Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
wjomlex commited on
Commit
7acee6b
1 Parent(s): 07f695f

2017 Problems

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. 2017/finals/fox_patrols.html +82 -0
  3. 2017/finals/holes.cpp +237 -0
  4. 2017/finals/holes.html +69 -0
  5. 2017/finals/holes.in +3 -0
  6. 2017/finals/holes.md +82 -0
  7. 2017/finals/holes.out +30 -0
  8. 2017/finals/moles.cpp +247 -0
  9. 2017/finals/moles.html +88 -0
  10. 2017/finals/moles.in +0 -0
  11. 2017/finals/moles.md +75 -0
  12. 2017/finals/moles.out +30 -0
  13. 2017/finals/patrols.cpp +123 -0
  14. 2017/finals/patrols.html +82 -0
  15. 2017/finals/patrols.in +31 -0
  16. 2017/finals/patrols.md +72 -0
  17. 2017/finals/patrols.out +30 -0
  18. 2017/finals/poles.cpp +202 -0
  19. 2017/finals/poles.html +55 -0
  20. 2017/finals/poles.in +3 -0
  21. 2017/finals/poles.md +73 -0
  22. 2017/finals/poles.out +30 -0
  23. 2017/finals/strolls.cpp +170 -0
  24. 2017/finals/strolls.html +73 -0
  25. 2017/finals/strolls.in +3 -0
  26. 2017/finals/strolls.md +70 -0
  27. 2017/finals/strolls.out +30 -0
  28. 2017/finals/tolls.cpp +210 -0
  29. 2017/finals/tolls.html +100 -0
  30. 2017/finals/tolls.in +3 -0
  31. 2017/finals/tolls.md +89 -0
  32. 2017/finals/tolls.out +30 -0
  33. 2017/quals/592385891651966.jpg +3 -0
  34. 2017/quals/fightingthezombie.html +86 -0
  35. 2017/quals/fightingthezombie.in +0 -0
  36. 2017/quals/fightingthezombie.java +107 -0
  37. 2017/quals/fightingthezombie.md +58 -0
  38. 2017/quals/fightingthezombie.out +2005 -0
  39. 2017/quals/lazyloading.html +78 -0
  40. 2017/quals/lazyloading.in +0 -0
  41. 2017/quals/lazyloading.java +46 -0
  42. 2017/quals/lazyloading.md +63 -0
  43. 2017/quals/lazyloading.out +1005 -0
  44. 2017/quals/progresspie.html +72 -0
  45. 2017/quals/progresspie.in +2006 -0
  46. 2017/quals/progresspie.java +46 -0
  47. 2017/quals/progresspie.md +56 -0
  48. 2017/quals/progresspie.out +2005 -0
  49. 2017/round1/268425761045248.jpg +3 -0
  50. 2017/round1/336634350719298.jpg +3 -0
.gitattributes CHANGED
@@ -68,3 +68,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
68
  2016/finals/maximinimax_flow.in filter=lfs diff=lfs merge=lfs -text
69
  2016/finals/rainbow_string.in filter=lfs diff=lfs merge=lfs -text
70
  2016/finals/rng.in filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
68
  2016/finals/maximinimax_flow.in filter=lfs diff=lfs merge=lfs -text
69
  2016/finals/rainbow_string.in filter=lfs diff=lfs merge=lfs -text
70
  2016/finals/rng.in filter=lfs diff=lfs merge=lfs -text
71
+ 2017/finals/holes.in filter=lfs diff=lfs merge=lfs -text
72
+ 2017/finals/poles.in filter=lfs diff=lfs merge=lfs -text
73
+ 2017/finals/strolls.in filter=lfs diff=lfs merge=lfs -text
74
+ 2017/finals/tolls.in filter=lfs diff=lfs merge=lfs -text
2017/finals/fox_patrols.html ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ A certain well-hidden valley is home to a thriving population of mysterious creatures &mdash; Foxen!
3
+ However, keeping the valley safe from outsiders (such as humans) is a necessity.
4
+ To that end, a group of Foxen have been sent out to patrol the border.
5
+ </p>
6
+
7
+ <p>
8
+ On their patrol route, the Foxen know that they're going to pass by an interesting, rectangular forest.
9
+ When viewed from above, the forest can be modeled as a grid of cells
10
+ with <strong>R</strong> rows and <strong>C</strong> columns. The rows are numbered from 1 to <strong>R</strong> from North to South, while the column are numbered from 1 to <strong>C</strong> from West to East.
11
+ One tree is growing in the center of each cell, and each tree's height (in metres) is some positive integer no larger than <strong>H</strong>.
12
+ </p>
13
+
14
+ <p>
15
+ If the Foxen were to look at the forest from the North side, all of the trees in any given column of cells would obscure each other and blend together.
16
+ In fact, the Foxen would really only be able make out the overall shape of the forest's "skyline" when viewed from that direction.
17
+ This Northern skyline can be expressed as a sequence of <strong>C</strong> positive integers,
18
+ with the <em>i</em>th one being the largest of the <strong>R</strong> tree heights in the <em>i</em>th column.
19
+ </p>
20
+
21
+ <p>
22
+ Similarly, if they were to look at the forest from the West side, they would only be able to make out the shape of its skyline from that direction.
23
+ This Western skyline is a sequence of <strong>R</strong> positive integers,
24
+ with the <em>i</em>th one being the largest of the <strong>C</strong> tree heights in the <em>i</em>th row.
25
+ </p>
26
+
27
+ <p>
28
+ On their way to the forest, the Foxen find themselves wondering about what it might look like.
29
+ They've done their research and are aware of its dimensions <strong>R</strong> and <strong>C</strong>,
30
+ as well as the maximum possible height of its trees <strong>H</strong>, but they don't know the actual heights of any of its trees.
31
+ They'd like to determine how many different, distinct-looking forests they might end up finding.
32
+ A forest is a set of heights for all <strong>R</strong>x<strong>C</strong> trees,
33
+ and two forests are considered to be distinct-looking from one another if their Northern skyline sequences differ and/or their Western skyline sequences differ.
34
+ </p>
35
+
36
+ <p>
37
+ Please help the Foxen determine the number of possible different, distinct-looking forests! As this quantity may be quite large, they're only interested in its value when taken modulo 1,000,000,007.
38
+ </p>
39
+
40
+
41
+ <h3>Input</h3>
42
+
43
+ <p>
44
+ Input begins with an integer <strong>T</strong>, the number of different forests visited by the Foxen.
45
+ For each forest, there is a single line containing the three space-separated integers
46
+ <strong>R</strong>, <strong>C</strong>, and <strong>H</strong>.
47
+ </p>
48
+
49
+ <h3>Output</h3>
50
+
51
+ <p>
52
+ For the <em>i</em>th forest, print a line containing "Case #<strong>i</strong>: "
53
+ followed by the number of possible different, distinct-looking forests modulo 1,000,000,007.
54
+ </p>
55
+
56
+ <h3>Constraints</h3>
57
+
58
+ <p>
59
+ 1 &le; <strong>T</strong> &le; 30 <br />
60
+ 1 &le; <strong>R</strong>, <strong>C</strong>, <strong>H</strong> &le; 500,000 <br />
61
+ </p>
62
+
63
+ <h3>Explanation of Sample</h3>
64
+
65
+ <p>
66
+ In the first case, there are 10 possible different, distinct-looking forests which consist of a 2x2 grid of trees, with each tree being either 1m or 2m tall.
