|
58 |
+
|
59 |
+
In the third case, neither the Alpha Frog nor either of the Beta Frogs can
|
60 |
+
leap anywhere.
|
61 |
+
|
62 |
+
In the fourth case, if the first Beta Frog leaps one lilypad to the left, and
|
63 |
+
then the second Beta Frog also leaps one lilypad to the left, then the Alpha
|
64 |
+
Frog can leap over both of them to reach the rightmost lilypad.
|
65 |
+
|
2019/quals/leapfrog1.out
ADDED
@@ -0,0 +1,1050 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: N
|
2 |
+
Case #2: Y
|
3 |
+
Case #3: N
|
4 |
+
Case #4: Y
|
5 |
+
Case #5: N
|
6 |
+
Case #6: Y
|
7 |
+
Case #7: N
|
8 |
+
Case #8: Y
|
9 |
+
Case #9: N
|
10 |
+
Case #10: N
|
11 |
+
Case #11: Y
|
12 |
+
Case #12: Y
|
13 |
+
Case #13: Y
|
14 |
+
Case #14: Y
|
15 |
+
Case #15: N
|
16 |
+
Case #16: Y
|
17 |
+
Case #17: N
|
18 |
+
Case #18: N
|
19 |
+
Case #19: N
|
20 |
+
Case #20: N
|
21 |
+
Case #21: N
|
22 |
+
Case #22: N
|
23 |
+
Case #23: N
|
24 |
+
Case #24: Y
|
25 |
+
Case #25: N
|
26 |
+
Case #26: N
|
27 |
+
Case #27: N
|
28 |
+
Case #28: N
|
29 |
+
Case #29: N
|
30 |
+
Case #30: N
|
31 |
+
Case #31: N
|
32 |
+
Case #32: N
|
33 |
+
Case #33: N
|
34 |
+
Case #34: Y
|
35 |
+
Case #35: Y
|
36 |
+
Case #36: N
|
37 |
+
Case #37: N
|
38 |
+
Case #38: N
|
39 |
+
Case #39: N
|
40 |
+
Case #40: N
|
41 |
+
Case #41: N
|
42 |
+
Case #42: N
|
43 |
+
Case #43: N
|
44 |
+
Case #44: N
|
45 |
+
Case #45: N
|
46 |
+
Case #46: N
|
47 |
+
Case #47: N
|
48 |
+
Case #48: N
|
49 |
+
Case #49: N
|
50 |
+
Case #50: N
|
51 |
+
Case #51: N
|
52 |
+
Case #52: N
|
53 |
+
Case #53: N
|
54 |
+
Case #54: N
|
55 |
+
Case #55: N
|
56 |
+
Case #56: N
|
57 |
+
Case #57: N
|
58 |
+
Case #58: N
|
59 |
+
Case #59: N
|
60 |
+
Case #60: N
|
61 |
+
Case #61: N
|
62 |
+
Case #62: N
|
63 |
+
Case #63: N
|
64 |
+
Case #64: N
|
65 |
+
Case #65: N
|
66 |
+
Case #66: Y
|
67 |
+
Case #67: N
|
68 |
+
Case #68: N
|
69 |
+
Case #69: N
|
70 |
+
Case #70: N
|
71 |
+
Case #71: N
|
72 |
+
Case #72: N
|
73 |
+
Case #73: N
|
74 |
+
Case #74: Y
|
75 |
+
Case #75: N
|
76 |
+
Case #76: N
|
77 |
+
Case #77: N
|
78 |
+
Case #78: Y
|
79 |
+
Case #79: N
|
80 |
+
Case #80: Y
|
81 |
+
Case #81: Y
|
82 |
+
Case #82: Y
|
83 |
+
Case #83: N
|
84 |
+
Case #84: N
|
85 |
+
Case #85: N
|
86 |
+
Case #86: N
|
87 |
+
Case #87: N
|
88 |
+
Case #88: N
|
89 |
+
Case #89: N
|
90 |
+
Case #90: Y
|
91 |
+
Case #91: N
|
92 |
+
Case #92: N
|
93 |
+
Case #93: N
|
94 |
+
Case #94: Y
|
95 |
+
Case #95: N
|
96 |
+
Case #96: Y
|
97 |
+
Case #97: Y
|
98 |
+
Case #98: Y
|
99 |
+
Case #99: N
|
100 |
+
Case #100: N
|
101 |
+
Case #101: N
|
102 |
+
Case #102: Y
|
103 |
+
Case #103: N
|
104 |
+
Case #104: Y
|
105 |
+
Case #105: Y
|
106 |
+
Case #106: Y
|
107 |
+
Case #107: N
|
108 |
+
Case #108: Y
|
109 |
+
Case #109: Y
|
110 |
+
Case #110: Y
|
111 |
+
Case #111: Y
|
112 |
+
Case #112: Y
|
113 |
+
Case #113: Y
|
114 |
+
Case #114: Y
|
115 |
+
Case #115: N
|
116 |
+
Case #116: N
|
117 |
+
Case #117: N
|
118 |
+
Case #118: N
|
119 |
+
Case #119: N
|
120 |
+
Case #120: N
|
121 |
+
Case #121: N
|
122 |
+
Case #122: Y
|
123 |
+
Case #123: N
|
124 |
+
Case #124: N
|
125 |
+
Case #125: N
|
126 |
+
Case #126: Y
|
127 |
+
Case #127: N
|
128 |
+
Case #128: Y
|
129 |
+
Case #129: Y
|
130 |
+
Case #130: Y
|
131 |
+
Case #131: N
|
132 |
+
Case #132: N
|
133 |
+
Case #133: N
|
134 |
+
Case #134: Y
|
135 |
+
Case #135: N
|
136 |
+
Case #136: Y
|
137 |
+
Case #137: Y
|
138 |
+
Case #138: Y
|
139 |
+
Case #139: N
|
140 |
+
Case #140: Y
|
141 |
+
Case #141: Y
|
142 |
+
Case #142: Y
|
143 |
+
Case #143: Y
|
144 |
+
Case #144: Y
|
145 |
+
Case #145: Y
|
146 |
+
Case #146: Y
|
147 |
+
Case #147: N
|
148 |
+
Case #148: N
|
149 |
+
Case #149: N
|
150 |
+
Case #150: Y
|
151 |
+
Case #151: N
|
152 |
+
Case #152: Y
|
153 |
+
Case #153: Y
|
154 |
+
Case #154: Y
|
155 |
+
Case #155: N
|
156 |
+
Case #156: Y
|
157 |
+
Case #157: Y
|
158 |
+
Case #158: Y
|
159 |
+
Case #159: Y
|
160 |
+
Case #160: Y
|
161 |
+
Case #161: Y
|
162 |
+
Case #162: Y
|
163 |
+
Case #163: N
|
164 |
+
Case #164: Y
|
165 |
+
Case #165: Y
|
166 |
+
Case #166: Y
|
167 |
+
Case #167: Y
|
168 |
+
Case #168: Y
|
169 |
+
Case #169: Y
|
170 |
+
Case #170: Y
|
171 |
+
Case #171: Y
|
172 |
+
Case #172: Y
|
173 |
+
Case #173: Y
|
174 |
+
Case #174: Y
|
175 |
+
Case #175: Y
|
176 |
+
Case #176: Y
|
177 |
+
Case #177: Y
|
178 |
+
Case #178: Y
|
179 |
+
Case #179: N
|
180 |
+
Case #180: N
|
181 |
+
Case #181: N
|
182 |
+
Case #182: N
|
183 |
+
Case #183: N
|
184 |
+
Case #184: N
|
185 |
+
Case #185: N
|
186 |
+
Case #186: Y
|
187 |
+
Case #187: N
|
188 |
+
Case #188: N
|
189 |
+
Case #189: N
|
190 |
+
Case #190: Y
|
191 |
+
Case #191: N
|
192 |
+
Case #192: Y
|
193 |
+
Case #193: Y
|
194 |
+
Case #194: Y
|
195 |
+
Case #195: N
|
196 |
+
Case #196: N
|
197 |
+
Case #197: N
|
198 |
+
Case #198: Y
|
199 |
+
Case #199: N
|
200 |
+
Case #200: Y
|
201 |
+
Case #201: Y
|
202 |
+
Case #202: Y
|
203 |
+
Case #203: N
|
204 |
+
Case #204: Y
|
205 |
+
Case #205: Y
|
206 |
+
Case #206: Y
|
207 |
+
Case #207: Y
|
208 |
+
Case #208: Y
|
209 |
+
Case #209: Y
|
210 |
+
Case #210: Y
|
211 |
+
Case #211: N
|
212 |
+
Case #212: N
|
213 |
+
Case #213: N
|
214 |
+
Case #214: Y
|
215 |
+
Case #215: N
|
216 |
+
Case #216: Y
|
217 |
+
Case #217: Y
|
218 |
+
Case #218: Y
|
219 |
+
Case #219: N
|
220 |
+
Case #220: Y
|
221 |
+
Case #221: Y
|
222 |
+
Case #222: Y
|
223 |
+
Case #223: Y
|
224 |
+
Case #224: Y
|
225 |
+
Case #225: Y
|
226 |
+
Case #226: Y
|
227 |
+
Case #227: N
|
228 |
+
Case #228: Y
|
229 |
+
Case #229: Y
|
230 |
+
Case #230: Y
|
231 |
+
Case #231: Y
|
232 |
+
Case #232: Y
|
233 |
+
Case #233: Y
|
234 |
+
Case #234: Y
|
235 |
+
Case #235: Y
|
236 |
+
Case #236: Y
|
237 |
+
Case #237: Y
|
238 |
+
Case #238: Y
|
239 |
+
Case #239: Y
|
240 |
+
Case #240: Y
|
241 |
+
Case #241: Y
|
242 |
+
Case #242: Y
|
243 |
+
Case #243: N
|
244 |
+
Case #244: N
|
245 |
+
Case #245: N
|
246 |
+
Case #246: Y
|
247 |
+
Case #247: N
|
248 |
+
Case #248: Y
|
249 |
+
Case #249: Y
|
250 |
+
Case #250: Y
|
251 |
+
Case #251: N
|
252 |
+
Case #252: Y
|
253 |
+
Case #253: Y
|
254 |
+
Case #254: Y
|
255 |
+
Case #255: Y
|
256 |
+
Case #256: Y
|
257 |
+
Case #257: Y
|
258 |
+
Case #258: Y
|
259 |
+
Case #259: N
|
260 |
+
Case #260: Y
|
261 |
+
Case #261: Y
|
262 |
+
Case #262: Y
|
263 |
+
Case #263: Y
|
264 |
+
Case #264: Y
|
265 |
+
Case #265: Y
|
266 |
+
Case #266: Y
|
267 |
+
Case #267: Y
|
268 |
+
Case #268: Y
|
269 |
+
Case #269: Y
|
270 |
+
Case #270: Y
|
271 |
+
Case #271: Y
|
272 |
+
Case #272: Y
|
273 |
+
Case #273: Y
|
274 |
+
Case #274: Y
|
275 |
+
Case #275: N
|
276 |
+
Case #276: Y
|
277 |
+
Case #277: Y
|
278 |
+
Case #278: Y
|
279 |
+
Case #279: Y
|
280 |
+
Case #280: Y
|
281 |
+
Case #281: Y
|
282 |
+
Case #282: Y
|
283 |
+
Case #283: Y
|
284 |
+
Case #284: Y
|
285 |
+
Case #285: Y
|
286 |
+
Case #286: Y
|
287 |
+
Case #287: Y
|
288 |
+
Case #288: Y
|
289 |
+
Case #289: Y
|
290 |
+
Case #290: Y
|
291 |
+
Case #291: Y
|
292 |
+
Case #292: Y
|
293 |
+
Case #293: Y
|
294 |
+
Case #294: Y
|
295 |
+
Case #295: Y
|
296 |
+
Case #296: Y
|
297 |
+
Case #297: Y
|
298 |
+
Case #298: Y
|
299 |
+
Case #299: Y
|
300 |
+
Case #300: Y
|
301 |
+
Case #301: Y
|
302 |
+
Case #302: Y
|
303 |
+
Case #303: Y
|
304 |
+
Case #304: Y
|
305 |
+
Case #305: Y
|
306 |
+
Case #306: N
|
307 |
+
Case #307: Y
|
308 |
+
Case #308: N
|
309 |
+
Case #309: Y
|
310 |
+
Case #310: Y
|
311 |
+
Case #311: N
|
312 |
+
Case #312: Y
|
313 |
+
Case #313: N
|
314 |
+
Case #314: Y
|
315 |
+
Case #315: Y
|
316 |
+
Case #316: Y
|
317 |
+
Case #317: Y
|
318 |
+
Case #318: Y
|
319 |
+
Case #319: N
|
320 |
+
Case #320: N
|
321 |
+
Case #321: N
|
322 |
+
Case #322: Y
|
323 |
+
Case #323: N
|
324 |
+
Case #324: Y
|
325 |
+
Case #325: Y
|
326 |
+
Case #326: Y
|
327 |
+
Case #327: Y
|
328 |
+
Case #328: Y
|
329 |
+
Case #329: Y
|
330 |
+
Case #330: Y
|
331 |
+
Case #331: Y
|
332 |
+
Case #332: Y
|
333 |
+
Case #333: Y
|
334 |
+
Case #334: Y
|
335 |
+
Case #335: Y
|
336 |
+
Case #336: N
|
337 |
+
Case #337: N
|
338 |
+
Case #338: Y
|
339 |
+
Case #339: Y
|
340 |
+
Case #340: N
|
341 |
+
Case #341: Y
|
342 |
+
Case #342: Y
|
343 |
+
Case #343: N
|
344 |
+
Case #344: Y
|
345 |
+
Case #345: N
|
346 |
+
Case #346: N
|
347 |
+
Case #347: Y
|
348 |
+
Case #348: Y
|
349 |
+
Case #349: Y
|
350 |
+
Case #350: N
|
351 |
+
Case #351: Y
|
352 |
+
Case #352: N
|
353 |
+
Case #353: N
|
354 |
+
Case #354: Y
|
355 |
+
Case #355: Y
|
356 |
+
Case #356: N
|
357 |
+
Case #357: Y
|
358 |
+
Case #358: Y
|
359 |
+
Case #359: N
|
360 |
+
Case #360: N
|
361 |
+
Case #361: N
|
362 |
+
Case #362: Y
|
363 |
+
Case #363: N
|
364 |
+
Case #364: N
|
365 |
+
Case #365: Y
|
366 |
+
Case #366: N
|
367 |
+
Case #367: N
|
368 |
+
Case #368: N
|
369 |
+
Case #369: Y
|
370 |
+
Case #370: Y
|
371 |
+
Case #371: Y
|
372 |
+
Case #372: N
|
373 |
+
Case #373: N
|
374 |
+
Case #374: Y
|
375 |
+
Case #375: Y
|
376 |
+
Case #376: Y
|
377 |
+
Case #377: Y
|
378 |
+
Case #378: N
|
379 |
+
Case #379: Y
|
380 |
+
Case #380: N
|
381 |
+
Case #381: N
|
382 |
+
Case #382: Y
|
383 |
+
Case #383: Y
|
384 |
+
Case #384: Y
|
385 |
+
Case #385: N
|
386 |
+
Case #386: N
|
387 |
+
Case #387: Y
|
388 |
+
Case #388: Y
|
389 |
+
Case #389: N
|
390 |
+
Case #390: N
|
391 |
+
Case #391: Y
|
392 |
+
Case #392: N
|
393 |
+
Case #393: Y
|
394 |
+
Case #394: N
|
395 |
+
Case #395: Y
|
396 |
+
Case #396: Y
|
397 |
+
Case #397: Y
|
398 |
+
Case #398: N
|
399 |
+
Case #399: Y
|
400 |
+
Case #400: N
|
401 |
+
Case #401: N
|
402 |
+
Case #402: Y
|
403 |
+
Case #403: Y
|
404 |
+
Case #404: Y
|
405 |
+
Case #405: N
|
406 |
+
Case #406: N
|
407 |
+
Case #407: N
|
408 |
+
Case #408: Y
|
409 |
+
Case #409: Y
|
410 |
+
Case #410: Y
|
411 |
+
Case #411: N
|
412 |
+
Case #412: Y
|
413 |
+
Case #413: Y
|
414 |
+
Case #414: Y
|
415 |
+
Case #415: N
|
416 |
+
Case #416: Y
|
417 |
+
Case #417: N
|
418 |
+
Case #418: Y
|
419 |
+
Case #419: N
|
420 |
+
Case #420: N
|
421 |
+
Case #421: N
|
422 |
+
Case #422: N
|
423 |
+
Case #423: Y
|
424 |
+
Case #424: Y
|
425 |
+
Case #425: N
|
426 |
+
Case #426: N
|
427 |
+
Case #427: N
|
428 |
+
Case #428: Y
|
429 |
+
Case #429: Y
|
430 |
+
Case #430: N
|
431 |
+
Case #431: N
|
432 |
+
Case #432: Y
|
433 |
+
Case #433: Y
|
434 |
+
Case #434: Y
|
435 |
+
Case #435: N
|
436 |
+
Case #436: N
|
437 |
+
Case #437: Y
|
438 |
+
Case #438: N
|
439 |
+
Case #439: N
|
440 |
+
Case #440: N
|
441 |
+
Case #441: N
|
442 |
+
Case #442: Y
|
443 |
+
Case #443: N
|
444 |
+
Case #444: Y
|
445 |
+
Case #445: N
|
446 |
+
Case #446: N
|
447 |
+
Case #447: N
|
448 |
+
Case #448: N
|
449 |
+
Case #449: N
|
450 |
+
Case #450: Y
|
451 |
+
Case #451: N
|
452 |
+
Case #452: Y
|
453 |
+
Case #453: Y
|
454 |
+
Case #454: Y
|
455 |
+
Case #455: N
|
456 |
+
Case #456: N
|
457 |
+
Case #457: N
|
458 |
+
Case #458: Y
|
459 |
+
Case #459: N
|
460 |
+
Case #460: Y
|
461 |
+
Case #461: N
|
462 |
+
Case #462: N
|
463 |
+
Case #463: N
|
464 |
+
Case #464: N
|
465 |
+
Case #465: N
|
466 |
+
Case #466: N
|
467 |
+
Case #467: Y
|
468 |
+
Case #468: N
|
469 |
+
Case #469: Y
|
470 |
+
Case #470: N
|
471 |
+
Case #471: Y
|
472 |
+
Case #472: N
|
473 |
+
Case #473: N
|
474 |
+
Case #474: N
|
475 |
+
Case #475: N
|
476 |
+
Case #476: N
|
477 |
+
Case #477: Y
|
478 |
+
Case #478: Y
|
479 |
+
Case #479: Y
|
480 |
+
Case #480: N
|
481 |
+
Case #481: N
|
482 |
+
Case #482: N
|
483 |
+
Case #483: Y
|
484 |
+
Case #484: Y
|
485 |
+
Case #485: Y
|
486 |
+
Case #486: Y
|
487 |
+
Case #487: N
|
488 |
+
Case #488: N
|
489 |
+
Case #489: N
|
490 |
+
Case #490: N
|
491 |
+
Case #491: N
|
492 |
+
Case #492: Y
|
493 |
+
Case #493: Y
|
494 |
+
Case #494: N
|
495 |
+
Case #495: Y
|
496 |
+
Case #496: Y
|
497 |
+
Case #497: Y
|
498 |
+
Case #498: Y
|
499 |
+
Case #499: N
|
500 |
+
Case #500: Y
|
501 |
+
Case #501: Y
|
502 |
+
Case #502: N
|
503 |
+
Case #503: N
|
504 |
+
Case #504: N
|
505 |
+
Case #505: N
|
506 |
+
Case #506: N
|
507 |
+
Case #507: N
|
508 |
+
Case #508: N
|
509 |
+
Case #509: Y
|
510 |
+
Case #510: N
|
511 |
+
Case #511: N
|
512 |
+
Case #512: N
|
513 |
+
Case #513: N
|
514 |
+
Case #514: N
|
515 |
+
Case #515: N
|
516 |
+
Case #516: N
|
517 |
+
Case #517: Y
|
518 |
+
Case #518: Y
|
519 |
+
Case #519: Y
|
520 |
+
Case #520: Y
|
521 |
+
Case #521: N
|
522 |
+
Case #522: N
|
523 |
+
Case #523: N
|
524 |
+
Case #524: N
|
525 |
+
Case #525: Y
|
526 |
+
Case #526: Y
|
527 |
+
Case #527: Y
|
528 |
+
Case #528: Y
|
529 |
+
Case #529: N
|
530 |
+
Case #530: N
|
531 |
+
Case #531: Y
|
532 |
+
Case #532: Y
|
533 |
+
Case #533: N
|
534 |
+
Case #534: Y
|
535 |
+
Case #535: Y
|
536 |
+
Case #536: Y
|
537 |
+
Case #537: N
|
538 |
+
Case #538: N
|
539 |
+
Case #539: Y
|
540 |
+
Case #540: N
|
541 |
+
Case #541: Y
|
542 |
+
Case #542: N
|
543 |
+
Case #543: Y
|
544 |
+
Case #544: Y
|
545 |
+
Case #545: N
|
546 |
+
Case #546: N
|
547 |
+
Case #547: Y
|
548 |
+
Case #548: Y
|
549 |
+
Case #549: N
|
550 |
+
Case #550: Y
|
551 |
+
Case #551: N
|
552 |
+
Case #552: Y
|
553 |
+
Case #553: N
|
554 |
+
Case #554: N
|
555 |
+
Case #555: Y
|
556 |
+
Case #556: N
|
557 |
+
Case #557: N
|
558 |
+
Case #558: Y
|
559 |
+
Case #559: N
|
560 |
+
Case #560: Y
|
561 |
+
Case #561: Y
|
562 |
+
Case #562: Y
|
563 |
+
Case #563: N
|
564 |
+
Case #564: Y
|
565 |
+
Case #565: N
|
566 |
+
Case #566: Y
|
567 |
+
Case #567: Y
|
568 |
+
Case #568: N
|
569 |
+
Case #569: N
|
570 |
+
Case #570: Y
|
571 |
+
Case #571: Y
|
572 |
+
Case #572: N
|
573 |
+
Case #573: N
|
574 |
+
Case #574: Y
|
575 |
+
Case #575: Y
|
576 |
+
Case #576: Y
|
577 |
+
Case #577: Y
|
578 |
+
Case #578: N
|
579 |
+
Case #579: N
|
580 |
+
Case #580: Y
|
581 |
+
Case #581: N
|
582 |
+
Case #582: N
|
583 |
+
Case #583: Y
|
584 |
+
Case #584: Y
|
585 |
+
Case #585: Y
|
586 |
+
Case #586: Y
|
587 |
+
Case #587: Y
|
588 |
+
Case #588: Y
|
589 |
+
Case #589: N
|
590 |
+
Case #590: N
|
591 |
+
Case #591: N
|
592 |
+
Case #592: N
|
593 |
+
Case #593: Y
|
594 |
+
Case #594: N
|
595 |
+
Case #595: Y
|
596 |
+
Case #596: Y
|
597 |
+
Case #597: N
|
598 |
+
Case #598: Y
|
599 |
+
Case #599: Y
|
600 |
+
Case #600: Y
|
601 |
+
Case #601: N
|
602 |
+
Case #602: N
|
603 |
+
Case #603: Y
|
604 |
+
Case #604: Y
|
605 |
+
Case #605: N
|
606 |
+
Case #606: Y
|
607 |
+
Case #607: Y
|
608 |
+
Case #608: N
|
609 |
+
Case #609: Y
|
610 |
+
Case #610: Y
|
611 |
+
Case #611: N
|
612 |
+
Case #612: N
|
613 |
+
Case #613: N
|
614 |
+
Case #614: N
|
615 |
+
Case #615: N
|
616 |
+
Case #616: N
|
617 |
+
Case #617: N
|
618 |
+
Case #618: Y
|
619 |
+
Case #619: Y
|
620 |
+
Case #620: Y
|
621 |
+
Case #621: N
|
622 |
+
Case #622: Y
|
623 |
+
Case #623: N
|
624 |
+
Case #624: N
|
625 |
+
Case #625: N
|
626 |
+
Case #626: Y
|
627 |
+
Case #627: Y
|
628 |
+
Case #628: Y
|
629 |
+
Case #629: Y
|
630 |
+
Case #630: Y
|
631 |
+
Case #631: Y
|
632 |
+
Case #632: Y
|
633 |
+
Case #633: Y
|
634 |
+
Case #634: Y
|
635 |
+
Case #635: Y
|
636 |
+
Case #636: N
|
637 |
+
Case #637: N
|
638 |
+
Case #638: Y
|
639 |
+
Case #639: N
|
640 |
+
Case #640: Y
|
641 |
+
Case #641: Y
|
642 |
+
Case #642: N
|
643 |
+
Case #643: N
|
644 |
+
Case #644: N
|
645 |
+
Case #645: Y
|
646 |
+
Case #646: N
|
647 |
+
Case #647: Y
|
648 |
+
Case #648: Y
|
649 |
+
Case #649: Y
|
650 |
+
Case #650: N
|
651 |
+
Case #651: Y
|
652 |
+
Case #652: N
|
653 |
+
Case #653: N
|
654 |
+
Case #654: Y
|
655 |
+
Case #655: Y
|
656 |
+
Case #656: N
|
657 |
+
Case #657: N
|
658 |
+
Case #658: Y
|
659 |
+
Case #659: Y
|
660 |
+
Case #660: Y
|
661 |
+
Case #661: N
|
662 |
+
Case #662: N
|
663 |
+
Case #663: N
|
664 |
+
Case #664: N
|
665 |
+
Case #665: Y
|
666 |
+
Case #666: N
|
667 |
+
Case #667: Y
|
668 |
+
Case #668: Y
|
669 |
+
Case #669: Y
|
670 |
+
Case #670: Y
|
671 |
+
Case #671: N
|
672 |
+
Case #672: Y
|
673 |
+
Case #673: Y
|
674 |
+
Case #674: Y
|
675 |
+
Case #675: Y
|
676 |
+
Case #676: Y
|
677 |
+
Case #677: Y
|
678 |
+
Case #678: N
|
679 |
+
Case #679: Y
|
680 |
+
Case #680: Y
|
681 |
+
Case #681: N
|
682 |
+
Case #682: N
|
683 |
+
Case #683: N
|
684 |
+
Case #684: Y
|
685 |
+
Case #685: Y
|
686 |
+
Case #686: N
|
687 |
+
Case #687: N
|
688 |
+
Case #688: Y
|
689 |
+
Case #689: Y
|
690 |
+
Case #690: N
|
691 |
+
Case #691: Y
|
692 |
+
Case #692: N
|
693 |
+
Case #693: Y
|
694 |
+
Case #694: N
|
695 |
+
Case #695: N
|
696 |
+
Case #696: Y
|
697 |
+
Case #697: Y
|
698 |
+
Case #698: N
|
699 |
+
Case #699: Y
|
700 |
+
Case #700: N
|
701 |
+
Case #701: Y
|
702 |
+
Case #702: N
|
703 |
+
Case #703: N
|
704 |
+
Case #704: Y
|
705 |
+
Case #705: Y
|
706 |
+
Case #706: Y
|
707 |
+
Case #707: N
|
708 |
+
Case #708: Y
|
709 |
+
Case #709: N
|
710 |
+
Case #710: N
|
711 |
+
Case #711: N
|
712 |
+
Case #712: N
|
713 |
+
Case #713: N
|
714 |
+
Case #714: N
|
715 |
+
Case #715: Y
|
716 |
+
Case #716: N
|
717 |
+
Case #717: N
|
718 |
+
Case #718: N
|
719 |
+
Case #719: Y
|
720 |
+
Case #720: Y
|
721 |
+
Case #721: N
|
722 |
+
Case #722: Y
|
723 |
+
Case #723: N
|
724 |
+
Case #724: N
|
725 |
+
Case #725: Y
|
726 |
+
Case #726: N
|
727 |
+
Case #727: Y
|
728 |
+
Case #728: N
|
729 |
+
Case #729: Y
|
730 |
+
Case #730: Y
|
731 |
+
Case #731: N
|
732 |
+
Case #732: N
|
733 |
+
Case #733: Y
|
734 |
+
Case #734: N
|
735 |
+
Case #735: Y
|
736 |
+
Case #736: Y
|
737 |
+
Case #737: Y
|
738 |
+
Case #738: N
|
739 |
+
Case #739: Y
|
740 |
+
Case #740: N
|
741 |
+
Case #741: Y
|
742 |
+
Case #742: Y
|
743 |
+
Case #743: N
|
744 |
+
Case #744: N
|
745 |
+
Case #745: Y
|
746 |
+
Case #746: N
|
747 |
+
Case #747: N
|
748 |
+
Case #748: Y
|
749 |
+
Case #749: Y
|
750 |
+
Case #750: N
|
751 |
+
Case #751: Y
|
752 |
+
Case #752: N
|
753 |
+
Case #753: Y
|
754 |
+
Case #754: N
|
755 |
+
Case #755: Y
|
756 |
+
Case #756: Y
|
757 |
+
Case #757: N
|
758 |
+
Case #758: N
|
759 |
+
Case #759: N
|
760 |
+
Case #760: Y
|
761 |
+
Case #761: N
|
762 |
+
Case #762: N
|
763 |
+
Case #763: N
|
764 |
+
Case #764: Y
|
765 |
+
Case #765: Y
|
766 |
+
Case #766: N
|
767 |
+
Case #767: N
|
768 |
+
Case #768: Y
|
769 |
+
Case #769: N
|
770 |
+
Case #770: N
|
771 |
+
Case #771: Y
|
772 |
+
Case #772: Y
|
773 |
+
Case #773: Y
|
774 |
+
Case #774: N
|
775 |
+
Case #775: N
|
776 |
+
Case #776: N
|
777 |
+
Case #777: N
|
778 |
+
Case #778: Y
|
779 |
+
Case #779: Y
|
780 |
+
Case #780: N
|
781 |
+
Case #781: Y
|
782 |
+
Case #782: N
|
783 |
+
Case #783: N
|
784 |
+
Case #784: N
|
785 |
+
Case #785: Y
|
786 |
+
Case #786: Y
|
787 |
+
Case #787: Y
|
788 |
+
Case #788: Y
|
789 |
+
Case #789: Y
|
790 |
+
Case #790: N
|
791 |
+
Case #791: N
|
792 |
+
Case #792: N
|
793 |
+
Case #793: N
|
794 |
+
Case #794: N
|
795 |
+
Case #795: N
|
796 |
+
Case #796: N
|
797 |
+
Case #797: N
|
798 |
+
Case #798: N
|