67
+ For example, the following 2 forests look different (even though their Western skylines are equal, their Northern skylines differ), so both should be counted:
68
+ </p>
69
+
70
+ <pre>
71
+ 1 2 2 1
72
+ 1 1 1 1
73
+ </pre>
74
+
75
+ <p>
76
+ On the other hand, the following 2 forests look identical to one another from both the North and the West, so only one of them should be counted:
77
+ </p>
78
+
79
+ <pre>
80
+ 1 2 2 2
81
+ 2 1 2 1
82
+ </pre>
2017/finals/holes.cpp ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Holes
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-9;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=getchar();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define MOD 1000000007
82
+ #define LIM 1100000
83
+
84
+ int L[LIM],A[LIM],B[LIM];
85
+ int sz,treeM[LIM],treeC[LIM],lazy[LIM];
86
+ set<int> SL,SR;
87
+
88
+ void Prop(int i)
89
+ {
90
+ int v=lazy[i],j=i<<1,k=j+1;
91
+ lazy[i]=0;
92
+ treeM[i]+=v;
93
+ if (i<sz)
94
+ lazy[j]+=v,lazy[k]+=v;
95
+ }
96
+
97
+ void Update(int i,int r1,int r2,int a,int b,int v)
98
+ {
99
+ if (a>b)
100
+ return;
101
+ Prop(i);
102
+ if ((a<=r1) && (r2<=b))
103
+ {
104
+ lazy[i]+=v;
105
+ return;
106
+ }
107
+ int m=(r1+r2)>>1,j=i<<1,k=j+1;
108
+ if (a<=m)
109
+ Update(j,r1,m,a,b,v);
110
+ if (b>m)
111
+ Update(k,m+1,r2,a,b,v);
112
+ Prop(j),Prop(k);
113
+ treeM[i]=min(treeM[j],treeM[k]);
114
+ treeC[i]=0;
115
+ if (treeM[i]==treeM[j])
116
+ treeC[i]+=treeC[j];
117
+ if (treeM[i]==treeM[k])
118
+ treeC[i]+=treeC[k];
119
+ }
120
+
121
+ int Query(int i,int r1,int r2,int a,int b)
122
+ {
123
+ if (a>b)
124
+ return(0);
125
+ Prop(i);
126
+ if ((a<=r1) && (r2<=b))
127
+ return(treeM[i] ? 0 : treeC[i]);
128
+ int m=(r1+r2)>>1,j=i<<1,k=j+1,v=0;
129
+ if (a<=m)
130
+ v+=Query(j,r1,m,a,b);
131
+ if (b>m)
132
+ v+=Query(k,m+1,r2,a,b);
133
+ return(v);
134
+ }
135
+
136
+ void Go(int i,int d)
137
+ {
138
+ int a=A[i],b=B[i],p;
139
+ if (a>b)
140
+ swap(a,b);
141
+ p=b-a;
142
+ if (p%2)
143
+ {
144
+ // odd difference, key point must be outside [a, b-1]
145
+ a/=2,b/=2;
146
+ Update(1,0,sz-1,a,b-1,d);
147
+ return;
148
+ }
149
+ // even difference, key point must be inside [a, b-1]
150
+ if (d<0)
151
+ {
152
+ SL.erase(a);
153
+ SR.erase(b-2);
154
+ }
155
+ else
156
+ {
157
+ SL.insert(a);
158
+ SR.insert(b-2);
159
+ }
160
+ }
161
+
162
+ int main()
163
+ {
164
+ // vars
165
+ int T,t;
166
+ int N,M;
167
+ int i,j,a,b;
168
+ int ans;
169
+ // testcase loop
170
+ Read(T);
171
+ Fox1(t,T)
172
+ {
173
+ // input, init pairs
174
+ Read(N),Read(M);
175
+ Fill(A,-1);
176
+ Fox(i,N<<1)
177
+ {
178
+ Read(j),j--;
179
+ L[i]=j;
180
+ if (A[j]<0)
181
+ A[j]=i;
182
+ else
183
+ B[j]=i;
184
+ }
185
+ // init data structures
186
+ for(sz=1;sz<=N;sz<<=1);
187
+ Fill(lazy,0);
188
+ Fill(treeM,0);
189
+ Fox(i,sz)
190
+ treeC[sz+i]=1;
191
+ FoxR1(i,sz-1)
192
+ treeC[i]=treeC[i*2]+treeC[i*2+1];
193
+ SL.clear(),SR.clear();
194
+ // insert pairs
195
+ Fox(i,N)
196
+ Go(i,1);
197
+ // process updates
198
+ ans=0;
199
+ while (M--)
200
+ {
201
+ // input
202
+ Read(i),Read(j),i--,j--;
203
+ a=L[i],b=L[j];
204
+ if (a==b)
205
+ goto Skip;
206
+ // remove pairs
207
+ Go(a,-1),Go(b,-1);
208
+ // update pairs
209
+ swap(L[i],L[j]);
210
+ if (A[a]==i)
211
+ A[a]=j;
212
+ else
213
+ B[a]=j;
214
+ if (A[b]==j)
215
+ A[b]=i;
216
+ else
217
+ B[b]=i;
218
+ // re-insert pairs
219
+ Go(a,1),Go(b,1);
220
+ Skip:;
221
+ // compute current answer
222
+ if (SL.empty())
223
+ a=0,b=N*2;
224
+ else
225
+ {
226
+ a=*SL.rbegin();
227
+ b=*SR.begin();
228
+ }
229
+ a/=2;
230
+ b/=2;
231
+ ans=(ans+Query(1,0,sz-1,a,b))%MOD;
232
+ }
233
+ // output
234
+ printf("Case #%d: %d\n",t,ans);
235
+ }
236
+ return(0);
237
+ }
2017/finals/holes.html ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Kit is a young, obedient Fox who excels in his studies, diligently practices his hunting skills, and is always friendly. His parents couldn't be prouder! That is, except for one problem... he refuses to eat his vegetables!
3
+ </p>
4
+
5
+ <p>
6
+ In an effort to improve Kit's diet, his parents have set up a little game for him to play. They've dug a series of 2<strong>N</strong> + 2 small holes in a row on the ground, and numbered them from 0 to 2<strong>N</strong> + 1, from first to last. They've left the first and last holes empty, and filled the remaining 2<strong>N</strong> holes with one healthy vegetable each! There are <strong>N</strong> different types of vegetables, numbered from 1 to <strong>N</strong>, and a vegetable of type <strong>V<sub>i</sub></strong> has initially been placed into each hole <em>i</em>, such that exactly 2 vegetables of each type were used in total.
7
+ </p>
8
+
9
+ <p>
10
+ Kit must start inside hole 0, and jump forwards from hole to hole until he reaches hole 2<strong>N</strong> + 1. When he's inside any given hole <em>i</em>, he's agile enough to jump to either hole <em>i</em> + 1 or directly to hole <em>i</em> + 2, but he can't jump any further than that at once. Whenever he lands in a hole containing a vegetable, the rules of the game mandate that he must eat it!
11
+ </p>
12
+
13
+ <p>
14
+ Kit has agreed to play this game (not that he has much choice in the matter), but there's only so much he can take. The vegetables are tolerable as long as there's variety. He doesn't care how many he has to eat in total, but he absolutely refuses to eat multiple vegetables of any single type over the course of the game. In other words, for each vegetable type, he must only enter <i>at most</i> one of the two holes containing that vegetable on his way from hole 0 to hole 2<strong>N</strong> + 1.
15
+ </p>
16
+
17
+ <p>
18
+ Kit will play the game once per day for a period of <strong>M</strong> days. For some fun variety, at the start of each day <em>i</em>, his parents will swap the contents of two different holes <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>. Then, Kit will play the game using the current configuration of vegetables. Once he's done, his parents will replace any vegetables which he had eaten with new vegetables of the same types, thus resetting the game to the state it was in before Kit played it.
19
+ </p>
20
+
21
+ <p>
22
+ Each day, there might be no acceptable way for Kit to complete the game, or there might be many different ways for him to do so. Two ways are considered different if at least one hole is visited in one but not the other. In order to make the game more exciting for himself, Kit would like to count up the number of different ways he could potentially complete it each day. However, that's a lot of big numbers to keep track of, so he's only interested in the sum of these <strong>M</strong> values when taken modulo 1,000,000,007. Please help him compute this overall sum!
23
+ </p>
24
+
25
+ <h3>Input</h3>
26
+
27
+ <p>
28
+ Input begins with an integer <strong>T</strong>, the number of different rows of holes.
29
+ For each row of holes, there is first a line containing the space-separated integers <strong>N</strong> and <strong>M</strong>.
30
+ There is next a line containing 2<strong>N</strong> space-separated integers,
31
+ the <em>i</em>th of which is <strong>V<sub>i</sub></strong>.
32
+ Then <strong>M</strong> lines follow, the <em>i</em>th of which contains the space-separated integers
33
+ <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>
34
+
35
+ <h3>Output</h3>
36
+
37
+ <p>
38
+ For the <em>i</em>th row of holes, print a line containing "Case #<strong>i</strong>: "
39
+ followed by a single integer, the sum of the <strong>M</strong> days' answers modulo 1,000,000,007.
40
+ </p>
41
+
42
+ <h3>Constraints</h3>
43
+
44
+ <p>
45
+ 1 &le; <strong>T</strong> &le; 30<br />
46
+ 1 &le; <strong>N, M</strong> &le; 500,000 <br />
47
+ 1 &le; <strong>A<sub>i</sub></strong>, <strong>B<sub>i</sub></strong> &le; 2<strong>N</strong> <br />
48
+ 1 &le; <strong>V<sub>i</sub></strong> &le; <strong>N</strong> <br />
49
+ Both the sum of <strong>N</strong> values and the sum of <strong>M</strong> values across all <strong>T</strong> cases do not exceed 2,000,000.
50
+ </p>
51
+
52
+ <h3>Explanation of Sample</h3>
53
+
54
+ <p>
55
+ In the first case, both holes 1 and 2 will contain vegetables of type 1 even after their contents are swapped. There are then 2 different ways for Kit to validly reach hole 3 from hole 0, visiting either of these sequences of holes:
56
+ </p>
57
+
58
+ <pre>
59
+ 0 -> 1 -> 3
60
+ 0 -> 2 -> 3
61
+ </pre>
62
+
63
+ <p>
64
+ He can't quite jump far enough to reach hole 3 directly from hole 0, nor can he visit both holes 1 and 2, as that would require eating multiple vegetables of a single type.
65
+ </p>
66
+
67
+ <p>
68
+ In the second case, there are 2 different ways for Kit to validly complete the game on the first day, and only 1 way on the second day. This results in a final answer of (2 + 1) modulo 1,000,000,007 = 3.
69
+ </p>
2017/finals/holes.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41bc8a8a4fb7549fe5a83923f79a4e404a416be097b2fc1d2cca3af56eaff32c
3
+ size 43256260
2017/finals/holes.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Kit is a young, obedient Fox who excels in his studies, diligently practices
2
+ his hunting skills, and is always friendly. His parents couldn't be prouder!
3
+ That is, except for one problem... he refuses to eat his vegetables!
4
+
5
+ In an effort to improve Kit's diet, his parents have set up a little game for
6
+ him to play. They've dug a series of 2**N** \+ 2 small holes in a row on the
7
+ ground, and numbered them from 0 to 2**N** \+ 1, from first to last. They've
8
+ left the first and last holes empty, and filled the remaining 2**N** holes
9
+ with one healthy vegetable each! There are **N** different types of
10
+ vegetables, numbered from 1 to **N**, and a vegetable of type **Vi** has
11
+ initially been placed into each hole _i_, such that exactly 2 vegetables of
12
+ each type were used in total.
13
+
14
+ Kit must start inside hole 0, and jump forwards from hole to hole until he
15
+ reaches hole 2**N** \+ 1. When he's inside any given hole _i_, he's agile
16
+ enough to jump to either hole _i_ \+ 1 or directly to hole _i_ \+ 2, but he
17
+ can't jump any further than that at once. Whenever he lands in a hole
18
+ containing a vegetable, the rules of the game mandate that he must eat it!