799 |
+
Case #799: Y
|
800 |
+
Case #800: N
|
801 |
+
Case #801: N
|
802 |
+
Case #802: Y
|
803 |
+
Case #803: Y
|
804 |
+
Case #804: N
|
805 |
+
Case #805: N
|
806 |
+
Case #806: Y
|
807 |
+
Case #807: Y
|
808 |
+
Case #808: Y
|
809 |
+
Case #809: Y
|
810 |
+
Case #810: Y
|
811 |
+
Case #811: Y
|
812 |
+
Case #812: Y
|
813 |
+
Case #813: N
|
814 |
+
Case #814: Y
|
815 |
+
Case #815: N
|
816 |
+
Case #816: Y
|
817 |
+
Case #817: N
|
818 |
+
Case #818: Y
|
819 |
+
Case #819: Y
|
820 |
+
Case #820: Y
|
821 |
+
Case #821: Y
|
822 |
+
Case #822: Y
|
823 |
+
Case #823: N
|
824 |
+
Case #824: N
|
825 |
+
Case #825: Y
|
826 |
+
Case #826: N
|
827 |
+
Case #827: N
|
828 |
+
Case #828: N
|
829 |
+
Case #829: Y
|
830 |
+
Case #830: Y
|
831 |
+
Case #831: Y
|
832 |
+
Case #832: N
|
833 |
+
Case #833: Y
|
834 |
+
Case #834: N
|
835 |
+
Case #835: Y
|
836 |
+
Case #836: Y
|
837 |
+
Case #837: N
|
838 |
+
Case #838: Y
|
839 |
+
Case #839: Y
|
840 |
+
Case #840: Y
|
841 |
+
Case #841: Y
|
842 |
+
Case #842: Y
|
843 |
+
Case #843: Y
|
844 |
+
Case #844: Y
|
845 |
+
Case #845: N
|
846 |
+
Case #846: N
|
847 |
+
Case #847: N
|
848 |
+
Case #848: N
|
849 |
+
Case #849: N
|
850 |
+
Case #850: N
|
851 |
+
Case #851: N
|
852 |
+
Case #852: Y
|
853 |
+
Case #853: Y
|
854 |
+
Case #854: Y
|
855 |
+
Case #855: N
|
856 |
+
Case #856: N
|
857 |
+
Case #857: N
|
858 |
+
Case #858: N
|
859 |
+
Case #859: N
|
860 |
+
Case #860: Y
|
861 |
+
Case #861: N
|
862 |
+
Case #862: Y
|
863 |
+
Case #863: Y
|
864 |
+
Case #864: N
|
865 |
+
Case #865: N
|
866 |
+
Case #866: N
|
867 |
+
Case #867: N
|
868 |
+
Case #868: N
|
869 |
+
Case #869: N
|
870 |
+
Case #870: N
|
871 |
+
Case #871: N
|
872 |
+
Case #872: N
|
873 |
+
Case #873: Y
|
874 |
+
Case #874: Y
|
875 |
+
Case #875: N
|
876 |
+
Case #876: Y
|
877 |
+
Case #877: N
|
878 |
+
Case #878: Y
|
879 |
+
Case #879: N
|
880 |
+
Case #880: Y
|
881 |
+
Case #881: N
|
882 |
+
Case #882: N
|
883 |
+
Case #883: N
|
884 |
+
Case #884: N
|
885 |
+
Case #885: Y
|
886 |
+
Case #886: Y
|
887 |
+
Case #887: N
|
888 |
+
Case #888: Y
|
889 |
+
Case #889: N
|
890 |
+
Case #890: Y
|
891 |
+
Case #891: N
|
892 |
+
Case #892: Y
|
893 |
+
Case #893: Y
|
894 |
+
Case #894: Y
|
895 |
+
Case #895: N
|
896 |
+
Case #896: Y
|
897 |
+
Case #897: N
|
898 |
+
Case #898: N
|
899 |
+
Case #899: N
|
900 |
+
Case #900: N
|
901 |
+
Case #901: Y
|
902 |
+
Case #902: Y
|
903 |
+
Case #903: Y
|
904 |
+
Case #904: N
|
905 |
+
Case #905: N
|
906 |
+
Case #906: Y
|
907 |
+
Case #907: Y
|
908 |
+
Case #908: Y
|
909 |
+
Case #909: Y
|
910 |
+
Case #910: N
|
911 |
+
Case #911: N
|
912 |
+
Case #912: N
|
913 |
+
Case #913: Y
|
914 |
+
Case #914: N
|
915 |
+
Case #915: N
|
916 |
+
Case #916: N
|
917 |
+
Case #917: Y
|
918 |
+
Case #918: Y
|
919 |
+
Case #919: N
|
920 |
+
Case #920: Y
|
921 |
+
Case #921: N
|
922 |
+
Case #922: N
|
923 |
+
Case #923: Y
|
924 |
+
Case #924: Y
|
925 |
+
Case #925: Y
|
926 |
+
Case #926: Y
|
927 |
+
Case #927: Y
|
928 |
+
Case #928: N
|
929 |
+
Case #929: Y
|
930 |
+
Case #930: Y
|
931 |
+
Case #931: Y
|
932 |
+
Case #932: Y
|
933 |
+
Case #933: Y
|
934 |
+
Case #934: Y
|
935 |
+
Case #935: Y
|
936 |
+
Case #936: Y
|
937 |
+
Case #937: N
|
938 |
+
Case #938: Y
|
939 |
+
Case #939: N
|
940 |
+
Case #940: N
|
941 |
+
Case #941: N
|
942 |
+
Case #942: Y
|
943 |
+
Case #943: N
|
944 |
+
Case #944: Y
|
945 |
+
Case #945: Y
|
946 |
+
Case #946: Y
|
947 |
+
Case #947: N
|
948 |
+
Case #948: Y
|
949 |
+
Case #949: N
|
950 |
+
Case #950: N
|
951 |
+
Case #951: N
|
952 |
+
Case #952: N
|
953 |
+
Case #953: N
|
954 |
+
Case #954: N
|
955 |
+
Case #955: N
|
956 |
+
Case #956: N
|
957 |
+
Case #957: Y
|
958 |
+
Case #958: Y
|
959 |
+
Case #959: Y
|
960 |
+
Case #960: N
|
961 |
+
Case #961: N
|
962 |
+
Case #962: Y
|
963 |
+
Case #963: Y
|
964 |
+
Case #964: Y
|
965 |
+
Case #965: N
|
966 |
+
Case #966: Y
|
967 |
+
Case #967: N
|
968 |
+
Case #968: Y
|
969 |
+
Case #969: Y
|
970 |
+
Case #970: N
|
971 |
+
Case #971: N
|
972 |
+
Case #972: N
|
973 |
+
Case #973: N
|
974 |
+
Case #974: Y
|
975 |
+
Case #975: N
|
976 |
+
Case #976: N
|
977 |
+
Case #977: N
|
978 |
+
Case #978: Y
|
979 |
+
Case #979: N
|
980 |
+
Case #980: N
|
981 |
+
Case #981: N
|
982 |
+
Case #982: Y
|
983 |
+
Case #983: Y
|
984 |
+
Case #984: Y
|
985 |
+
Case #985: N
|
986 |
+
Case #986: Y
|
987 |
+
Case #987: N
|
988 |
+
Case #988: Y
|
989 |
+
Case #989: N
|
990 |
+
Case #990: N
|
991 |
+
Case #991: N
|
992 |
+
Case #992: N
|
993 |
+
Case #993: N
|
994 |
+
Case #994: N
|
995 |
+
Case #995: Y
|
996 |
+
Case #996: N
|
997 |
+
Case #997: Y
|
998 |
+
Case #998: N
|
999 |
+
Case #999: N
|
1000 |
+
Case #1000: N
|
1001 |
+
Case #1001: N
|
1002 |
+
Case #1002: N
|
1003 |
+
Case #1003: Y
|
1004 |
+
Case #1004: Y
|
1005 |
+
Case #1005: N
|
1006 |
+
Case #1006: Y
|
1007 |
+
Case #1007: Y
|
1008 |
+
Case #1008: N
|
1009 |
+
Case #1009: N
|
1010 |
+
Case #1010: Y
|
1011 |
+
Case #1011: N
|
1012 |
+
Case #1012: Y
|
1013 |
+
Case #1013: Y
|
1014 |
+
Case #1014: N
|
1015 |
+
Case #1015: Y
|
1016 |
+
Case #1016: Y
|
1017 |
+
Case #1017: Y
|
1018 |
+
Case #1018: Y
|
1019 |
+
Case #1019: Y
|
1020 |
+
Case #1020: N
|
1021 |
+
Case #1021: N
|
1022 |
+
Case #1022: N
|
1023 |
+
Case #1023: N
|
1024 |
+
Case #1024: Y
|
1025 |
+
Case #1025: Y
|
1026 |
+
Case #1026: Y
|
1027 |
+
Case #1027: Y
|
1028 |
+
Case #1028: N
|
1029 |
+
Case #1029: N
|
1030 |
+
Case #1030: Y
|
1031 |
+
Case #1031: N
|
1032 |
+
Case #1032: N
|
1033 |
+
Case #1033: N
|
1034 |
+
Case #1034: Y
|
1035 |
+
Case #1035: N
|
1036 |
+
Case #1036: Y
|
1037 |
+
Case #1037: N
|
1038 |
+
Case #1038: Y
|
1039 |
+
Case #1039: Y
|
1040 |
+
Case #1040: N
|
1041 |
+
Case #1041: N
|
1042 |
+
Case #1042: N
|
1043 |
+
Case #1043: Y
|
1044 |
+
Case #1044: Y
|
1045 |
+
Case #1045: Y
|
1046 |
+
Case #1046: Y
|
1047 |
+
Case #1047: N
|
1048 |
+
Case #1048: Y
|
1049 |
+
Case #1049: N
|
1050 |
+
Case #1050: N
|
2019/quals/leapfrog2.cpp
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Leapfrog Ch. 2
|
2 |
+
// Solution by Jacob Plachta
|
3 |
+
|
4 |
+
#define DEBUG 0
|
5 |
+
|
6 |
+
#include <algorithm>
|
7 |
+
#include <functional>
|
8 |
+
#include <numeric>
|
9 |
+
#include <iostream>
|
10 |
+
#include <iomanip>
|
11 |
+
#include <cstdio>
|
12 |
+
#include <cmath>
|
13 |
+
#include <complex>
|
14 |
+
#include <cstdlib>
|
15 |
+
#include <ctime>
|
16 |
+
#include <cstring>
|
17 |
+
#include <cassert>
|
18 |
+
#include <string>
|
19 |
+
#include <vector>
|
20 |
+
#include <list>
|
21 |
+
#include <map>
|
22 |
+
#include <set>
|
23 |
+
#include <deque>
|
24 |
+
#include <queue>
|
25 |
+
#include <stack>
|
26 |
+
#include <bitset>
|
27 |
+
#include <sstream>
|
28 |
+
using namespace std;
|
29 |
+
|
30 |
+
#define LL long long
|
31 |
+
#define LD long double
|
32 |
+
#define PR pair<int,int>
|
33 |
+
|
34 |
+
#define Fox(i,n) for (i=0; i<n; i++)
|
35 |
+
#define Fox1(i,n) for (i=1; i<=n; i++)
|
36 |
+
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
37 |
+
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
38 |
+
#define FoxR1(i,n) for (i=n; i>0; i--)
|
39 |
+
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
40 |
+
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
41 |
+
#define Min(a,b) a=min(a,b)
|
42 |
+
#define Max(a,b) a=max(a,b)
|
43 |
+
#define Sz(s) int((s).size())
|
44 |
+
#define All(s) (s).begin(),(s).end()
|
45 |
+
#define Fill(s,v) memset(s,v,sizeof(s))
|
46 |
+
#define pb push_back
|
47 |
+
#define mp make_pair
|
48 |
+
#define x first
|
49 |
+
#define y second
|
50 |
+
|
51 |
+
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
|
52 |
+
template<typename T> T Sqr(T x) { return(x*x); }
|
53 |
+
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
|
54 |
+
|
55 |
+
const int INF = (int)1e9;
|
56 |
+
const LD EPS = 1e-12;
|
57 |
+
const LD PI = acos(-1.0);
|
58 |
+
|
59 |
+
#if DEBUG
|
60 |
+
#define GETCHAR getchar
|
61 |
+
#else
|
62 |
+
#define GETCHAR getchar_unlocked
|
63 |
+
#endif
|
64 |
+
|
65 |
+
bool Read(int &x)
|
66 |
+
{
|
67 |
+
char c,r=0,n=0;
|
68 |
+
x=0;
|
69 |
+
for(;;)
|
70 |
+
{
|
71 |
+
c=GETCHAR();
|
72 |
+
if ((c<0) && (!r))
|
73 |
+
return(0);
|
74 |
+
if ((c=='-') && (!r))
|
75 |
+
n=1;
|
76 |
+
else
|
77 |
+
if ((c>='0') && (c<='9'))
|
78 |
+
x=x*10+c-'0',r=1;
|
79 |
+
else
|
80 |
+
if (r)
|
81 |
+
break;
|
82 |
+
}
|
83 |
+
if (n)
|
84 |
+
x=-x;
|
85 |
+
return(1);
|
86 |
+
}
|
87 |
+
|
88 |
+
int main()
|
89 |
+
{
|
90 |
+
if (DEBUG)
|
91 |
+
freopen("in.txt","r",stdin);
|
92 |
+
// vars
|
93 |
+
int T,t;
|
94 |
+
int N;
|
95 |
+
int i,c;
|
96 |
+
char S[5005];
|
97 |
+
// testcase loop
|
98 |
+
Read(T);
|
99 |
+
Fox1(t,T)
|
100 |
+
{
|
101 |
+
// input
|
102 |
+
scanf("%s",&S);
|
103 |
+
N=strlen(S);
|
104 |
+
// count B's
|
105 |
+
c=0;
|
106 |
+
Fox(i,N)
|
107 |
+
c+=S[i]=='B';
|
108 |
+
// output
|
109 |
+
printf("Case #%d: %c\n",t,(min(2,N/2)<=c && c<=N-2)?'Y':'N');
|
110 |
+
}
|
111 |
+
return(0);
|
112 |
+
}
|
2019/quals/leapfrog2.html
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
<strong>This problem statement differs from that of Leapfrog Ch. 1 in only one spot, highlighted in bold below.</strong>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
A colony of frogs peacefully resides in a pond. The colony is led by a single Alpha Frog, and also includes 0 or more Beta Frogs.
|
7 |
+
In order to be a good leader, the Alpha Frog diligently studies the high art of fractions every day.
|
8 |
+
</p>
|
9 |
+
|
10 |
+
<p>
|
11 |
+
There are <strong>N</strong> lilypads in a row on the pond's surface, numbered 1 to <strong>N</strong> from left to right, each of which is large enough to fit at most one frog at a time.
|
12 |
+
Today, the Alpha Frog finds itself on the leftmost lilypad, and must leap its way to the rightmost lilypad before it can begin its fractions practice.
|
13 |
+
</p>
|
14 |
+
|
15 |
+
<p>
|
16 |
+
The initial state of each lilypad <em>i</em> is described by a character <strong>L<sub>i</sub></strong>, which is one of the following:
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<ul>
|
20 |
+
<li> "<code>A</code>": Occupied by the Alpha Frog (it's guaranteed that <strong>L<sub>i</sub></strong> = "<code>A</code>" if and only if <em>i</em> = 1) </li>
|
21 |
+
<li> "<code>B</code>": Occupied by a Beta Frog </li>
|
22 |
+
<li> "<code>.</code>": Unoccupied </li>
|
23 |
+
</ul>
|
24 |
+
|
25 |
+
<p>
|
26 |
+
At each point in time, one of the following things may occur:
|
27 |
+
</p>
|
28 |
+
|
29 |
+
<p>
|
30 |
+
1) The Alpha Frog may leap over one or more lilypads immediately to either its left or right which are occupied by Beta Frogs,
|
31 |
+
and land on the next unoccupied lilypad past them, if such a lilypad exists.
|
32 |
+
The Alpha Frog must leap over at least one Beta Frog; it may not just leap to an adjacent lilypad.
|
33 |
+
<strong>Note that, unlike in Leapfrog Ch. 1, the Alpha Frog may leap to either its left or right.</strong>
|
34 |
+
</p>
|
35 |
+
|
36 |
+
<p>
|
37 |
+
2) Any Beta Frog may leap to the next lilypad to either its left or right, if such a lilypad exists and is unoccupied.
|
38 |
+
</p>
|
39 |
+
|
40 |
+
<p>
|
41 |
+
Assuming the frogs all cooperate, determine whether or not it's possible for the Alpha Frog to ever reach the rightmost lilypad and begin its daily fractions practice.
|
42 |
+
</p>
|
43 |
+
|
44 |
+
|
45 |
+
<h3>Input</h3>
|
46 |
+
|
47 |
+
<p>
|
48 |
+
Input begins with an integer <strong>T</strong>, the number of days on which the Alpha Frog studies fractions.
|
49 |
+
For each day, there is a single line containing the length-<strong>N</strong> string <strong>L</strong>.
|
50 |
+
</p>
|
51 |
+
|
52 |
+
|
53 |
+
<h3>Output</h3>
|
54 |
+
|
55 |
+
<p>
|
56 |
+
For the <em>i</em>th day, print a line containing "Case #<em>i</em>: "
|
57 |
+
followed by a single character: "<code>Y</code>" if the Alpha Frog can reach the rightmost lilypad, or "<code>N</code>" otherwise.
|
58 |
+
</p>
|
59 |
+
|
60 |
+
|
61 |
+
<h3>Constraints</h3>
|
62 |
+
|
63 |
+
<p>
|
64 |
+
1 ≤ <strong>T</strong> ≤ 500 <br />
|
65 |
+
2 ≤ <strong>N</strong> ≤ 5,000 <br />
|
66 |
+
</p>
|
67 |
+
|
68 |
+
<h3>Explanation of Sample</h3>
|
69 |
+
|
70 |
+
<p>
|
71 |
+
In the first case, the Alpha Frog can't leap anywhere.
|
72 |
+
</p>
|
73 |
+
|
74 |
+
<p>
|
75 |
+
In the second case, the Alpha Frog can leap over the Beta Frog to reach the rightmost lilypad.
|
76 |
+
</p>
|
77 |
+
|
78 |
+
<p>
|
79 |
+
In the third case, neither the Alpha Frog nor either of the Beta Frogs can leap anywhere.
|
80 |
+
</p>
|
81 |
+
|
82 |
+
<p>
|
83 |
+
In the fourth case, if the first Beta Frog leaps one lilypad to the left, and then the second Beta Frog also leaps one lilypad to the left,
|
84 |
+
then the Alpha Frog can leap over both of them to reach the rightmost lilypad.
|
85 |
+
</p>
|
2019/quals/leapfrog2.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/quals/leapfrog2.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**This problem statement differs from that of Leapfrog Ch. 1 in only one spot, highlighted in bold below.**
|
2 |
+
|
3 |
+
A colony of frogs peacefully resides in a pond. The colony is led by a single
|
4 |
+
Alpha Frog, and also includes 0 or more Beta Frogs. In order to be a good
|
5 |
+
leader, the Alpha Frog diligently studies the high art of fractions every day.
|
6 |
+
|
7 |
+
There are **N** lilypads in a row on the pond's surface, numbered 1 to **N**
|
8 |
+
from left to right, each of which is large enough to fit at most one frog at a
|
9 |
+
time. Today, the Alpha Frog finds itself on the leftmost lilypad, and must
|
10 |
+
leap its way to the rightmost lilypad before it can begin its fractions
|
11 |
+
practice.
|
12 |
+
|
13 |
+
The initial state of each lilypad _i_ is described by a character **Li**,
|
14 |
+
which is one of the following:
|
15 |
+
|
16 |
+
* "`A`": Occupied by the Alpha Frog (it's guaranteed that **Li** = "`A`" if and only if _i_ = 1)
|
17 |
+
* "`B`": Occupied by a Beta Frog
|
18 |
+
* "`.`": Unoccupied
|
19 |
+
|
20 |
+
At each point in time, one of the following things may occur:
|
21 |
+
|
22 |
+
1) The Alpha Frog may leap over one or more lilypads immediately to either its
|
23 |
+
left or right which are occupied by Beta Frogs, and land on the next
|
24 |
+
unoccupied lilypad past them, if such a lilypad exists. The Alpha Frog must
|
25 |
+
leap over at least one Beta Frog; it may not just leap to an adjacent lilypad.
|
26 |
+
**Note that, unlike in Leapfrog Ch. 1, the Alpha Frog may leap to either its
|
27 |
+
left or right.**
|
28 |
+
|
29 |
+
2) Any Beta Frog may leap to the next lilypad to either its left or right, if
|
30 |
+
such a lilypad exists and is unoccupied.
|
31 |
+
|
32 |
+
Assuming the frogs all cooperate, determine whether or not it's possible for
|
33 |
+
the Alpha Frog to ever reach the rightmost lilypad and begin its daily
|
34 |
+
fractions practice.
|
35 |
+
|
36 |
+
### Input
|
37 |
+
|
38 |
+
Input begins with an integer **T**, the number of days on which the Alpha Frog
|
39 |
+
studies fractions. For each day, there is a single line containing the
|
40 |
+
length-**N** string **L**.
|
41 |
+
|
42 |
+
### Output
|
43 |
+
|
44 |
+
For the _i_th day, print a line containing "Case #_i_: " followed by a single
|
45 |
+
character: "`Y`" if the Alpha Frog can reach the rightmost lilypad, or "`N`"
|
46 |
+
otherwise.
|
47 |
+
|
48 |
+
### Constraints
|
49 |
+
|
50 |
+
1 ≤ **T** ≤ 500
|
51 |
+
2 ≤ **N** ≤ 5,000
|
52 |
+
|
53 |
+
### Explanation of Sample
|
54 |
+
|
55 |
+
In the first case, the Alpha Frog can't leap anywhere.
|
56 |
+
|
57 |
+
In the second case, the Alpha Frog can leap over the Beta Frog to reach the
|
58 |
+
rightmost lilypad.
|
59 |
+
|
60 |
+
In the third case, neither the Alpha Frog nor either of the Beta Frogs can
|
61 |
+
leap anywhere.
|
62 |
+
|
63 |
+
In the fourth case, if the first Beta Frog leaps one lilypad to the left, and
|
64 |
+
then the second Beta Frog also leaps one lilypad to the left, then the Alpha
|
65 |
+
Frog can leap over both of them to reach the rightmost lilypad.