19
+
20
+ Kit has agreed to play this game (not that he has much choice in the matter),
21
+ but there's only so much he can take. The vegetables are tolerable as long as
22
+ there's variety. He doesn't care how many he has to eat in total, but he
23
+ absolutely refuses to eat multiple vegetables of any single type over the
24
+ course of the game. In other words, for each vegetable type, he must only
25
+ enter _at most_ one of the two holes containing that vegetable on his way from
26
+ hole 0 to hole 2**N** \+ 1.
27
+
28
+ Kit will play the game once per day for a period of **M** days. For some fun
29
+ variety, at the start of each day _i_, his parents will swap the contents of
30
+ two different holes **Ai** and **Bi**. Then, Kit will play the game using the
31
+ current configuration of vegetables. Once he's done, his parents will replace
32
+ any vegetables which he had eaten with new vegetables of the same types, thus
33
+ resetting the game to the state it was in before Kit played it.
34
+
35
+ Each day, there might be no acceptable way for Kit to complete the game, or
36
+ there might be many different ways for him to do so. Two ways are considered
37
+ different if at least one hole is visited in one but not the other. In order
38
+ to make the game more exciting for himself, Kit would like to count up the
39
+ number of different ways he could potentially complete it each day. However,
40
+ that's a lot of big numbers to keep track of, so he's only interested in the
41
+ sum of these **M** values when taken modulo 1,000,000,007. Please help him
42
+ compute this overall sum!
43
+
44
+ ### Input
45
+
46
+ Input begins with an integer **T**, the number of different rows of holes. For
47
+ each row of holes, there is first a line containing the space-separated
48
+ integers **N** and **M**. There is next a line containing 2**N** space-
49
+ separated integers, the _i_th of which is **Vi**. Then **M** lines follow, the
50
+ _i_th of which contains the space-separated integers **Ai** and **Bi**
51
+
52
+ ### Output
53
+
54
+ For the _i_th row of holes, print a line containing "Case #**i**: " followed
55
+ by a single integer, the sum of the **M** days' answers modulo 1,000,000,007.
56
+
57
+ ### Constraints
58
+
59
+ 1 ≤ **T** ≤ 30
60
+ 1 ≤ **N, M** ≤ 500,000
61
+ 1 ≤ **Ai**, **Bi** ≤ 2**N**
62
+ 1 ≤ **Vi** ≤ **N**
63
+ Both the sum of **N** values and the sum of **M** values across all **T**
64
+ cases do not exceed 2,000,000.
65
+
66
+ ### Explanation of Sample
67
+
68
+ In the first case, both holes 1 and 2 will contain vegetables of type 1 even
69
+ after their contents are swapped. There are then 2 different ways for Kit to
70
+ validly reach hole 3 from hole 0, visiting either of these sequences of holes:
71
+
72
+ 0 -> 1 -> 3
73
+ 0 -> 2 -> 3
74
+
75
+ He can't quite jump far enough to reach hole 3 directly from hole 0, nor can
76
+ he visit both holes 1 and 2, as that would require eating multiple vegetables
77
+ of a single type.
78
+
79
+ In the second case, there are 2 different ways for Kit to validly complete the
80
+ game on the first day, and only 1 way on the second day. This results in a
81
+ final answer of (2 + 1) modulo 1,000,000,007 = 3.
82
+
2017/finals/holes.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 3
3
+ Case #3: 5
4
+ Case #4: 0
5
+ Case #5: 17
6
+ Case #6: 2
7
+ Case #7: 1
8
+ Case #8: 2
9
+ Case #9: 7
10
+ Case #10: 0
11
+ Case #11: 134098873
12
+ Case #12: 323526184
13
+ Case #13: 518272039
14
+ Case #14: 974275396
15
+ Case #15: 175772460
16
+ Case #16: 4477145
17
+ Case #17: 3216403
18
+ Case #18: 616019
19
+ Case #19: 4331672
20
+ Case #20: 3672991
21
+ Case #21: 3497579
22
+ Case #22: 4447010
23
+ Case #23: 2166340
24
+ Case #24: 1026410
25
+ Case #25: 861565
26
+ Case #26: 756
27
+ Case #27: 112
28
+ Case #28: 771
29
+ Case #29: 104
30
+ Case #30: 784
2017/finals/moles.cpp ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Moles
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-12;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=getchar();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define LIM 900009
82
+
83
+ int K,A,B;
84
+ map<int,int> M;
85
+ vector<int> con[LIM],con2[LIM];
86
+ bool col0[LIM];
87
+ int col[LIM],ind[LIM],P1[LIM],P2[LIM],dist[LIM];
88
+
89
+ int Make(int i)
90
+ {
91
+ if (M.count(i))
92
+ return(M[i]);
93
+ return(M[i]=K++);
94
+ }
95
+
96
+ bool DFS(int i,int c)
97
+ {
98
+ // conflict?
99
+ if ((col0[i]) && (c) || (col[i]>=0) && (c!=col[i]))
100
+ return(0);
101
+ // already coloured?
102
+ if (col[i]>=0)
103
+ return(1);
104
+ // colour node and its neighbours
105
+ col[i]=c;
106
+ int j;
107
+ Fox(j,Sz(con[i]))
108
+ if (!DFS(con[i][j],1-c))
109
+ return(0);
110
+ return(1);
111
+ }
112
+
113
+ bool MatchBFS()
114
+ {
115
+ int i,a,b,a2;
116
+ queue<int> Q;
117
+ Fill(dist,60);
118
+ Fox(a,A)
119
+ if (P1[a]<0)
120
+ dist[a]=0,Q.push(a);
121
+ while (!Q.empty())
122
+ {
123
+ a=Q.front(),Q.pop();
124
+ if (dist[a]<dist[A])
125
+ Fox(i,Sz(con2[a]))
126
+ {
127
+ b=con2[a][i];
128
+ a2=P2[b];
129
+ if (dist[a2]>=INF)
130
+ dist[a2]=dist[a]+1,Q.push(a2);
131
+ }
132
+ }
133
+ return(dist[A]<INF);
134
+ }
135
+
136
+ bool MatchDFS(int a)
137
+ {
138
+ if (a==A)
139
+ return(1);
140
+ int i,b,a2;
141
+ Fox(i,Sz(con2[a]))
142
+ {
143
+ b=con2[a][i];
144
+ a2=P2[b];
145
+ if ((dist[a2]==dist[a]+1) && (MatchDFS(a2)))
146
+ {
147
+ P1[a]=b;
148
+ P2[b]=a;
149
+ return(1);
150
+ }
151
+ }
152
+ dist[a]=INF;
153
+ return(0);
154
+ }
155
+
156
+ int MaxMatching()
157
+ {
158
+ int a,b,m=0;
159
+ Fill(P1,-1);
160
+ Fox(b,B)
161
+ P2[b]=A;
162
+ while (MatchBFS())
163
+ {
164
+ Fox(a,A)
165
+ if ((P1[a]<0) && (MatchDFS(a)))
166
+ m++;
167
+ }
168
+ return(m);
169
+ }
170
+
171
+ int main()
172
+ {
173
+ // vars
174
+ int T,t;
175
+ int N=0;
176
+ int i,j,a,b,p,r,z,ans;
177
+ // testcase loop
178
+ Read(T);
179
+ Fox1(t,T)
180
+ {
181
+ // init
182
+ Fox(i,K)
183
+ con[i].clear();
184
+ Fox(i,A)
185
+ con2[i].clear();
186
+ K=0;
187
+ M.clear();
188
+ Fill(col0,0);
189
+ Fill(col,-1);
190
+ Fill(ind,-1);
191
+ Fill(P1,-1);
192
+ Fill(P2,-1);
193
+ // input
194
+ Read(N);
195
+ while (N--)
196
+ {
197
+ Read(p),Read(r);
198
+ i=Make(p),a=Make(p-r),b=Make(p+r);
199
+ col0[i]=1;
200
+ con[a].pb(b);
201
+ con[b].pb(a);
202
+ }
203
+ // attempt to 2-color the graph (initially just from forced nodes)
204
+ Fox(z,2)
205
+ Fox(i,K)
206
+ if (col[i]<0)
207
+ {
208
+ if ((!z) && (!col0[i]))
209
+ continue;
210
+ if (!DFS(i,0))
211
+ {
212
+ ans=-1;
213
+ goto Done;
214
+ }
215
+ }
216
+ // construct the bipartite graph, ignoring forced nodes
217
+ A=B=0;
218
+ Fox(i,K)
219
+ if (!col0[i])
220
+ {
221
+ Fox(j,Sz(con[i]))
222
+ if (col0[con[i][j]])
223
+ goto Skip;
224
+ if (!col[i])
225
+ ind[i]=A++;
226
+ else
227
+ ind[i]=B++;
228
+ Skip:;
229
+ }
230
+ Fox(i,K)
231
+ if ((ind[i]>=0) && (!col[i]))
232
+ {
233
+ a=ind[i];
234
+ Fox(j,Sz(con[i]))
235
+ {
236
+ b=ind[con[i][j]];
237
+ if (b>=0)
238
+ con2[a].pb(b);
239
+ }
240
+ }
241
+ ans=A+B-MaxMatching()+1;
242
+ // output
243
+ Done:;
244
+ printf("Case #%d: %d\n",t,ans);
245
+ }
246
+ return(0);
247
+ }
2017/finals/moles.html ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ It's dinner time!
3
+ A group of <strong>N</strong> Foxen are standing silently in a field, which can be represented as an infinite number line,
4
+ patiently waiting for their meals to make an appearance.
5
+ The <em>i</em>th Fox is standing at position <strong>P<sub>i</sub></strong>,
6
+ with no two Foxen standing at the same position.
7
+ There's also one hole in the ground at each each integral position on the number line.
8
+ Each of these holes is the entrance to a mole's den, and the Foxen know that some of these delicious critters are
9
+ bound to show up sooner or later!
10
+ </p>
11
+
12
+ <p>
13
+ A little-known fact about Foxen is that, in addition to having an acute array of regular senses,
14
+ they possess a SONAR-like ability to emit imperceptible sound waves and use them to discern objects at great distances.