|
66 |
+
|
2019/quals/leapfrog2.out
ADDED
@@ -0,0 +1,1060 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: N
|
2 |
+
Case #2: Y
|
3 |
+
Case #3: N
|
4 |
+
Case #4: Y
|
5 |
+
Case #5: Y
|
6 |
+
Case #6: Y
|
7 |
+
Case #7: N
|
8 |
+
Case #8: Y
|
9 |
+
Case #9: N
|
10 |
+
Case #10: N
|
11 |
+
Case #11: Y
|
12 |
+
Case #12: Y
|
13 |
+
Case #13: Y
|
14 |
+
Case #14: Y
|
15 |
+
Case #15: N
|
16 |
+
Case #16: Y
|
17 |
+
Case #17: N
|
18 |
+
Case #18: N
|
19 |
+
Case #19: N
|
20 |
+
Case #20: N
|
21 |
+
Case #21: N
|
22 |
+
Case #22: N
|
23 |
+
Case #23: N
|
24 |
+
Case #24: Y
|
25 |
+
Case #25: Y
|
26 |
+
Case #26: Y
|
27 |
+
Case #27: Y
|
28 |
+
Case #28: Y
|
29 |
+
Case #29: Y
|
30 |
+
Case #30: Y
|
31 |
+
Case #31: Y
|
32 |
+
Case #32: Y
|
33 |
+
Case #33: Y
|
34 |
+
Case #34: Y
|
35 |
+
Case #35: Y
|
36 |
+
Case #36: Y
|
37 |
+
Case #37: Y
|
38 |
+
Case #38: Y
|
39 |
+
Case #39: Y
|
40 |
+
Case #40: Y
|
41 |
+
Case #41: Y
|
42 |
+
Case #42: Y
|
43 |
+
Case #43: Y
|
44 |
+
Case #44: Y
|
45 |
+
Case #45: Y
|
46 |
+
Case #46: Y
|
47 |
+
Case #47: Y
|
48 |
+
Case #48: Y
|
49 |
+
Case #49: Y
|
50 |
+
Case #50: Y
|
51 |
+
Case #51: N
|
52 |
+
Case #52: N
|
53 |
+
Case #53: N
|
54 |
+
Case #54: Y
|
55 |
+
Case #55: N
|
56 |
+
Case #56: Y
|
57 |
+
Case #57: Y
|
58 |
+
Case #58: Y
|
59 |
+
Case #59: N
|
60 |
+
Case #60: Y
|
61 |
+
Case #61: Y
|
62 |
+
Case #62: Y
|
63 |
+
Case #63: Y
|
64 |
+
Case #64: Y
|
65 |
+
Case #65: Y
|
66 |
+
Case #66: Y
|
67 |
+
Case #67: N
|
68 |
+
Case #68: Y
|
69 |
+
Case #69: Y
|
70 |
+
Case #70: Y
|
71 |
+
Case #71: Y
|
72 |
+
Case #72: Y
|
73 |
+
Case #73: Y
|
74 |
+
Case #74: Y
|
75 |
+
Case #75: Y
|
76 |
+
Case #76: Y
|
77 |
+
Case #77: Y
|
78 |
+
Case #78: Y
|
79 |
+
Case #79: Y
|
80 |
+
Case #80: Y
|
81 |
+
Case #81: Y
|
82 |
+
Case #82: Y
|
83 |
+
Case #83: N
|
84 |
+
Case #84: Y
|
85 |
+
Case #85: Y
|
86 |
+
Case #86: Y
|
87 |
+
Case #87: Y
|
88 |
+
Case #88: Y
|
89 |
+
Case #89: Y
|
90 |
+
Case #90: Y
|
91 |
+
Case #91: Y
|
92 |
+
Case #92: Y
|
93 |
+
Case #93: Y
|
94 |
+
Case #94: Y
|
95 |
+
Case #95: Y
|
96 |
+
Case #96: Y
|
97 |
+
Case #97: Y
|
98 |
+
Case #98: Y
|
99 |
+
Case #99: Y
|
100 |
+
Case #100: Y
|
101 |
+
Case #101: Y
|
102 |
+
Case #102: Y
|
103 |
+
Case #103: Y
|
104 |
+
Case #104: Y
|
105 |
+
Case #105: Y
|
106 |
+
Case #106: Y
|
107 |
+
Case #107: Y
|
108 |
+
Case #108: Y
|
109 |
+
Case #109: Y
|
110 |
+
Case #110: Y
|
111 |
+
Case #111: Y
|
112 |
+
Case #112: Y
|
113 |
+
Case #113: Y
|
114 |
+
Case #114: Y
|
115 |
+
Case #115: N
|
116 |
+
Case #116: Y
|
117 |
+
Case #117: Y
|
118 |
+
Case #118: Y
|
119 |
+
Case #119: Y
|
120 |
+
Case #120: Y
|
121 |
+
Case #121: Y
|
122 |
+
Case #122: Y
|
123 |
+
Case #123: Y
|
124 |
+
Case #124: Y
|
125 |
+
Case #125: Y
|
126 |
+
Case #126: Y
|
127 |
+
Case #127: Y
|
128 |
+
Case #128: Y
|
129 |
+
Case #129: Y
|
130 |
+
Case #130: Y
|
131 |
+
Case #131: Y
|
132 |
+
Case #132: Y
|
133 |
+
Case #133: Y
|
134 |
+
Case #134: Y
|
135 |
+
Case #135: Y
|
136 |
+
Case #136: Y
|
137 |
+
Case #137: Y
|
138 |
+
Case #138: Y
|
139 |
+
Case #139: Y
|
140 |
+
Case #140: Y
|
141 |
+
Case #141: Y
|
142 |
+
Case #142: Y
|
143 |
+
Case #143: Y
|
144 |
+
Case #144: Y
|
145 |
+
Case #145: Y
|
146 |
+
Case #146: Y
|
147 |
+
Case #147: Y
|
148 |
+
Case #148: Y
|
149 |
+
Case #149: Y
|
150 |
+
Case #150: Y
|
151 |
+
Case #151: Y
|
152 |
+
Case #152: Y
|
153 |
+
Case #153: Y
|
154 |
+
Case #154: Y
|
155 |
+
Case #155: Y
|
156 |
+
Case #156: Y
|
157 |
+
Case #157: Y
|
158 |
+
Case #158: Y
|
159 |
+
Case #159: Y
|
160 |
+
Case #160: Y
|
161 |
+
Case #161: Y
|
162 |
+
Case #162: Y
|
163 |
+
Case #163: Y
|
164 |
+
Case #164: Y
|
165 |
+
Case #165: Y
|
166 |
+
Case #166: Y
|
167 |
+
Case #167: Y
|
168 |
+
Case #168: Y
|
169 |
+
Case #169: Y
|
170 |
+
Case #170: Y
|
171 |
+
Case #171: Y
|
172 |
+
Case #172: Y
|
173 |
+
Case #173: Y
|
174 |
+
Case #174: Y
|
175 |
+
Case #175: Y
|
176 |
+
Case #176: Y
|
177 |
+
Case #177: Y
|
178 |
+
Case #178: Y
|
179 |
+
Case #179: N
|
180 |
+
Case #180: Y
|
181 |
+
Case #181: Y
|
182 |
+
Case #182: Y
|
183 |
+
Case #183: Y
|
184 |
+
Case #184: Y
|
185 |
+
Case #185: Y
|
186 |
+
Case #186: Y
|
187 |
+
Case #187: Y
|
188 |
+
Case #188: Y
|
189 |
+
Case #189: Y
|
190 |
+
Case #190: Y
|
191 |
+
Case #191: Y
|
192 |
+
Case #192: Y
|
193 |
+
Case #193: Y
|
194 |
+
Case #194: Y
|
195 |
+
Case #195: Y
|
196 |
+
Case #196: Y
|
197 |
+
Case #197: Y
|
198 |
+
Case #198: Y
|
199 |
+
Case #199: Y
|
200 |
+
Case #200: Y
|
201 |
+
Case #201: Y
|
202 |
+
Case #202: Y
|
203 |
+
Case #203: Y
|
204 |
+
Case #204: Y
|
205 |
+
Case #205: Y
|
206 |
+
Case #206: Y
|
207 |
+
Case #207: Y
|
208 |
+
Case #208: Y
|
209 |
+
Case #209: Y
|
210 |
+
Case #210: Y
|
211 |
+
Case #211: Y
|
212 |
+
Case #212: Y
|
213 |
+
Case #213: Y
|
214 |
+
Case #214: Y
|
215 |
+
Case #215: Y
|
216 |
+
Case #216: Y
|
217 |
+
Case #217: Y
|
218 |
+
Case #218: Y
|
219 |
+
Case #219: Y
|
220 |
+
Case #220: Y
|
221 |
+
Case #221: Y
|
222 |
+
Case #222: Y
|
223 |
+
Case #223: Y
|
224 |
+
Case #224: Y
|
225 |
+
Case #225: Y
|
226 |
+
Case #226: Y
|
227 |
+
Case #227: Y
|
228 |
+
Case #228: Y
|
229 |
+
Case #229: Y
|
230 |
+
Case #230: Y
|
231 |
+
Case #231: Y
|
232 |
+
Case #232: Y
|
233 |
+
Case #233: Y
|
234 |
+
Case #234: Y
|
235 |
+
Case #235: Y
|
236 |
+
Case #236: Y
|
237 |
+
Case #237: Y
|
238 |
+
Case #238: Y
|
239 |
+
Case #239: Y
|
240 |
+
Case #240: Y
|
241 |
+
Case #241: Y
|
242 |
+
Case #242: Y
|
243 |
+
Case #243: Y
|
244 |
+
Case #244: Y
|
245 |
+
Case #245: Y
|
246 |
+
Case #246: Y
|
247 |
+
Case #247: Y
|
248 |
+
Case #248: Y
|
249 |
+
Case #249: Y
|
250 |
+
Case #250: Y
|
251 |
+
Case #251: Y
|
252 |
+
Case #252: Y
|
253 |
+
Case #253: Y
|
254 |
+
Case #254: Y
|
255 |
+
Case #255: Y
|
256 |
+
Case #256: Y
|
257 |
+
Case #257: Y
|
258 |
+
Case #258: Y
|
259 |
+
Case #259: Y
|
260 |
+
Case #260: Y
|
261 |
+
Case #261: Y
|
262 |
+
Case #262: Y
|
263 |
+
Case #263: Y
|
264 |
+
Case #264: Y
|
265 |
+
Case #265: Y
|
266 |
+
Case #266: Y
|
267 |
+
Case #267: Y
|
268 |
+
Case #268: Y
|
269 |
+
Case #269: Y
|
270 |
+
Case #270: Y
|
271 |
+
Case #271: Y
|
272 |
+
Case #272: Y
|
273 |
+
Case #273: Y
|
274 |
+
Case #274: Y
|
275 |
+
Case #275: Y
|
276 |
+
Case #276: Y
|
277 |
+
Case #277: Y
|
278 |
+
Case #278: Y
|
279 |
+
Case #279: Y
|
280 |
+
Case #280: Y
|
281 |
+
Case #281: Y
|
282 |
+
Case #282: Y
|
283 |
+
Case #283: Y
|
284 |
+
Case #284: Y
|
285 |
+
Case #285: Y
|
286 |
+
Case #286: Y
|
287 |
+
Case #287: Y
|
288 |
+
Case #288: Y
|
289 |
+
Case #289: Y
|
290 |
+
Case #290: Y
|
291 |
+
Case #291: Y
|
292 |
+
Case #292: Y
|
293 |
+
Case #293: Y
|
294 |
+
Case #294: Y
|
295 |
+
Case #295: Y
|
296 |
+
Case #296: Y
|
297 |
+
Case #297: Y
|
298 |
+
Case #298: Y
|
299 |
+
Case #299: Y
|
300 |
+
Case #300: Y
|
301 |
+
Case #301: Y
|
302 |
+
Case #302: Y
|
303 |
+
Case #303: Y
|
304 |
+
Case #304: Y
|
305 |
+
Case #305: Y
|
306 |
+
Case #306: N
|
307 |
+
Case #307: Y
|
308 |
+
Case #308: Y
|
309 |
+
Case #309: Y
|
310 |
+
Case #310: Y
|
311 |
+
Case #311: Y
|
312 |
+
Case #312: Y
|
313 |
+
Case #313: Y
|
314 |
+
Case #314: Y
|
315 |
+
Case #315: Y
|
316 |
+
Case #316: Y
|
317 |
+
Case #317: Y
|
318 |
+
Case #318: Y
|
319 |
+
Case #319: Y
|
320 |
+
Case #320: Y
|
321 |
+
Case #321: Y
|
322 |
+
Case #322: Y
|
323 |
+
Case #323: Y
|
324 |
+
Case #324: Y
|
325 |
+
Case #325: Y
|
326 |
+
Case #326: Y
|
327 |
+
Case #327: Y
|
328 |
+
Case #328: Y
|
329 |
+
Case #329: Y
|
330 |
+
Case #330: Y
|
331 |
+
Case #331: Y
|
332 |
+
Case #332: Y
|
333 |
+
Case #333: Y
|
334 |
+
Case #334: Y
|
335 |
+
Case #335: Y
|
336 |
+
Case #336: Y
|
337 |
+
Case #337: Y
|
338 |
+
Case #338: Y
|
339 |
+
Case #339: Y
|
340 |
+
Case #340: Y
|
341 |
+
Case #341: Y
|
342 |
+
Case #342: Y
|
343 |
+
Case #343: Y
|
344 |
+
Case #344: Y
|
345 |
+
Case #345: Y
|
346 |
+
Case #346: Y
|
347 |
+
Case #347: Y
|
348 |
+
Case #348: Y
|
349 |
+
Case #349: Y
|
350 |
+
Case #350: Y
|
351 |
+
Case #351: Y
|
352 |
+
Case #352: Y
|
353 |
+
Case #353: Y
|
354 |
+
Case #354: Y
|
355 |
+
Case #355: Y
|
356 |
+
Case #356: Y
|
357 |
+
Case #357: Y
|
358 |
+
Case #358: Y
|
359 |
+
Case #359: Y
|
360 |
+
Case #360: Y
|
361 |
+
Case #361: Y
|
362 |
+
Case #362: Y
|
363 |
+
Case #363: Y
|
364 |
+
Case #364: Y
|
365 |
+
Case #365: Y
|
366 |
+
Case #366: Y
|
367 |
+
Case #367: Y
|
368 |
+
Case #368: Y
|
369 |
+
Case #369: Y
|
370 |
+
Case #370: Y
|
371 |
+
Case #371: Y
|
372 |
+
Case #372: Y
|
373 |
+
Case #373: Y
|
374 |
+
Case #374: Y
|
375 |
+
Case #375: Y
|
376 |
+
Case #376: Y
|
377 |
+
Case #377: Y
|
378 |
+
Case #378: Y
|
379 |
+
Case #379: Y
|
380 |
+
Case #380: Y
|
381 |
+
Case #381: Y
|
382 |
+
Case #382: Y
|
383 |
+
Case #383: Y
|
384 |
+
Case #384: Y
|
385 |
+
Case #385: Y
|
386 |
+
Case #386: Y
|
387 |
+
Case #387: Y
|
388 |
+
Case #388: Y
|
389 |
+
Case #389: Y
|
390 |
+
Case #390: Y
|
391 |
+
Case #391: Y
|
392 |
+
Case #392: Y
|
393 |
+
Case #393: Y
|
394 |
+
Case #394: Y
|
395 |
+
Case #395: Y
|
396 |
+
Case #396: Y
|
397 |
+
Case #397: Y
|
398 |
+
Case #398: Y
|
399 |
+
Case #399: Y
|
400 |
+
Case #400: Y
|
401 |
+
Case #401: Y
|
402 |
+
Case #402: Y
|
403 |
+
Case #403: Y
|
404 |
+
Case #404: Y
|
405 |
+
Case #405: Y
|
406 |
+
Case #406: Y
|
407 |
+
Case #407: Y
|
408 |
+
Case #408: Y
|
409 |
+
Case #409: Y
|
410 |
+
Case #410: Y
|
411 |
+
Case #411: Y
|
412 |
+
Case #412: Y
|
413 |
+
Case #413: Y
|
414 |
+
Case #414: Y
|
415 |
+
Case #415: Y
|
416 |
+
Case #416: Y
|
417 |
+
Case #417: Y
|
418 |
+
Case #418: Y
|
419 |
+
Case #419: Y
|
420 |
+
Case #420: Y
|
421 |
+
Case #421: Y
|
422 |
+
Case #422: Y
|
423 |
+
Case #423: Y
|
424 |
+
Case #424: Y
|
425 |
+
Case #425: Y
|
426 |
+
Case #426: Y
|
427 |
+
Case #427: N
|
428 |
+
Case #428: Y
|
429 |
+
Case #429: Y
|
430 |
+
Case #430: Y
|
431 |
+
Case #431: Y
|
432 |
+
Case #432: Y
|
433 |
+
Case #433: Y
|
434 |
+
Case #434: Y
|
435 |
+
Case #435: Y
|
436 |
+
Case #436: Y
|
437 |
+
Case #437: Y
|
438 |
+
Case #438: Y
|
439 |
+
Case #439: Y
|
440 |
+
Case #440: Y
|
441 |
+
Case #441: Y
|
442 |
+
Case #442: Y
|
443 |
+
Case #443: Y
|
444 |
+
Case #444: Y
|
445 |
+
Case #445: Y
|
446 |
+
Case #446: Y
|
447 |
+
Case #447: Y
|
448 |
+
Case #448: Y
|
449 |
+
Case #449: Y
|
450 |
+
Case #450: Y
|
451 |
+
Case #451: Y
|
452 |
+
Case #452: Y
|
453 |
+
Case #453: Y
|
454 |
+
Case #454: Y
|
455 |
+
Case #455: Y
|
456 |
+
Case #456: Y
|
457 |
+
Case #457: Y
|
458 |
+
Case #458: Y
|
459 |
+
Case #459: Y
|
460 |
+
Case #460: Y
|
461 |
+
Case #461: Y
|
462 |
+
Case #462: Y
|
463 |
+
Case #463: Y
|
464 |
+
Case #464: Y
|
465 |
+
Case #465: Y
|
466 |
+
Case #466: Y
|
467 |
+
Case #467: Y
|
468 |
+
Case #468: Y
|
469 |
+
Case #469: Y
|
470 |
+
Case #470: Y
|
471 |
+
Case #471: Y
|
472 |
+
Case #472: Y
|
473 |
+
Case #473: Y
|
474 |
+
Case #474: Y
|
475 |
+
Case #475: Y
|
476 |
+
Case #476: Y
|
477 |
+
Case #477: Y
|
478 |
+
Case #478: Y
|
479 |
+
Case #479: Y
|
480 |
+
Case #480: Y
|
481 |
+
Case #481: Y
|
482 |
+
Case #482: Y
|
483 |
+
Case #483: Y
|
484 |
+
Case #484: Y
|
485 |
+
Case #485: Y
|
486 |
+
Case #486: N
|
487 |
+
Case #487: Y
|
488 |
+
Case #488: Y
|
489 |
+
Case #489: Y
|
490 |
+
Case #490: Y
|
491 |
+
Case #491: Y
|
492 |
+
Case #492: Y
|
493 |
+
Case #493: Y
|
494 |
+
Case #494: Y
|
495 |
+
Case #495: Y
|
496 |
+
Case #496: Y
|
497 |
+
Case #497: Y
|
498 |
+
Case #498: Y
|
499 |
+
Case #499: Y
|
500 |
+
Case #500: Y
|
501 |
+
Case #501: Y
|
502 |
+
Case #502: Y
|
503 |
+
Case #503: N
|
504 |
+
Case #504: Y
|
505 |
+
Case #505: Y
|
506 |
+
Case #506: Y
|
507 |
+
Case #507: Y
|
508 |
+
Case #508: Y
|
509 |
+
Case #509: Y
|
510 |
+
Case #510: Y
|
511 |
+
Case #511: N
|
512 |
+
Case #512: Y
|
513 |
+
Case #513: Y
|
514 |
+
Case #514: Y
|
515 |
+
Case #515: Y
|
516 |
+
Case #516: Y
|
517 |
+
Case #517: Y
|
518 |
+
Case #518: Y
|
519 |
+
Case #519: Y
|
520 |
+
Case #520: Y
|
521 |
+
Case #521: Y
|
522 |
+
Case #522: Y
|
523 |
+
Case #523: Y
|
524 |
+
Case #524: Y
|
525 |
+
Case #525: Y
|
526 |
+
Case #526: Y
|
527 |
+
Case #527: Y
|
528 |
+
Case #528: Y
|
529 |
+
Case #529: Y
|
530 |
+
Case #530: Y
|
531 |
+
Case #531: Y
|
532 |
+
Case #532: Y
|
533 |
+
Case #533: Y
|
534 |
+
Case #534: Y
|
535 |
+
Case #535: Y
|
536 |
+
Case #536: Y
|
537 |
+
Case #537: Y
|
538 |
+
Case #538: Y
|
539 |
+
Case #539: Y
|
540 |
+
Case #540: Y
|
541 |
+
Case #541: Y
|
542 |
+
Case #542: Y
|
543 |
+
Case #543: Y
|
544 |
+
Case #544: Y
|
545 |
+
Case #545: Y
|
546 |
+
Case #546: Y
|
547 |
+
Case #547: Y
|
548 |
+
Case #548: Y
|
549 |
+
Case #549: Y
|
550 |
+
Case #550: Y
|
551 |
+
Case #551: Y
|
552 |
+
Case #552: Y
|
553 |
+
Case #553: Y
|
554 |
+
Case #554: Y
|
555 |
+
Case #555: Y
|
556 |
+
Case #556: Y
|
557 |
+
Case #557: Y
|
558 |
+
Case #558: Y
|
559 |
+
Case #559: Y
|
560 |
+
Case #560: Y
|
561 |
+
Case #561: Y
|
562 |
+
Case #562: Y
|
563 |
+
Case #563: N
|
564 |
+
Case #564: Y
|
565 |
+
Case #565: Y
|
566 |
+
Case #566: Y
|
567 |
+
Case #567: Y
|
568 |
+
Case #568: Y
|
569 |
+
Case #569: Y
|
570 |
+
Case #570: Y
|
571 |
+
Case #571: Y
|
572 |
+
Case #572: Y
|
573 |
+
Case #573: Y
|
574 |
+
Case #574: Y
|
575 |
+
Case #575: Y
|
576 |
+
Case #576: Y
|
577 |
+
Case #577: Y
|
578 |
+
Case #578: Y
|
579 |
+
Case #579: Y
|
580 |
+
Case #580: Y
|
581 |
+
Case #581: Y
|
582 |
+
Case #582: Y
|
583 |
+
Case #583: Y
|
584 |
+
Case #584: Y
|
585 |
+
Case #585: Y
|
586 |
+
Case #586: Y
|
587 |
+
Case #587: Y
|
588 |
+
Case #588: Y
|
589 |
+
Case #589: N
|
590 |
+
Case #590: Y
|
591 |
+
Case #591: Y
|
592 |
+
Case #592: N
|
593 |
+
Case #593: Y
|
594 |
+
Case #594: Y
|
595 |
+
Case #595: Y
|
596 |
+
Case #596: Y
|
597 |
+
Case #597: Y
|
598 |
+
Case #598: Y
|
599 |
+
Case #599: Y
|
600 |
+
Case #600: Y
|
601 |
+
Case #601: Y
|
602 |
+
Case #602: Y
|
603 |
+
Case #603: Y
|
604 |
+
Case #604: Y
|
605 |
+
Case #605: Y
|
606 |
+
Case #606: Y
|
607 |
+
Case #607: Y
|
608 |
+
Case #608: Y
|
609 |
+
Case #609: Y
|
610 |
+
Case #610: Y
|
611 |
+
Case #611: Y
|
612 |
+
Case #612: N
|
613 |
+
Case #613: Y
|
614 |
+
Case #614: Y
|
615 |
+
Case #615: Y
|
616 |
+
Case #616: Y
|
617 |
+
Case #617: Y
|
618 |
+
Case #618: Y
|
619 |
+
Case #619: Y
|
620 |
+
Case #620: Y
|
621 |
+
Case #621: Y
|
622 |
+
Case #622: Y
|
623 |
+
Case #623: Y
|
624 |
+
Case #624: Y
|
625 |
+
Case #625: Y
|
626 |
+
Case #626: Y
|
627 |
+
Case #627: Y
|
628 |
+
Case #628: Y
|
629 |
+
Case #629: Y
|
630 |
+
Case #630: Y
|
631 |
+
Case #631: Y
|
632 |
+
Case #632: Y
|
633 |
+
Case #633: Y
|
634 |
+
Case #634: Y
|
635 |
+
Case #635: Y
|
636 |
+
Case #636: Y
|
637 |
+
Case #637: Y
|
638 |
+
Case #638: Y
|
639 |
+
Case #639: Y
|
640 |
+
Case #640: Y
|
641 |
+
Case #641: Y
|
642 |
+
Case #642: Y
|
643 |
+
Case #643: Y
|
644 |
+
Case #644: Y
|
645 |
+
Case #645: Y
|
646 |
+
Case #646: Y
|
647 |
+
Case #647: Y
|
648 |
+
Case #648: Y
|
649 |
+
Case #649: Y
|
650 |
+
Case #650: Y
|
651 |
+
Case #651: Y
|
652 |
+
Case #652: Y
|
653 |
+
Case #653: Y
|
654 |
+
Case #654: Y
|
655 |
+
Case #655: Y
|
656 |
+
Case #656: Y
|
657 |
+
Case #657: Y
|
658 |
+
Case #658: Y
|
659 |
+
Case #659: Y
|
660 |
+
Case #660: Y
|
661 |
+
Case #661: Y
|
662 |
+
Case #662: Y
|
663 |
+
Case #663: Y
|
664 |
+
Case #664: Y
|
665 |
+
Case #665: Y
|
666 |
+
Case #666: Y
|
667 |
+
Case #667: Y
|
668 |
+
Case #668: Y
|
669 |
+
Case #669: Y
|
670 |
+
Case #670: Y
|
671 |
+
Case #671: Y
|
672 |
+
Case #672: Y
|
673 |
+
Case #673: Y
|
674 |
+
Case #674: Y
|
675 |
+
Case #675: Y
|
676 |
+
Case #676: Y
|
677 |
+
Case #677: Y
|
678 |
+
Case #678: N
|
679 |
+
Case #679: Y
|
680 |
+
Case #680: Y
|
681 |
+
Case #681: Y
|
682 |
+
Case #682: Y
|
683 |
+
Case #683: Y
|
684 |
+
Case #684: Y
|
685 |
+
Case #685: Y
|
686 |
+
Case #686: Y
|
687 |
+
Case #687: Y
|
688 |
+
Case #688: Y
|
689 |
+
Case #689: Y
|
690 |
+
Case #690: Y
|
691 |
+
Case #691: Y
|
692 |
+
Case #692: Y
|
693 |
+
Case #693: Y
|
694 |
+
Case #694: Y
|
695 |
+
Case #695: Y
|
696 |
+
Case #696: Y
|
697 |
+
Case #697: Y
|
698 |
+
Case #698: Y
|
699 |
+
Case #699: Y
|
700 |
+
Case #700: Y
|
701 |
+
Case #701: Y
|
702 |
+
Case #702: Y
|
703 |
+
Case #703: Y
|
704 |
+
Case #704: Y
|
705 |
+
Case #705: Y
|
706 |
+
Case #706: Y
|
707 |
+
Case #707: Y
|
708 |
+
Case #708: Y
|
709 |
+
Case #709: Y
|
710 |
+
Case #710: Y
|
711 |
+
Case #711: Y
|
712 |
+
Case #712: Y
|
713 |
+
Case #713: Y
|
714 |
+
Case #714: Y
|
715 |
+
Case #715: Y
|
716 |
+
Case #716: Y
|
717 |
+
Case #717: Y
|
718 |
+
Case #718: Y
|
719 |
+
Case #719: Y
|
720 |
+
Case #720: Y
|
721 |
+
Case #721: Y
|
722 |
+
Case #722: Y
|
723 |
+
Case #723: Y
|
724 |
+
Case #724: Y
|
725 |
+
Case #725: Y
|
726 |
+
Case #726: Y
|
727 |
+
Case #727: Y
|
728 |
+
Case #728: Y
|
729 |
+
Case #729: Y
|
730 |
+
Case #730: Y
|
731 |
+
Case #731: Y
|
732 |
+
Case #732: Y
|
733 |
+
Case #733: Y
|
734 |
+
Case #734: Y
|
735 |
+
Case #735: N
|
736 |
+
Case #736: Y
|
737 |
+
Case #737: Y
|
738 |
+
Case #738: Y
|
739 |
+
Case #739: Y
|
740 |
+
Case #740: Y
|
741 |
+
Case #741: Y
|
742 |
+
Case #742: Y
|
743 |
+
Case #743: Y
|
744 |
+
Case #744: Y
|
745 |
+
Case #745: Y
|
746 |
+
Case #746: Y
|
747 |
+
Case #747: Y
|
748 |
+
Case #748: Y
|
749 |
+
Case #749: Y
|
750 |
+
Case #750: Y
|
751 |
+
Case #751: Y
|
752 |
+
Case #752: Y
|
753 |
+
Case #753: Y
|
754 |
+
Case #754: Y
|
755 |
+
Case #755: Y
|
756 |
+
Case #756: Y
|
757 |
+
Case #757: Y
|
758 |
+
Case #758: Y
|
759 |
+
Case #759: Y
|
760 |
+
Case #760: Y
|
761 |
+
Case #761: Y
|
762 |
+
Case #762: Y
|
763 |
+
Case #763: Y
|
764 |
+
Case #764: N
|
765 |
+
Case #765: Y
|
766 |
+
Case #766: Y
|
767 |
+
Case #767: Y
|
768 |
+
Case #768: Y
|
769 |
+
Case #769: Y
|
770 |
+
Case #770: Y
|
771 |
+
Case #771: Y
|
772 |
+
Case #772: Y
|
773 |
+
Case #773: Y
|
774 |
+
Case #774: Y
|
775 |
+
Case #775: Y
|
776 |
+
Case #776: Y
|
777 |
+
Case #777: N
|
778 |
+
Case #778: Y
|
779 |
+
Case #779: Y
|
780 |
+
Case #780: Y
|
781 |
+
Case #781: Y
|
782 |
+
Case #782: Y
|
783 |
+
Case #783: Y
|
784 |
+
Case #784: Y
|
785 |
+
Case #785: Y
|
786 |
+
Case #786: Y
|
787 |
+
Case #787: Y
|
788 |
+
Case #788: Y
|
789 |
+
Case #789: Y
|
790 |
+
Case #790: Y
|
791 |
+
Case #791: Y
|
792 |
+
Case #792: Y
|
793 |
+
Case #793: Y
|
794 |
+
Case #794: Y
|
795 |
+
Case #795: Y
|
796 |
+
Case #796: Y
|
797 |
+
Case #797: Y
|
798 |
+
Case #798: Y
|
799 |
+
Case #799: Y
|
800 |
+
Case #800: Y
|
801 |
+
Case #801: Y
|
802 |
+
Case #802: Y
|
803 |
+
Case #803: Y
|
804 |
+
Case #804: Y
|
805 |
+
Case #805: Y
|
806 |
+
Case #806: Y
|
807 |
+
Case #807: Y
|
808 |
+
Case #808: Y
|
809 |
+
Case #809: Y
|
810 |
+
Case #810: Y
|
811 |
+
Case #811: Y
|
812 |
+
Case #812: Y
|
813 |
+
Case #813: Y
|
814 |
+
Case #814: Y
|
815 |
+
Case #815: Y
|
816 |
+
Case #816: Y
|
817 |
+
Case #817: Y
|
818 |
+
Case #818: Y
|
819 |
+
Case #819: Y
|
820 |
+
Case #820: Y
|
821 |
+
Case #821: Y
|
822 |
+
Case #822: Y
|
823 |