15
+ The <em>i</em>th Fox has tuned their wavelength to a distance of <strong>R<sub>i</sub></strong>,
16
+ allowing them to only detect moles which emerge from holes at a distance of exactly <strong>R<sub>i</sub></strong> away from them
17
+ (that is, at either position <strong>P<sub>i</sub></strong> - <strong>R<sub>i</sub></strong> or
18
+ <strong>P<sub>i</sub></strong> + <strong>R<sub>i</sub></strong>).
19
+
20
+ </p>
21
+
22
+ <p>
23
+ All of a sudden, some number of moles have just popped up from various holes all at once!
24
+ No mole popped up at any Fox's position, no two moles popped up from the same hole, and
25
+ every mole was detected by at least one Fox.
26
+ Furthermore, each Fox <em>i</em> has determined that there's <i>exactly</i> 1 mole
27
+ at a distance of <strong>R<sub>i</sub></strong> away from it (as opposed to there being either 0 or 2 such moles).
28
+ </p>
29
+
30
+ <p>
31
+ Following this initial event, there's been quite some commotion.
32
+ Some moles may have retreated back underground, and some new moles may have emerged, all in any order.
33
+ At every point in time, the set of moles on the surface is subject to all of the same restrictions as before, with one difference:
34
+ Each Fox <em>i</em> continues to be sure that <i>at least</i> 1 mole is still present
35
+ at a distance of <strong>R<sub>i</sub></strong> away from it, but can no longer determine whether or not
36
+ there are perhaps now 2 such moles instead.
37
+ </p>
38
+
39
+ <p>
40
+ After some time of this, the Foxen have decided that they're ready to pounce and "invite" some of the moles
41
+ currently on the surface over for dinner.
42
+ Unfortunately, they've started to become rather overwhelmed with trying to keep track of which moles
43
+ may be on the surface, or even roughly how many of them there might be.
44
+ Assuming that the Foxen's initial observations were correct, and that some unknown amount of time has since gone by
45
+ with moles surfacing or departing, please help the Foxen determine the number of different quantities of moles which
46
+ could possibly have ended up on the surface.
47
+ </p>
48
+
49
+ <p>
50
+ If it's impossible for their set of initial observations to have been accurate in the first place, output -1 instead.
51
+ </p>
52
+
53
+
54
+ <h3>Input</h3>
55
+
56
+ <p>
57
+ Input begins with an integer <strong>T</strong>, the number of different fields.
58
+ For each field, there is first a line containing the integer <strong>N</strong>.
59
+ Then <strong>N</strong> lines follow, the <em>i</em>th of which contains the space-separated integers
60
+ <strong>P<sub>i</sub></strong> and <strong>R<sub>i</sub></strong>.
61
+ </p>
62
+
63
+ <h3>Output</h3>
64
+
65
+ <p>
66
+ For the <em>i</em>th field, print a line containing "Case #<strong>i</strong>: "
67
+ followed by a single integer, the number of different quantities of moles which could possibly end up on the surface at any point,
68
+ or -1 if the Foxen's initial observations must have been inaccurate.
69
+ </p>
70
+
71
+ <h3>Constraints</h3>
72
+
73
+ <p>
74
+ 1 &le; <strong>T</strong> &le; 30<br />
75
+ 1 &le; <strong>N</strong> &le; 5,000 <br />
76
+ 0 &le; <strong>P<sub>i</sub></strong> &le; 1,000,000,000 <br />
77
+ 1 &le; <strong>R<sub>i</sub></strong> &le; 1,000,000,000 <br />
78
+ </p>
79
+
80
+ <h3>Explanation of Sample</h3>
81
+
82
+ <p>
83
+ In the first case, it's possible for there to eventually be 1 mole (at either position -1 or 1), or 2 moles (at both positions -1 and 1). There can't be 0 moles due to the restriction that the Fox must detect at least 1 of them, and there can't be more than 2 moles as they'd have to be at positions which the Fox is unable to detect.
84
+ </p>
85
+
86
+ <p>
87
+ In the third case, it's impossible for a set of moles to have initially popped up such that each Fox would have detected <em>exactly</em> one of them.
88
+ </p>
2017/finals/moles.in ADDED
The diff for this file is too large to render. See raw diff
 
2017/finals/moles.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ It's dinner time! A group of **N** Foxen are standing silently in a field,
2
+ which can be represented as an infinite number line, patiently waiting for
3
+ their meals to make an appearance. The _i_th Fox is standing at position
4
+ **Pi**, with no two Foxen standing at the same position. There's also one hole
5
+ in the ground at each each integral position on the number line. Each of these
6
+ holes is the entrance to a mole's den, and the Foxen know that some of these
7
+ delicious critters are bound to show up sooner or later!
8
+
9
+ A little-known fact about Foxen is that, in addition to having an acute array
10
+ of regular senses, they possess a SONAR-like ability to emit imperceptible
11
+ sound waves and use them to discern objects at great distances. The _i_th Fox
12
+ has tuned their wavelength to a distance of **Ri**, allowing them to only
13
+ detect moles which emerge from holes at a distance of exactly **Ri** away from
14
+ them (that is, at either position **Pi** \- **Ri** or **Pi** \+ **Ri**).
15
+
16
+ All of a sudden, some number of moles have just popped up from various holes
17
+ all at once! No mole popped up at any Fox's position, no two moles popped up
18
+ from the same hole, and every mole was detected by at least one Fox.
19
+ Furthermore, each Fox _i_ has determined that there's _exactly_ 1 mole at a
20
+ distance of **Ri** away from it (as opposed to there being either 0 or 2 such
21
+ moles).
22
+
23
+ Following this initial event, there's been quite some commotion. Some moles
24
+ may have retreated back underground, and some new moles may have emerged, all
25
+ in any order. At every point in time, the set of moles on the surface is
26
+ subject to all of the same restrictions as before, with one difference: Each
27
+ Fox _i_ continues to be sure that _at least_ 1 mole is still present at a
28
+ distance of **Ri** away from it, but can no longer determine whether or not
29
+ there are perhaps now 2 such moles instead.
30
+
31
+ After some time of this, the Foxen have decided that they're ready to pounce
32
+ and "invite" some of the moles currently on the surface over for dinner.
33
+ Unfortunately, they've started to become rather overwhelmed with trying to
34
+ keep track of which moles may be on the surface, or even roughly how many of
35
+ them there might be. Assuming that the Foxen's initial observations were
36
+ correct, and that some unknown amount of time has since gone by with moles
37
+ surfacing or departing, please help the Foxen determine the number of
38
+ different quantities of moles which could possibly have ended up on the
39
+ surface.
40
+
41
+ If it's impossible for their set of initial observations to have been accurate
42
+ in the first place, output -1 instead.
43
+
44
+ ### Input
45
+
46
+ Input begins with an integer **T**, the number of different fields. For each
47
+ field, there is first a line containing the integer **N**. Then **N** lines
48
+ follow, the _i_th of which contains the space-separated integers **Pi** and
49
+ **Ri**.
50
+
51
+ ### Output
52
+
53
+ For the _i_th field, print a line containing "Case #**i**: " followed by a
54
+ single integer, the number of different quantities of moles which could
55
+ possibly end up on the surface at any point, or -1 if the Foxen's initial
56
+ observations must have been inaccurate.
57
+
58
+ ### Constraints
59
+
60
+ 1 ≤ **T** ≤ 30
61
+ 1 ≤ **N** ≤ 5,000
62
+ 0 ≤ **Pi** ≤ 1,000,000,000
63
+ 1 ≤ **Ri** ≤ 1,000,000,000
64
+
65
+ ### Explanation of Sample
66
+
67
+ In the first case, it's possible for there to eventually be 1 mole (at either
68
+ position -1 or 1), or 2 moles (at both positions -1 and 1). There can't be 0
69
+ moles due to the restriction that the Fox must detect at least 1 of them, and
70
+ there can't be more than 2 moles as they'd have to be at positions which the
71
+ Fox is unable to detect.
72
+
73
+ In the third case, it's impossible for a set of moles to have initially popped
74
+ up such that each Fox would have detected _exactly_ one of them.
75
+
2017/finals/moles.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 3
3
+ Case #3: -1
4
+ Case #4: 4
5
+ Case #5: 10
6
+ Case #6: 2
7
+ Case #7: 5
8
+ Case #8: 1
9
+ Case #9: 2
10
+ Case #10: -1
11
+ Case #11: 1363
12
+ Case #12: 1493
13
+ Case #13: 68
14
+ Case #14: 123
15
+ Case #15: 417
16
+ Case #16: 1215
17
+ Case #17: -1
18
+ Case #18: 79
19
+ Case #19: 133
20
+ Case #20: 134
21
+ Case #21: 964
22
+ Case #22: 38
23
+ Case #23: 1489
24
+ Case #24: -1
25
+ Case #25: 345
26
+ Case #26: 113
27
+ Case #27: 1026
28
+ Case #28: 795
29
+ Case #29: 659
30
+ Case #30: 1076
2017/finals/patrols.cpp ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Patrols
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-12;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=getchar();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define MOD 1000000007
82
+
83
+ // a^b
84
+ int pw(LL a,int b)
85
+ {
86
+ int v=1;
87
+ while (b)
88
+ {
89
+ if (b&1)
90
+ v=v*a%MOD;
91
+ a=a*a%MOD;
92
+ b>>=1;
93
+ }
94
+ return(v);
95
+ }
96
+
97
+ // number of skylines of length n with max height h
98
+ LL cnt(int n,int h)
99
+ {
100
+ return((pw(h,n)-pw(h-1,n)+MOD)%MOD);
101
+ }
102
+
103
+ int main()
104
+ {
105
+ // vars
106
+ int T,t;
107
+ int N,M,H;
108
+ int h,ans;
109
+ // testcase loop
110
+ Read(T);
111
+ Fox1(t,T)
112
+ {
113
+ // input
114
+ Read(N),Read(M),Read(H);
115
+ // consider all possible max tree heights
116
+ ans=0;
117
+ Fox1(h,H)
118
+ ans=(ans+cnt(N,h)*cnt(M,h))%MOD;
119
+ // output
120
+ printf("Case #%d: %d\n",t,ans);
121
+ }
122
+ return(0);
123
+ }
2017/finals/patrols.html ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ A certain well-hidden valley is home to a thriving population of mysterious creatures &mdash; Foxen!