+
Case #823: Y
|
824 |
+
Case #824: Y
|
825 |
+
Case #825: Y
|
826 |
+
Case #826: Y
|
827 |
+
Case #827: Y
|
828 |
+
Case #828: Y
|
829 |
+
Case #829: Y
|
830 |
+
Case #830: Y
|
831 |
+
Case #831: Y
|
832 |
+
Case #832: Y
|
833 |
+
Case #833: Y
|
834 |
+
Case #834: Y
|
835 |
+
Case #835: Y
|
836 |
+
Case #836: Y
|
837 |
+
Case #837: Y
|
838 |
+
Case #838: Y
|
839 |
+
Case #839: Y
|
840 |
+
Case #840: Y
|
841 |
+
Case #841: Y
|
842 |
+
Case #842: Y
|
843 |
+
Case #843: Y
|
844 |
+
Case #844: Y
|
845 |
+
Case #845: Y
|
846 |
+
Case #846: Y
|
847 |
+
Case #847: Y
|
848 |
+
Case #848: Y
|
849 |
+
Case #849: Y
|
850 |
+
Case #850: Y
|
851 |
+
Case #851: Y
|
852 |
+
Case #852: N
|
853 |
+
Case #853: Y
|
854 |
+
Case #854: Y
|
855 |
+
Case #855: Y
|
856 |
+
Case #856: Y
|
857 |
+
Case #857: Y
|
858 |
+
Case #858: Y
|
859 |
+
Case #859: Y
|
860 |
+
Case #860: Y
|
861 |
+
Case #861: Y
|
862 |
+
Case #862: Y
|
863 |
+
Case #863: Y
|
864 |
+
Case #864: Y
|
865 |
+
Case #865: Y
|
866 |
+
Case #866: Y
|
867 |
+
Case #867: Y
|
868 |
+
Case #868: Y
|
869 |
+
Case #869: Y
|
870 |
+
Case #870: Y
|
871 |
+
Case #871: Y
|
872 |
+
Case #872: Y
|
873 |
+
Case #873: Y
|
874 |
+
Case #874: Y
|
875 |
+
Case #875: Y
|
876 |
+
Case #876: Y
|
877 |
+
Case #877: N
|
878 |
+
Case #878: Y
|
879 |
+
Case #879: Y
|
880 |
+
Case #880: Y
|
881 |
+
Case #881: Y
|
882 |
+
Case #882: Y
|
883 |
+
Case #883: Y
|
884 |
+
Case #884: Y
|
885 |
+
Case #885: Y
|
886 |
+
Case #886: Y
|
887 |
+
Case #887: Y
|
888 |
+
Case #888: Y
|
889 |
+
Case #889: Y
|
890 |
+
Case #890: N
|
891 |
+
Case #891: Y
|
892 |
+
Case #892: Y
|
893 |
+
Case #893: Y
|
894 |
+
Case #894: Y
|
895 |
+
Case #895: Y
|
896 |
+
Case #896: Y
|
897 |
+
Case #897: Y
|
898 |
+
Case #898: Y
|
899 |
+
Case #899: Y
|
900 |
+
Case #900: Y
|
901 |
+
Case #901: Y
|
902 |
+
Case #902: Y
|
903 |
+
Case #903: Y
|
904 |
+
Case #904: Y
|
905 |
+
Case #905: Y
|
906 |
+
Case #906: Y
|
907 |
+
Case #907: Y
|
908 |
+
Case #908: Y
|
909 |
+
Case #909: Y
|
910 |
+
Case #910: Y
|
911 |
+
Case #911: Y
|
912 |
+
Case #912: Y
|
913 |
+
Case #913: Y
|
914 |
+
Case #914: Y
|
915 |
+
Case #915: Y
|
916 |
+
Case #916: Y
|
917 |
+
Case #917: Y
|
918 |
+
Case #918: Y
|
919 |
+
Case #919: Y
|
920 |
+
Case #920: Y
|
921 |
+
Case #921: N
|
922 |
+
Case #922: Y
|
923 |
+
Case #923: Y
|
924 |
+
Case #924: Y
|
925 |
+
Case #925: N
|
926 |
+
Case #926: Y
|
927 |
+
Case #927: Y
|
928 |
+
Case #928: Y
|
929 |
+
Case #929: Y
|
930 |
+
Case #930: Y
|
931 |
+
Case #931: Y
|
932 |
+
Case #932: Y
|
933 |
+
Case #933: Y
|
934 |
+
Case #934: Y
|
935 |
+
Case #935: Y
|
936 |
+
Case #936: Y
|
937 |
+
Case #937: Y
|
938 |
+
Case #938: Y
|
939 |
+
Case #939: Y
|
940 |
+
Case #940: Y
|
941 |
+
Case #941: Y
|
942 |
+
Case #942: Y
|
943 |
+
Case #943: Y
|
944 |
+
Case #944: Y
|
945 |
+
Case #945: Y
|
946 |
+
Case #946: Y
|
947 |
+
Case #947: Y
|
948 |
+
Case #948: Y
|
949 |
+
Case #949: Y
|
950 |
+
Case #950: Y
|
951 |
+
Case #951: Y
|
952 |
+
Case #952: Y
|
953 |
+
Case #953: N
|
954 |
+
Case #954: Y
|
955 |
+
Case #955: Y
|
956 |
+
Case #956: Y
|
957 |
+
Case #957: Y
|
958 |
+
Case #958: Y
|
959 |
+
Case #959: Y
|
960 |
+
Case #960: Y
|
961 |
+
Case #961: Y
|
962 |
+
Case #962: Y
|
963 |
+
Case #963: Y
|
964 |
+
Case #964: Y
|
965 |
+
Case #965: Y
|
966 |
+
Case #966: Y
|
967 |
+
Case #967: Y
|
968 |
+
Case #968: Y
|
969 |
+
Case #969: Y
|
970 |
+
Case #970: Y
|
971 |
+
Case #971: Y
|
972 |
+
Case #972: Y
|
973 |
+
Case #973: Y
|
974 |
+
Case #974: Y
|
975 |
+
Case #975: Y
|
976 |
+
Case #976: Y
|
977 |
+
Case #977: N
|
978 |
+
Case #978: Y
|
979 |
+
Case #979: Y
|
980 |
+
Case #980: Y
|
981 |
+
Case #981: Y
|
982 |
+
Case #982: Y
|
983 |
+
Case #983: Y
|
984 |
+
Case #984: N
|
985 |
+
Case #985: Y
|
986 |
+
Case #986: Y
|
987 |
+
Case #987: Y
|
988 |
+
Case #988: Y
|
989 |
+
Case #989: Y
|
990 |
+
Case #990: Y
|
991 |
+
Case #991: Y
|
992 |
+
Case #992: Y
|
993 |
+
Case #993: Y
|
994 |
+
Case #994: Y
|
995 |
+
Case #995: Y
|
996 |
+
Case #996: Y
|
997 |
+
Case #997: Y
|
998 |
+
Case #998: Y
|
999 |
+
Case #999: Y
|
1000 |
+
Case #1000: Y
|
1001 |
+
Case #1001: Y
|
1002 |
+
Case #1002: Y
|
1003 |
+
Case #1003: Y
|
1004 |
+
Case #1004: Y
|
1005 |
+
Case #1005: Y
|
1006 |
+
Case #1006: Y
|
1007 |
+
Case #1007: Y
|
1008 |
+
Case #1008: Y
|
1009 |
+
Case #1009: Y
|
1010 |
+
Case #1010: Y
|
1011 |
+
Case #1011: Y
|
1012 |
+
Case #1012: Y
|
1013 |
+
Case #1013: Y
|
1014 |
+
Case #1014: Y
|
1015 |
+
Case #1015: Y
|
1016 |
+
Case #1016: Y
|
1017 |
+
Case #1017: Y
|
1018 |
+
Case #1018: Y
|
1019 |
+
Case #1019: Y
|
1020 |
+
Case #1020: Y
|
1021 |
+
Case #1021: Y
|
1022 |
+
Case #1022: Y
|
1023 |
+
Case #1023: Y
|
1024 |
+
Case #1024: Y
|
1025 |
+
Case #1025: Y
|
1026 |
+
Case #1026: Y
|
1027 |
+
Case #1027: Y
|
1028 |
+
Case #1028: Y
|
1029 |
+
Case #1029: Y
|
1030 |
+
Case #1030: Y
|
1031 |
+
Case #1031: Y
|
1032 |
+
Case #1032: Y
|
1033 |
+
Case #1033: Y
|
1034 |
+
Case #1034: Y
|
1035 |
+
Case #1035: Y
|
1036 |
+
Case #1036: Y
|
1037 |
+
Case #1037: Y
|
1038 |
+
Case #1038: Y
|
1039 |
+
Case #1039: Y
|
1040 |
+
Case #1040: Y
|
1041 |
+
Case #1041: Y
|
1042 |
+
Case #1042: Y
|
1043 |
+
Case #1043: Y
|
1044 |
+
Case #1044: Y
|
1045 |
+
Case #1045: Y
|
1046 |
+
Case #1046: Y
|
1047 |
+
Case #1047: Y
|
1048 |
+
Case #1048: Y
|
1049 |
+
Case #1049: Y
|
1050 |
+
Case #1050: Y
|
1051 |
+
Case #1051: Y
|
1052 |
+
Case #1052: Y
|
1053 |
+
Case #1053: N
|
1054 |
+
Case #1054: Y
|
1055 |
+
Case #1055: N
|
1056 |
+
Case #1056: Y
|
1057 |
+
Case #1057: Y
|
1058 |
+
Case #1058: Y
|
1059 |
+
Case #1059: Y
|
1060 |
+
Case #1060: Y
|
2019/quals/mr_x.cpp
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Mr. X
|
2 |
+
// Solution by Jacob Plachta
|
3 |
+
|
4 |
+
#define DEBUG 0
|
5 |
+
|
6 |
+
#include <algorithm>
|
7 |
+
#include <functional>
|
8 |
+
#include <numeric>
|
9 |
+
#include <iostream>
|
10 |
+
#include <iomanip>
|
11 |
+
#include <cstdio>
|
12 |
+
#include <cmath>
|
13 |
+
#include <complex>
|
14 |
+
#include <cstdlib>
|
15 |
+
#include <ctime>
|
16 |
+
#include <cstring>
|
17 |
+
#include <cassert>
|
18 |
+
#include <string>
|
19 |
+
#include <vector>
|
20 |
+
#include <list>
|
21 |
+
#include <map>
|
22 |
+
#include <set>
|
23 |
+
#include <deque>
|
24 |
+
#include <queue>
|
25 |
+
#include <stack>
|
26 |
+
#include <bitset>
|
27 |
+
#include <sstream>
|
28 |
+
using namespace std;
|
29 |
+
|
30 |
+
#define LL long long
|
31 |
+
#define LD long double
|
32 |
+
#define PR pair<int,int>
|
33 |
+
|
34 |
+
#define Fox(i,n) for (i=0; i<n; i++)
|
35 |
+
#define Fox1(i,n) for (i=1; i<=n; i++)
|
36 |
+
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
37 |
+
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
38 |
+
#define FoxR1(i,n) for (i=n; i>0; i--)
|
39 |
+
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
40 |
+
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
|
41 |
+
#define Min(a,b) a=min(a,b)
|
42 |
+
#define Max(a,b) a=max(a,b)
|
43 |
+
#define Sz(s) int((s).size())
|
44 |
+
#define All(s) (s).begin(),(s).end()
|
45 |
+
#define Fill(s,v) memset(s,v,sizeof(s))
|
46 |
+
#define pb push_back
|
47 |
+
#define mp make_pair
|
48 |
+
#define x first
|
49 |
+
#define y second
|
50 |
+
|
51 |
+
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
|
52 |
+
template<typename T> T Sqr(T x) { return(x*x); }
|
53 |
+
string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); }
|
54 |
+
|
55 |
+
const int INF = (int)1e9;
|
56 |
+
const LD EPS = 1e-12;
|
57 |
+
const LD PI = acos(-1.0);
|
58 |
+
|
59 |
+
#if DEBUG
|
60 |
+
#define GETCHAR getchar
|
61 |
+
#else
|
62 |
+
#define GETCHAR getchar_unlocked
|
63 |
+
#endif
|
64 |
+
|
65 |
+
bool Read(int &x)
|
66 |
+
{
|
67 |
+
char c,r=0,n=0;
|
68 |
+
x=0;
|
69 |
+
for(;;)
|
70 |
+
{
|
71 |
+
c=GETCHAR();
|
72 |
+
if ((c<0) && (!r))
|
73 |
+
return(0);
|
74 |
+
if ((c=='-') && (!r))
|
75 |
+
n=1;
|
76 |
+
else
|
77 |
+
if ((c>='0') && (c<='9'))
|
78 |
+
x=x*10+c-'0',r=1;
|
79 |
+
else
|
80 |
+
if (r)
|
81 |
+
break;
|
82 |
+
}
|
83 |
+
if (n)
|
84 |
+
x=-x;
|
85 |
+
return(1);
|
86 |
+
}
|
87 |
+
|
88 |
+
int Eval(int v1,char o,int v2)
|
89 |
+
{
|
90 |
+
if (o=='|')
|
91 |
+
return(v1|v2);
|
92 |
+
if (o=='&')
|
93 |
+
return(v1&v2);
|
94 |
+
return(v1^v2);
|
95 |
+
}
|
96 |
+
|
97 |
+
int main()
|
98 |
+
{
|
99 |
+
if (DEBUG)
|
100 |
+
freopen("in.txt","r",stdin);
|
101 |
+
// vars
|
102 |
+
int T,t;
|
103 |
+
int i,x,ss;
|
104 |
+
char S[303],st[303];
|
105 |
+
char res[2];
|
106 |
+
// testcase loop
|
107 |
+
Read(T);
|
108 |
+
Fox1(t,T)
|
109 |
+
{
|
110 |
+
// input
|
111 |
+
scanf("%s",&S);
|
112 |
+
// evaluate expression for x=0 and x=1
|
113 |
+
Fox(x,2)
|
114 |
+
{
|
115 |
+
ss=0;
|
116 |
+
Fox(i,strlen(S))
|
117 |
+
if (S[i]==')')
|
118 |
+
{
|
119 |
+
ss-=3;
|
120 |
+
st[ss-1]=Eval(st[ss]-'0',st[ss+1],st[ss+2]-'0')+'0';
|
121 |
+
}
|
122 |
+
else
|
123 |
+
if (S[i]=='x')
|
124 |
+
st[ss++]=x+'0';
|
125 |
+
else
|
126 |
+
if (S[i]=='X')
|
127 |
+
st[ss++]=(1-x)+'0';
|
128 |
+
else
|
129 |
+
st[ss++]=S[i];
|
130 |
+
res[x]=st[0];
|
131 |
+
}
|
132 |
+
// output
|
133 |
+
printf("Case #%d: %d\n",t,(res[0]==res[1])?0:1);
|
134 |
+
}
|
135 |
+
return(0);
|
136 |
+
}
|
2019/quals/mr_x.html
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>
|
2 |
+
"There's nothing more important than x!", laughs Mr. X as he explains a Boolean expression involving a variable x to you and your classmates.