3
+ However, keeping the valley safe from outsiders (such as humans) is a necessity.
4
+ To that end, a group of Foxen have been sent out to patrol the border.
5
+ </p>
6
+
7
+ <p>
8
+ On their patrol route, the Foxen know that they're going to pass by an interesting, rectangular forest.
9
+ When viewed from above, the forest can be modeled as a grid of cells
10
+ with <strong>R</strong> rows and <strong>C</strong> columns. The rows are numbered from 1 to <strong>R</strong> from North to South, while the column are numbered from 1 to <strong>C</strong> from West to East.
11
+ One tree is growing in the center of each cell, and each tree's height (in metres) is some positive integer no larger than <strong>H</strong>.
12
+ </p>
13
+
14
+ <p>
15
+ If the Foxen were to look at the forest from the North side, all of the trees in any given column of cells would obscure each other and blend together.
16
+ In fact, the Foxen would really only be able make out the overall shape of the forest's "skyline" when viewed from that direction.
17
+ This Northern skyline can be expressed as a sequence of <strong>C</strong> positive integers,
18
+ with the <em>i</em>th one being the largest of the <strong>R</strong> tree heights in the <em>i</em>th column.
19
+ </p>
20
+
21
+ <p>
22
+ Similarly, if they were to look at the forest from the West side, they would only be able to make out the shape of its skyline from that direction.
23
+ This Western skyline is a sequence of <strong>R</strong> positive integers,
24
+ with the <em>i</em>th one being the largest of the <strong>C</strong> tree heights in the <em>i</em>th row.
25
+ </p>
26
+
27
+ <p>
28
+ On their way to the forest, the Foxen find themselves wondering about what it might look like.
29
+ They've done their research and are aware of its dimensions <strong>R</strong> and <strong>C</strong>,
30
+ as well as the maximum possible height of its trees <strong>H</strong>, but they don't know the actual heights of any of its trees.
31
+ They'd like to determine how many different, distinct-looking forests they might end up finding.
32
+ A forest is a set of heights for all <strong>R</strong>x<strong>C</strong> trees,
33
+ and two forests are considered to be distinct-looking from one another if their Northern skyline sequences differ and/or their Western skyline sequences differ.
34
+ </p>
35
+
36
+ <p>
37
+ Please help the Foxen determine the number of possible different, distinct-looking forests! As this quantity may be quite large, they're only interested in its value when taken modulo 1,000,000,007.
38
+ </p>
39
+
40
+
41
+ <h3>Input</h3>
42
+
43
+ <p>
44
+ Input begins with an integer <strong>T</strong>, the number of different forests visited by the Foxen.
45
+ For each forest, there is a single line containing the three space-separated integers
46
+ <strong>R</strong>, <strong>C</strong>, and <strong>H</strong>.
47
+ </p>
48
+
49
+ <h3>Output</h3>
50
+
51
+ <p>
52
+ For the <em>i</em>th forest, print a line containing "Case #<strong>i</strong>: "
53
+ followed by the number of possible different, distinct-looking forests modulo 1,000,000,007.
54
+ </p>
55
+
56
+ <h3>Constraints</h3>
57
+
58
+ <p>
59
+ 1 &le; <strong>T</strong> &le; 30 <br />
60
+ 1 &le; <strong>R</strong>, <strong>C</strong>, <strong>H</strong> &le; 500,000 <br />
61
+ </p>
62
+
63
+ <h3>Explanation of Sample</h3>
64
+
65
+ <p>
66
+ In the first case, there are 10 possible different, distinct-looking forests which consist of a 2x2 grid of trees, with each tree being either 1m or 2m tall.
67
+ For example, the following 2 forests look different (even though their Western skylines are equal, their Northern skylines differ), so both should be counted:
68
+ </p>
69
+
70
+ <pre>
71
+ 1 2 2 1
72
+ 1 1 1 1
73
+ </pre>
74
+
75
+ <p>
76
+ On the other hand, the following 2 forests look identical to one another from both the North and the West, so only one of them should be counted:
77
+ </p>
78
+
79
+ <pre>
80
+ 1 2 2 2
81
+ 2 1 2 1
82
+ </pre>
2017/finals/patrols.in ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 30
2
+ 2 2 2
3
+ 3 3 3
4
+ 10 10 2
5
+ 10 10 3
6
+ 12345 54321 98765
7
+ 1 1 1
8
+ 1 1 500000
9
+ 1 500000 1
10
+ 1 500000 500000
11
+ 500000 1 1
12
+ 500000 1 500000
13
+ 500000 500000 1
14
+ 500000 500000 500000
15
+ 320813 317748 38903
16
+ 138867 351451 187697
17
+ 364035 163376 439098
18
+ 122612 43988 469986
19
+ 226214 129928 408977
20
+ 284198 155331 429992
21
+ 484558 292080 226183
22
+ 171737 440766 26340
23
+ 254725 193588 492598
24
+ 36190 169975 160386
25
+ 41408 136075 416935
26
+ 192383 203512 259578
27
+ 60442 2849 34087
28
+ 373965 441433 45490
29
+ 138969 349737 156766
30
+ 216121 452029 88461
31
+ 162647 304920 107641
2017/finals/patrols.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A certain well-hidden valley is home to a thriving population of mysterious
2
+ creatures — Foxen! However, keeping the valley safe from outsiders (such as
3
+ humans) is a necessity. To that end, a group of Foxen have been sent out to
4
+ patrol the border.
5
+
6
+ On their patrol route, the Foxen know that they're going to pass by an
7
+ interesting, rectangular forest. When viewed from above, the forest can be
8
+ modeled as a grid of cells with **R** rows and **C** columns. The rows are
9
+ numbered from 1 to **R** from North to South, while the column are numbered
10
+ from 1 to **C** from West to East. One tree is growing in the center of each
11
+ cell, and each tree's height (in metres) is some positive integer no larger
12
+ than **H**.
13
+
14
+ If the Foxen were to look at the forest from the North side, all of the trees
15
+ in any given column of cells would obscure each other and blend together. In
16
+ fact, the Foxen would really only be able make out the overall shape of the
17
+ forest's "skyline" when viewed from that direction. This Northern skyline can
18
+ be expressed as a sequence of **C** positive integers, with the _i_th one
19
+ being the largest of the **R** tree heights in the _i_th column.
20
+
21
+ Similarly, if they were to look at the forest from the West side, they would
22
+ only be able to make out the shape of its skyline from that direction. This
23
+ Western skyline is a sequence of **R** positive integers, with the _i_th one
24
+ being the largest of the **C** tree heights in the _i_th row.
25
+
26
+ On their way to the forest, the Foxen find themselves wondering about what it
27
+ might look like. They've done their research and are aware of its dimensions
28
+ **R** and **C**, as well as the maximum possible height of its trees **H**,
29
+ but they don't know the actual heights of any of its trees. They'd like to
30
+ determine how many different, distinct-looking forests they might end up
31
+ finding. A forest is a set of heights for all **R**x**C** trees, and two
32
+ forests are considered to be distinct-looking from one another if their
33
+ Northern skyline sequences differ and/or their Western skyline sequences
34
+ differ.
35
+
36
+ Please help the Foxen determine the number of possible different, distinct-
37
+ looking forests! As this quantity may be quite large, they're only interested
38
+ in its value when taken modulo 1,000,000,007.
39
+
40
+ ### Input
41
+
42
+ Input begins with an integer **T**, the number of different forests visited by
43
+ the Foxen. For each forest, there is a single line containing the three space-
44
+ separated integers **R**, **C**, and **H**.
45
+
46
+ ### Output
47
+
48
+ For the _i_th forest, print a line containing "Case #**i**: " followed by the
49
+ number of possible different, distinct-looking forests modulo 1,000,000,007.
50
+
51
+ ### Constraints
52
+
53
+ 1 ≤ **T** ≤ 30
54
+ 1 ≤ **R**, **C**, **H** ≤ 500,000
55
+
56
+ ### Explanation of Sample
57
+
58
+ In the first case, there are 10 possible different, distinct-looking forests
59
+ which consist of a 2x2 grid of trees, with each tree being either 1m or 2m
60
+ tall. For example, the following 2 forests look different (even though their
61
+ Western skylines are equal, their Northern skylines differ), so both should be
62
+ counted:
63
+
64
+ 1 2 2 1
65
+ 1 1 1 1
66
+
67
+ On the other hand, the following 2 forests look identical to one another from
68
+ both the North and the West, so only one of them should be counted:
69
+
70
+ 1 2 2 2
71
+ 2 1 2 1
72
+
2017/finals/patrols.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 10
2
+ Case #2: 411
3
+ Case #3: 1046530
4
+ Case #4: 367947134
5
+ Case #5: 151251795
6
+ Case #6: 1
7
+ Case #7: 500000
8
+ Case #8: 1
9
+ Case #9: 640164345
10
+ Case #10: 1
11
+ Case #11: 640164345
12
+ Case #12: 1
13
+ Case #13: 784439684
14
+ Case #14: 628695691
15
+ Case #15: 473900163
16
+ Case #16: 161834349
17
+ Case #17: 102371132
18
+ Case #18: 83427294
19
+ Case #19: 535513662
20
+ Case #20: 527573954
21
+ Case #21: 223154519
22
+ Case #22: 426038426
23
+ Case #23: 86290130
24
+ Case #24: 856759245
25
+ Case #25: 511958015
26
+ Case #26: 672344838
27
+ Case #27: 350475264
28
+ Case #28: 968392936
29
+ Case #29: 340846376
30
+ Case #30: 730119034
2017/finals/poles.cpp ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Poles
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-10;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=getchar();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define LIM 800001
82
+
83
+ pair<int,LD> O[LIM],P[LIM];
84
+ LD mx[LIM];
85
+ vector<int> ch[LIM];
86
+ int ss,st[LIM];
87
+
88
+ LD Calc(LD h,LD a1,LD a2)
89
+ {
90
+ return(-h*(log(cos(a2))-log(cos(a1))));
91
+ }
92
+
93
+ int main()
94
+ {
95
+ // vars
96
+ int T,t;
97
+ int N;
98
+ bool D[2];
99
+ LD A[2];
100
+ int i,j,c,p,w,z;
101
+ double v;
102
+ LD a,a1,a2,tot,ans[2];
103
+ // testcase loop
104
+ Read(T);
105
+ Fox1(t,T)
106
+ {
107
+ // input
108
+ Read(N);
109
+ Fox(i,2)
110
+ {
111
+ Read(j);
112
+ D[i]=int(j<0);
113
+ A[i]=j*PI/180;
114
+ }
115
+ Fox(i,N)
116
+ {
117
+ scanf("%d%lf",&O[i].x,&v);
118
+ O[i].y=v;
119
+ }
120
+ // consider each direction
121
+ Fox(z,2)
122
+ {
123
+ // reverse poles horizontally if necessary
124
+ memcpy(P,O,sizeof(P));
125
+ if (D[z])
126
+ Fox(i,N)
127
+ P[i].x=-P[i].x;
128
+ // sort poles left-to-right
129
+ sort(P,P+N);
130
+ // init
131
+ Fox(i,N+1)
132
+ ch[i].clear();
133
+ // consider poles left-to-right, constructing convex hull of coverage
134
+ ss=0;
135
+ Fox(i,N)
136
+ {
137
+ // find this pole's parent, if any
138
+ while (ss>0)
139
+ {
140
+ j=st[ss-1];
141
+ a=atan2(P[i].x-P[j].x,P[j].y-P[i].y);
142
+ if (a<mx[j]-EPS)
143
+ break;
144
+ ss--;
145
+ }
146
+ if (!ss)
147
+ {
148
+ mx[i]=Abs(A[z]);
149
+ ch[N].pb(i);
150
+ }
151
+ else
152
+ {
153
+ mx[i]=a;
154
+ ch[j].pb(i);
155
+ }
156
+ st[ss++]=i;
157
+ }
158
+ // augment tree
159
+ Fox(j,Sz(ch[N])-1)
160
+ ch[ch[N][j]].pb(ch[N][j+1]);
161
+ Fox(i,N)
162
+ Fox(j,Sz(ch[i])-1)
163
+ ch[ch[i][j]].pb(ch[i][j+1]);
164
+ // consider each left pole
165
+ ans[z]=0;
166
+ Fox(i,N)
167
+ {
168
+ a=0;
169
+ Fox(c,Sz(ch[i]))
170
+ {
171
+ j=ch[i][c];
172
+ a1=max(a,atan2(P[j].x-P[i].x,P[i].y));
173
+ a2=atan2(P[j].x-P[i].x,P[i].y-P[j].y);
174
+ // partial shadow until bottom
175
+ if (a1>mx[i]-EPS)
176
+ break;
177
+ ans[z]+=Calc(P[i].y,a,a1);
178
+ // full shadow until top
179
+ w=P[j].x-P[i].x;
180
+ if (a2>mx[i]-EPS)
181
+ {
182
+ ans[z]+=w*(mx[i]-a1);
183
+ goto Done;
184
+ }
185
+ ans[z]+=w*(a2-a1);
186
+ a=a2;
187
+ }
188
+ ans[z]+=Calc(P[i].y,a,mx[i]);
189
+ Done:;
190
+ }
191
+ }
192
+ // compute answer
193
+ if (D[0]==D[1])
194
+ tot=Abs(ans[0]-ans[1]);
195
+ else
196
+ tot=ans[0]+ans[1];
197
+ tot/=A[1]-A[0];
198
+ // output
199
+ printf("Case #%d: %.9lf\n",t,(double)tot);
200
+ }
201
+ return(0);
202
+ }
2017/finals/poles.html ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ While taking a walk through the woods, a group of Foxen have come upon a curious sight &mdash; a row of <strong>N</strong> wooden poles sticking straight up out of the ground! Who placed them there, and why? The Foxen have no clue.
3
+ </p>
4
+
5
+ <p>
6
+ Looking at the poles from the side, they can be modeled as vertical line segments rising upwards from a number line (which represents the ground), with the <em>i</em>th pole at distinct integral position <strong>P<sub>i</sub></strong> and having a real-valued height of <strong>H<sub>i</sub></strong>.
7
+ </p>
8
+
9
+ <p>
10
+ One of the Foxen, Ozy, is fascinated by the shadows being cast on the ground by the poles. The sun is shining down on the poles from some point very high up in the sky, resulting in infinitely many rays of light descending towards the number line at all possible positions along it, but all travelling in some uniform direction. Each ray of light stops travelling as soon as it comes into contact with either a pole or the ground. Any point on the ground which is incapable of being reached by rays of light (because they would get blocked by at least one pole before reaching that point) is considered to be covered in shadows.
11
+ </p>
12
+
13
+ <p>
14
+ The sunlight's direction can be described by a real value <em>a</em>, with absolute value no larger than 80, where <em>a</em> is the signed angle difference (in degrees) between the rays' direction and a vector pointing directly downwards. As an example, let's imagine that there's a single pole at position 50 and with a height of 100. If <em>a</em> = 45, then sunlight is shining diagonally down and to the right, meaning that the pole obstructs rays of light from being able to reach any points on the ground in the interval [50, 150], effectively casting a shadow with length 100 to the right. If <em>a</em> = -45, then sunlight is shining diagonally down and to the left, causing the pole to cast a shadow with 100 to the left instead (over the interval [-50, 50]). If <em>a</em> = 0, then sunlight is shining directly downwards onto the ground, resulting in the pole not casting any shadow.
15
+ </p>
16
+
17
+ <p>
18
+ Ozy is planning on returning by himself tomorrow in order to observe the poles again, but he doesn't know at what time of day he'll be able to make the trip. He does at least have it narrowed down to being within some interval of time, during which he knows that the sunlight's direction <em>a</em> will range from <strong>A</strong> and <strong>B</strong>, inclusive. Given that the sunlight's direction <em>a</em> will be a real number drawn uniformly at random from the interval [<strong>A</strong>, <strong>B</strong>] when Ozy visits the poles tomorrow, please help him predict the expected total length of ground which will be covered in shadows at that time.
19
+ </p>
20
+
21
+
22
+ <h3>Input</h3>
23
+
24
+ <p>
25
+ Input begins with an integer <strong>T</strong>, the number of different sets of poles.
26
+ For each set of poles, there is first a line containing the space-separated integers <strong>N</strong>, <strong>A</strong>, and <strong>B</strong>.
27
+ Then <strong>N</strong> lines follow, the <em>i</em>th of which contains the integer
28
+ <strong>P<sub>i</sub></strong> and the real number <strong>H<sub>i</sub></strong> separated by a space.
29
+ The poles' heights are given with at most 4 digits after the decimal point.
30
+ </p>
31
+
32
+ <h3>Output</h3>
33
+
34
+ <p>
35
+ For the <em>i</em>th set of poles, print a line containing "Case #<strong>i</strong>: "
36
+ followed by a single real number, the expected length of ground which will be covered in shadows.
37
+ Your output should have at most 10<sup>-6</sup> absolute or relative error.
38
+ </p>
39
+
40
+ <h3>Constraints</h3>
41
+
42
+ <p>
43
+ 1 &le; <strong>T</strong> &le; 30<br />
44
+ 1 &le; <strong>N</strong> &le; 500,000 <br />
45
+ -80 &le; <strong>A</strong> &lt; <strong>B</strong> &le; 80 <br />
46
+ 0 &le; <strong>P<sub>i</sub></strong> &le; 1,000,000,000 <br />
47
+ 1 &le; <strong>H<sub>i</sub></strong> &le; 1,000,000 <br />
48
+ The sum of <strong>N</strong> values across all <strong>T</strong> cases does not exceed 2,000,000.
49
+ </p>
50
+
51
+ <h3>Explanation of Sample</h3>
52
+
53
+ <p>
54
+ In the first case, the sunlight's direction <em>a</em> is drawn uniformly at random from the interval [44, 46]. As described above, the length of ground covered in shadows when <em>a</em> = 45 is exactly 100. When <em>a</em> = 44, the shadow's length is ~96.57, and when <em>a</em> = 46, its length is ~103.55. However, note that its expected length for this distribution of possible <em>a</em> values is not equal to the average of those sample lengths.
55
+ </p>
2017/finals/poles.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9d2250a37156e0f4c67b9967987999557727d4f04df2b1b75f0eb6addfecd5d
3
+ size 23912078
2017/finals/poles.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ While taking a walk through the woods, a group of Foxen have come upon a
2
+ curious sight — a row of **N** wooden poles sticking straight up out of the
3
+ ground! Who placed them there, and why? The Foxen have no clue.
4
+
5
+ Looking at the poles from the side, they can be modeled as vertical line
6
+ segments rising upwards from a number line (which represents the ground), with
7
+ the _i_th pole at distinct integral position **Pi** and having a real-valued
8
+ height of **Hi**.
9
+
10
+ One of the Foxen, Ozy, is fascinated by the shadows being cast on the ground
11
+ by the poles. The sun is shining down on the poles from some point very high
12
+ up in the sky, resulting in infinitely many rays of light descending towards
13
+ the number line at all possible positions along it, but all travelling in some
14
+ uniform direction. Each ray of light stops travelling as soon as it comes into
15
+ contact with either a pole or the ground. Any point on the ground which is
16
+ incapable of being reached by rays of light (because they would get blocked by
17
+ at least one pole before reaching that point) is considered to be covered in
18
+ shadows.