|
3 |
+
He can't go 5 minutes teaching Boolean algebra without making at least one such "joke"...
|
4 |
+
</p>
|
5 |
+
|
6 |
+
<p>
|
7 |
+
In Mr. X's class, you've been learning about single-variable Boolean expressions, which are made up of the variable x (and its negation), Boolean constants (True/False), and binary Boolean operators. A valid expression is a string in one of the following two forms:
|
8 |
+
</p>
|
9 |
+
|
10 |
+
<p>
|
11 |
+
1) A single term, which is one of the following four characters:
|
12 |
+
<ul>
|
13 |
+
<li> "<code>x</code>": The variable x </li>
|
14 |
+
<li> "<code>X</code>": The negation of the variable x </li>
|
15 |
+
<li> "<code>0</code>": The constant False </li>
|
16 |
+
<li> "<code>1</code>": The constant True </li>
|
17 |
+
</ul>
|
18 |
+
</p>
|
19 |
+
|
20 |
+
<p>
|
21 |
+
2) A binary operator joining two valid expressions in the format "<code>([expression][operator][expression])</code>", with the operator being one of the following three characters:
|
22 |
+
<ul>
|
23 |
+
<li> "|": The OR operator (evaluating to True when at least one of its operands is True) </li>
|
24 |
+
<li> "&": The AND operator (evaluating to True when both of its operands are True) </li>
|
25 |
+
<li> "^": The XOR operator (evaluating to True when exactly one of its operands is True) </li>
|
26 |
+
</ul>
|
27 |
+
</p>
|
28 |
+
|
29 |
+
<p>
|
30 |
+
For example, the following expressions are <strong>valid</strong>:
|
31 |
+
<ul>
|
32 |
+
<li> "<code>1</code>" </li>
|
33 |
+
<li> "<code>(x^0)</code>" </li>
|
34 |
+
<li> "<code>((X&0)|x)</code>" </li>
|
35 |
+
</ul>
|
36 |
+
</p>
|
37 |
+
|
38 |
+
<p>
|
39 |
+
While the following expressions are <strong>invalid</strong>:
|
40 |
+
<ul>
|
41 |
+
<li> "<code>(1)</code>" </li>
|
42 |
+
<li> "<code>x^0</code>" </li>
|
43 |
+
<li> "<code>(X&0|x)</code>" </li>
|
44 |
+
</ul>
|
45 |
+
</p>
|
46 |
+
|
47 |
+
<p>
|
48 |
+
An upcoming test will feature a valid expression <strong>E</strong> in the above format, which must be evaluated for a certain value of x.
|
49 |
+
However, you've been getting tired of Mr. X and his lame jokes about the importance of x,
|
50 |
+
so you're planning on hacking into his test files and changing the expression so as to make x irrelevant!
|
51 |
+
In particular, you'd like to modify as few characters as possible in <strong>E</strong> such that it ends up still being a valid expression,
|
52 |
+
but such that its overall value doesn't depend on the value of the variable x. You may only change characters in-place into different characters — you may not insert or delete characters.
|
53 |
+
</p>
|
54 |
+
|
55 |
+
<p>
|
56 |
+
For example, the expression "<code>(X|(0&x))</code>" evaluates to True if x is False, and False if x is True.
|
57 |
+
If it were to be changed into "<code>((X&0)&1)</code>" (by modifying its 2nd, 3rd, 4th, 6th, 7th, and 8th characters), then it would evaluate to False regardless of x's value.
|
58 |
+
Though, it's also possible to make its value independent of x by modifying fewer than 6 of its characters.
|
59 |
+
</p>
|
60 |
+
|
61 |
+
<p>
|
62 |
+
Given an expression <strong>E</strong>, what's the minimum number of characters which must be modified? It's possible that no characters may need to be modified at all.
|
63 |
+
</p>
|
64 |
+
|
65 |
+
|
66 |
+
<h3>Input</h3>
|
67 |
+
|
68 |
+
<p>
|
69 |
+
Input begins with an integer <strong>T</strong>, the number of tests.
|
70 |
+
For each test, there is a line containing the expression <strong>E</strong>.
|
71 |
+
</p>
|
72 |
+
|
73 |
+
|
74 |
+
<h3>Output</h3>
|
75 |
+
|
76 |
+
<p>
|
77 |
+
For the <em>i</em>th test, print a line containing "Case #<em>i</em>: "
|
78 |
+
followed by a single integer, the minimum number of characters to modify in <strong>E</strong> such that the result is a valid expression whose value doesn't depend on the value of x.
|
79 |
+
</p>
|
80 |
+
|
81 |
+
|
82 |
+
<h3>Constraints</h3>
|
83 |
+
|
84 |
+
<p>
|
85 |
+
1 ≤ <strong>T</strong> ≤ 500 <br />
|
86 |
+
1 ≤ |<strong>E</strong>| ≤ 300 <br />
|
87 |
+
</p>
|
88 |
+
|
89 |
+
<h3>Explanation of Sample</h3>
|
90 |
+
|
91 |
+
<p>
|
92 |
+
The first expression can, for example, be changed to "<code>1</code>" (and would then always evaluate to True).
|
93 |
+
</p>
|
94 |
+
|
95 |
+
<p>
|
96 |
+
The second expression can be left unchanged (as it always evaluates to False).
|
97 |
+
</p>
|
98 |
+
|
99 |
+
<p>
|
100 |
+
The third expression can be left unchanged (as it always evaluates to True).
|
101 |
+
</p>
|
102 |
+
|
103 |
+
<p>
|
104 |
+
The fourth expression can, for example, be changed to "<code>((0^(X&X))|x)</code>" (and would then always evaluate to True).
|
105 |
+
</p>
|
2019/quals/mr_x.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2019/quals/mr_x.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"There's nothing more important than x!", laughs Mr. X as he explains a
|
2 |
+
Boolean expression involving a variable x to you and your classmates. He can't
|
3 |
+
go 5 minutes teaching Boolean algebra without making at least one such
|
4 |
+
"joke"...
|
5 |
+
|
6 |
+
In Mr. X's class, you've been learning about single-variable Boolean
|
7 |
+
expressions, which are made up of the variable x (and its negation), Boolean
|
8 |
+
constants (True/False), and binary Boolean operators. A valid expression is a
|
9 |
+
string in one of the following two forms:
|
10 |
+
|
11 |
+
1) A single term, which is one of the following four characters:
|
12 |
+
|
13 |
+
* "`x`": The variable x
|
14 |
+
* "`X`": The negation of the variable x
|
15 |
+
* "`0`": The constant False
|
16 |
+
* "`1`": The constant True
|
17 |
+
|
18 |
+
2) A binary operator joining two valid expressions in the format
|
19 |
+
"`([expression][operator][expression])`", with the operator being one of the
|
20 |
+
following three characters:
|
21 |
+
|
22 |
+
* "|": The OR operator (evaluating to True when at least one of its operands is True)
|
23 |
+
* "&": The AND operator (evaluating to True when both of its operands are True)
|
24 |
+
* "^": The XOR operator (evaluating to True when exactly one of its operands is True)
|
25 |
+
|
26 |
+
For example, the following expressions are **valid**:
|
27 |
+
|
28 |
+
* "`1`"
|
29 |
+
* "`(x^0)`"
|
30 |
+
* "`((X&0)|x)`"
|
31 |
+
|
32 |
+
While the following expressions are **invalid**:
|
33 |
+
|
34 |
+
* "`(1)`"
|
35 |
+
* "`x^0`"
|
36 |
+
* "`(X&0|x)`"
|
37 |
+
|
38 |
+
An upcoming test will feature a valid expression **E** in the above format,
|
39 |
+
which must be evaluated for a certain value of x. However, you've been getting
|
40 |
+
tired of Mr. X and his lame jokes about the importance of x, so you're
|
41 |
+
planning on hacking into his test files and changing the expression so as to
|
42 |
+
make x irrelevant! In particular, you'd like to modify as few characters as
|
43 |
+
possible in **E** such that it ends up still being a valid expression, but
|
44 |
+
such that its overall value doesn't depend on the value of the variable x. You
|
45 |
+
may only change characters in-place into different characters — you may not
|
46 |
+
insert or delete characters.
|
47 |
+
|
48 |
+
For example, the expression "`(X|(0&x))`" evaluates to True if x is False, and
|
49 |
+
False if x is True. If it were to be changed into "`((X&0)&1)`" (by modifying
|
50 |
+
its 2nd, 3rd, 4th, 6th, 7th, and 8th characters), then it would evaluate to
|
51 |
+
False regardless of x's value. Though, it's also possible to make its value
|
52 |
+
independent of x by modifying fewer than 6 of its characters.
|
53 |
+
|
54 |
+
Given an expression **E**, what's the minimum number of characters which must
|
55 |
+
be modified? It's possible that no characters may need to be modified at all.
|
56 |
+
|
57 |
+
### Input
|
58 |
+
|
59 |
+
Input begins with an integer **T**, the number of tests. For each test, there
|
60 |
+
is a line containing the expression **E**.
|
61 |
+
|
62 |
+
### Output
|
63 |
+
|
64 |
+
For the _i_th test, print a line containing "Case #_i_: " followed by a single
|
65 |
+
integer, the minimum number of characters to modify in **E** such that the
|
66 |
+
result is a valid expression whose value doesn't depend on the value of x.
|
67 |
+
|
68 |
+
### Constraints
|
69 |
+
|
70 |
+
1 ≤ **T** ≤ 500
|
71 |
+
1 ≤ |**E**| ≤ 300
|
72 |
+
|
73 |
+
### Explanation of Sample
|
74 |
+
|
75 |
+
The first expression can, for example, be changed to "`1`" (and would then
|
76 |
+
always evaluate to True).
|
77 |
+
|
78 |
+
The second expression can be left unchanged (as it always evaluates to False).
|
79 |
+
|
80 |
+
The third expression can be left unchanged (as it always evaluates to True).
|
81 |
+
|
82 |
+
The fourth expression can, for example, be changed to "`((0^(X&X))|x)`" (and
|
83 |
+
would then always evaluate to True).
|
84 |
+
|