19
+
20
+ The sunlight's direction can be described by a real value _a_, with absolute
21
+ value no larger than 80, where _a_ is the signed angle difference (in degrees)
22
+ between the rays' direction and a vector pointing directly downwards. As an
23
+ example, let's imagine that there's a single pole at position 50 and with a
24
+ height of 100. If _a_ = 45, then sunlight is shining diagonally down and to
25
+ the right, meaning that the pole obstructs rays of light from being able to
26
+ reach any points on the ground in the interval [50, 150], effectively casting
27
+ a shadow with length 100 to the right. If _a_ = -45, then sunlight is shining
28
+ diagonally down and to the left, causing the pole to cast a shadow with 100 to
29
+ the left instead (over the interval [-50, 50]). If _a_ = 0, then sunlight is
30
+ shining directly downwards onto the ground, resulting in the pole not casting
31
+ any shadow.
32
+
33
+ Ozy is planning on returning by himself tomorrow in order to observe the poles
34
+ again, but he doesn't know at what time of day he'll be able to make the trip.
35
+ He does at least have it narrowed down to being within some interval of time,
36
+ during which he knows that the sunlight's direction _a_ will range from **A**
37
+ and **B**, inclusive. Given that the sunlight's direction _a_ will be a real
38
+ number drawn uniformly at random from the interval [**A**, **B**] when Ozy
39
+ visits the poles tomorrow, please help him predict the expected total length
40
+ of ground which will be covered in shadows at that time.
41
+
42
+ ### Input
43
+
44
+ Input begins with an integer **T**, the number of different sets of poles. For
45
+ each set of poles, there is first a line containing the space-separated
46
+ integers **N**, **A**, and **B**. Then **N** lines follow, the _i_th of which
47
+ contains the integer **Pi** and the real number **Hi** separated by a space.
48
+ The poles' heights are given with at most 4 digits after the decimal point.
49
+
50
+ ### Output
51
+
52
+ For the _i_th set of poles, print a line containing "Case #**i**: " followed
53
+ by a single real number, the expected length of ground which will be covered
54
+ in shadows. Your output should have at most 10-6 absolute or relative error.
55
+
56
+ ### Constraints
57
+
58
+ 1 ≤ **T** ≤ 30
59
+ 1 ≤ **N** ≤ 500,000
60
+ -80 ≤ **A** < **B** ≤ 80
61
+ 0 ≤ **Pi** ≤ 1,000,000,000
62
+ 1 ≤ **Hi** ≤ 1,000,000
63
+ The sum of **N** values across all **T** cases does not exceed 2,000,000.
64
+
65
+ ### Explanation of Sample
66
+
67
+ In the first case, the sunlight's direction _a_ is drawn uniformly at random
68
+ from the interval [44, 46]. As described above, the length of ground covered
69
+ in shadows when _a_ = 45 is exactly 100. When _a_ = 44, the shadow's length is
70
+ ~96.57, and when _a_ = 46, its length is ~103.55. However, note that its
71
+ expected length for this distribution of possible _a_ values is not equal to
72
+ the average of those sample lengths.
73
+
2017/finals/poles.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 100.020314016
2
+ Case #2: 199.157629122
3
+ Case #3: 5.731972014
4
+ Case #4: 29594.141688738
5
+ Case #5: 155.088749996
6
+ Case #6: 540.964700227
7
+ Case #7: 126.382789019
8
+ Case #8: 1.586234811
9
+ Case #9: 540.964700227
10
+ Case #10: 127.947392195
11
+ Case #11: 1461095.416128784
12
+ Case #12: 1432754.504519450
13
+ Case #13: 1628184.422929403
14
+ Case #14: 177448.735071926
15
+ Case #15: 2504.658183565
16
+ Case #16: 6199.844885954
17
+ Case #17: 1661.458735424
18
+ Case #18: 1342.586511189
19
+ Case #19: 2426.361263193
20
+ Case #20: 3884.965136178
21
+ Case #21: 1772.164136795
22
+ Case #22: 992.500138918
23
+ Case #23: 5276.187756659
24
+ Case #24: 142985.603513587
25
+ Case #25: 1024.929137712
26
+ Case #26: 1114.779671090
27
+ Case #27: 4987.183650761
28
+ Case #28: 34755.461192247
29
+ Case #29: 2071.210292890
30
+ Case #30: 1734.160405930
2017/finals/strolls.cpp ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Strolls
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-12;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=GETCHAR();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define LIM 500000
82
+
83
+ int main()
84
+ {
85
+ // vars
86
+ int T,t;
87
+ int N;
88
+ int i,j,a,b,h;
89
+ LL ans1,ans2;
90
+ static int H[LIM];
91
+ static PR P[LIM];
92
+ stack<PR> ST;
93
+ set<int> S;
94
+ set<int>::iterator I;
95
+ // testcase loop
96
+ Read(T);
97
+ Fox1(t,T)
98
+ {
99
+ // input
100
+ Read(N);
101
+ Fox(i,N)
102
+ {
103
+ Read(H[i]);
104
+ P[i]=mp(H[i],i);
105
+ }
106
+ // PART 1: sum of distances
107
+ ans1=0;
108
+ // get base sum assuming no bridges
109
+ Fox(i,N)
110
+ ans1+=H[i];
111
+ ans1*=N-1;
112
+ Fox1(i,N-1)
113
+ ans1+=(LL)i*(N-i);
114
+ // process trees bottom-to-top
115
+ sort(P,P+N);
116
+ S.clear();
117
+ S.insert(-1);
118
+ S.insert(N);
119
+ Fox(i,N)
120
+ {
121
+ h=P[i].x;
122
+ j=P[i].y;
123
+ // find interval of paths having this as their shortest tree
124
+ I=S.lower_bound(j);
125
+ b=*I - 1;
126
+ I--;
127
+ a=*I + 1;
128
+ // subtract total distance saved by bridges
129
+ ans1-=(LL)h*2*((LL)(j-a)*(b-j) + (b-a));
130
+ // insert this tree
131
+ S.insert(j);
132
+ }
133
+ // PART 2: number of bridges
134
+ ans2=0;
135
+ // process trees left-to-right
136
+ while (!ST.empty())
137
+ ST.pop();
138
+ ST.push(mp(0,0));
139
+ Fox1(i,N-1)
140
+ if (H[i]>=H[i-1])
141
+ {
142
+ // at least as high as envelope's highest point, so build single bridge backwards
143
+ if (ST.top().x==H[i-1])
144
+ ST.pop();
145
+ ST.push(mp(H[i-1],i));
146
+ ans2++;
147
+ }
148
+ else
149
+ {
150
+ // clip off higher parts of envelope
151
+ j=i-1;
152
+ while (ST.top().x>H[i])
153
+ j=ST.top().y,ST.pop();
154
+ // build row of bridges back across, and update envelope
155
+ if (!ST.top().x)
156
+ ans2+=i-j;
157
+ else
158
+ {
159
+ ans2+=i-ST.top().y;
160
+ h=ST.top().x,ST.pop();
161
+ if (H[i]!=h)
162
+ ST.push(mp(h,j));
163
+ }
164
+ ST.push(mp(H[i],i));
165
+ }
166
+ // output
167
+ printf("Case #%d: %lld %lld\n",t,ans1,ans2);
168
+ }
169
+ return(0);
170
+ }
2017/finals/strolls.html ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ A certain forest has <strong>N</strong> trees growing in it, and there just so happens to be a Fox living at the top of each one!
3
+ The trees are numbered from 1 to <strong>N</strong>, and their bases are all arranged in a straight line on the ground,
4
+ with 1 metre between the bases of each pair of adjacent trees <em>i</em> and <em>i</em> + 1.
5
+ Each tree <em>i</em> is <strong>H<sub>i</sub></strong> metres tall.
6
+ </p>
7
+
8
+ </p>
9
+ The Foxen are all good friends with one another, and frequently like to go out for strolls to visit each other's homes.
10
+ Rather than jumping directly between the trees, they prefer to always keep their paws firmly planted on some surface, such as tree trunks or the ground.
11
+ As such, the shortest possible trip from the top of tree <em>i</em> to the top of another tree <em>j</em> requires
12
+ climbing down tree <em>i</em> to the ground, walking along the ground to the base of tree <em>j</em>,
13
+ and then climbing up to its top, resulting in a total distance of
14
+ <strong>H<sub>i</sub></strong> + |<em>j</em> - <em>i</em>| + <strong>H<sub>j</sub></strong> metres traveled.
15
+ </p>
16
+
17
+ <p>
18
+ However, the Foxen aren't terribly satisfied with how long their trips currently take.
19
+ Given the frequency of their strolls, they've decided to invest in reducing their travel distance
20
+ by constructing some bridges between the tree trunks.
21
+ They're only interested in building metre-long, horizontal bridges.
22
+ Each bridge may be constructed to connect any pair of adjacent trees <em>i</em> and <em>i</em> + 1,
23
+ and it may be placed at any height above the ground, as long as it touches both of those tree trunks
24
+ (in other words, its height must be no larger than the minimum of <strong>H<sub>i</sub></strong>
25
+ and <strong>H<sub>i+1</sub></strong>).
26
+ Multiple bridges may be constructed at different heights between any given pair of adjacent trees.
27
+ Once bridges are installed, the Foxen will be willing to walk across them, potentially saving them the time
28
+ of descending all the way to the ground during their strolls.
29
+ </p>
30
+
31
+ <p>
32
+ There are <strong>N</strong> * <strong>(N - 1)</strong> / 2 different pairs of Foxen <em>i</em> and <em>j</em>
33
+ who might want to meet up, requiring a trip to be taken from the top of tree <em>i</em> to the top of tree
34
+ <em>j</em> (or vice versa).
35
+ The Foxen's top priority is minimizing the sum of the <strong>N</strong> * <strong>(N - 1)</strong> / 2
36
+ pairwise shortest distances of strolls which would be required for these visits to take place.
37
+ Please help them determine the minimum possible value of this sum, assuming that they construct
38
+ as many bridges as it takes.
39
+ That being said, they don't want to spend all day constructing bridges either...
40
+ as such, they're also interested in the minimum number of bridges which they can construct to achieve that minimum
41
+ possible sum of pairwise distances.
42
+ </p>
43
+
44
+ <h3>Input</h3>
45
+
46
+ <p>
47
+ Input begins with an integer <strong>T</strong>, the number of forests.
48
+ For each forest, there are two lines. The first line contains the integer <strong>N</strong>.
49
+ The second line contains <strong>N</strong> space-separated integers,
50
+ the <em>i</em>th of which is the integer <strong>H<sub>i</sub></strong>.
51
+ </p>
52
+
53
+ <h3>Output</h3>
54
+
55
+ <p>
56
+ For the <em>i</em>th forest, print a line containing "Case #<strong>i</strong>: "
57
+ followed by two integers: the minimum possible sum of pairwise shortest distances after any number of bridges are built (in metres), and the minimum number of bridges required to achieve that minimum sum.
58
+ </p>
59
+
60
+ <h3>Constraints</h3>
61
+
62
+ <p>
63
+ 1 &le; <strong>T</strong> &le; 30 <br />
64
+ 2 &le; <strong>N</strong> &le; 500,000 <br />
65
+ 1 &le; <strong>H<sub>i</sub></strong> &le; 10,000,000 <br />
66
+ The sum of <strong>N</strong> values across all <strong>T</strong> cases does not exceed 6,000,000.
67
+ </p>
68
+
69
+ <h3>Explanation of Sample</h3>
70
+
71
+ <p>
72
+ In the first case, the Foxen's optimal strategy is to construct one bridge between the first 2 trees at a height of 20m, and another bridge between the last 2 trees at a height of 10m. With this configuration, the shortest path between the first 2 trees' tops is 11m long, as is the shortest path for the last 2 trees. The shortest path between the first tree's top and the last tree's top is 22m long. The resulting sum of pairwise shortest distances is then 44m, which is the minimum possible sum.
73
+ </p>
2017/finals/strolls.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fe710744cbf537741bbb7ebe8a9888e7917244eb30214ea02d0b11e65453b84
3
+ size 36557012
2017/finals/strolls.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A certain forest has **N** trees growing in it, and there just so happens to
2
+ be a Fox living at the top of each one! The trees are numbered from 1 to
3
+ **N**, and their bases are all arranged in a straight line on the ground, with
4
+ 1 metre between the bases of each pair of adjacent trees _i_ and _i_ \+ 1.
5
+ Each tree _i_ is **Hi** metres tall.
6
+
7
+ The Foxen are all good friends with one another, and frequently like to go out
8
+ for strolls to visit each other's homes. Rather than jumping directly between
9
+ the trees, they prefer to always keep their paws firmly planted on some
10
+ surface, such as tree trunks or the ground. As such, the shortest possible
11
+ trip from the top of tree _i_ to the top of another tree _j_ requires climbing
12
+ down tree _i_ to the ground, walking along the ground to the base of tree _j_,
13
+ and then climbing up to its top, resulting in a total distance of **Hi** \+
14
+ |_j_ \- _i_| + **Hj** metres traveled.
15
+
16
+ However, the Foxen aren't terribly satisfied with how long their trips
17
+ currently take. Given the frequency of their strolls, they've decided to
18
+ invest in reducing their travel distance by constructing some bridges between
19
+ the tree trunks. They're only interested in building metre-long, horizontal
20
+ bridges. Each bridge may be constructed to connect any pair of adjacent trees
21
+ _i_ and _i_ \+ 1, and it may be placed at any height above the ground, as long
22
+ as it touches both of those tree trunks (in other words, its height must be no
23
+ larger than the minimum of **Hi** and **Hi+1**). Multiple bridges may be
24
+ constructed at different heights between any given pair of adjacent trees.
25
+ Once bridges are installed, the Foxen will be willing to walk across them,
26
+ potentially saving them the time of descending all the way to the ground
27
+ during their strolls.
28
+
29
+ There are **N** * **(N - 1)** / 2 different pairs of Foxen _i_ and _j_ who
30
+ might want to meet up, requiring a trip to be taken from the top of tree _i_
31
+ to the top of tree _j_ (or vice versa). The Foxen's top priority is minimizing
32
+ the sum of the **N** * **(N - 1)** / 2 pairwise shortest distances of strolls
33
+ which would be required for these visits to take place. Please help them
34
+ determine the minimum possible value of this sum, assuming that they construct
35
+ as many bridges as it takes. That being said, they don't want to spend all day
36
+ constructing bridges either... as such, they're also interested in the minimum
37
+ number of bridges which they can construct to achieve that minimum possible
38
+ sum of pairwise distances.
39
+
40
+ ### Input
41
+
42
+ Input begins with an integer **T**, the number of forests. For each forest,
43
+ there are two lines. The first line contains the integer **N**. The second
44
+ line contains **N** space-separated integers, the _i_th of which is the
45
+ integer **Hi**.
46
+
47
+ ### Output
48
+
49
+ For the _i_th forest, print a line containing "Case #**i**: " followed by two
50
+ integers: the minimum possible sum of pairwise shortest distances after any
51
+ number of bridges are built (in metres), and the minimum number of bridges
52
+ required to achieve that minimum sum.
53
+
54
+ ### Constraints
55
+
56
+ 1 ≤ **T** ≤ 30
57
+ 2 ≤ **N** ≤ 500,000
58
+ 1 ≤ **Hi** ≤ 10,000,000
59
+ The sum of **N** values across all **T** cases does not exceed 6,000,000.
60
+
61
+ ### Explanation of Sample
62
+
63
+ In the first case, the Foxen's optimal strategy is to construct one bridge
64
+ between the first 2 trees at a height of 20m, and another bridge between the
65
+ last 2 trees at a height of 10m. With this configuration, the shortest path
66
+ between the first 2 trees' tops is 11m long, as is the shortest path for the
67
+ last 2 trees. The shortest path between the first tree's top and the last
68
+ tree's top is 22m long. The resulting sum of pairwise shortest distances is
69
+ then 44m, which is the minimum possible sum.
70
+
2017/finals/strolls.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 44 2
2
+ Case #2: 30 6
3
+ Case #3: 158 9
4
+ Case #4: 213877494 8
5
+ Case #5: 67828 26
6
+ Case #6: 40 4
7
+ Case #7: 62 5
8
+ Case #8: 64 4
9
+ Case #9: 66 5
10
+ Case #10: 1 1
11
+ Case #11: 1270694467527793009 3991523
12
+ Case #12: 1270089310668572086 4233586
13
+ Case #13: 1271258716744254028 4187288
14
+ Case #14: 1076962260755154 368610
15
+ Case #15: 154085676243923872 2143830
16
+ Case #16: 34868734969578 192125
17
+ Case #17: 42013086963397592 1016400
18
+ Case #18: 14227652173282473 970767
19
+ Case #19: 63891446396267944 1209911
20
+ Case #20: 54609935358656 317923
21
+ Case #21: 46568399312743270 3842959
22
+ Case #22: 42359072334166 267152801
23
+ Case #23: 23050539441884206 17994431223
24
+ Case #24: 20169516401652989 16526262785
25
+ Case #25: 9348834263019686 9893968817
26
+ Case #26: 32509644062872258 22648141115
27
+ Case #27: 54275273806021 317817471
28
+ Case #28: 3562914776995796 5205231509
29
+ Case #29: 46421890364145250 28680626068
30
+ Case #30: 2608880906805372 4195541434
2017/finals/tolls.cpp ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Final Round
3
+ // Fox Tolls
4
+ // Jacob Plachta
5
+
6
+ #include <algorithm>
7
+ #include <functional>
8
+ #include <numeric>
9
+ #include <iostream>
10
+ #include <iomanip>
11
+ #include <cstdio>
12
+ #include <cmath>
13
+ #include <complex>
14
+ #include <cstdlib>
15
+ #include <ctime>
16
+ #include <cstring>
17
+ #include <cassert>
18
+ #include <string>
19
+ #include <vector>
20
+ #include <list>
21
+ #include <map>
22
+ #include <set>
23
+ #include <deque>
24
+ #include <queue>
25
+ #include <stack>
26
+ #include <bitset>
27
+ #include <sstream>
28
+ using namespace std;
29
+
30
+ #define LL long long
31
+ #define LD long double
32
+ #define PR pair<int,int>
33
+
34
+ #define Fox(i,n) for (i=0; i<n; i++)
35
+ #define Fox1(i,n) for (i=1; i<=n; i++)
36
+ #define FoxI(i,a,b) for (i=a; i<=b; i++)
37
+ #define FoxR(i,n) for (i=(n)-1; i>=0; i--)
38
+ #define FoxR1(i,n) for (i=n; i>0; i--)
39
+ #define FoxRI(i,a,b) for (i=b; i>=a; i--)
40
+ #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
41
+ #define Min(a,b) a=min(a,b)
42
+ #define Max(a,b) a=max(a,b)
43
+ #define Sz(s) int((s).size())
44
+ #define All(s) (s).begin(),(s).end()
45
+ #define Fill(s,v) memset(s,v,sizeof(s))
46
+ #define pb push_back
47
+ #define mp make_pair
48
+ #define x first
49
+ #define y second
50
+
51
+ template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
52
+ template<typename T> T Sqr(T x) { return(x*x); }
53
+
54
+ const int INF = (int)1e9;
55
+ const LD EPS = 1e-12;
56
+ const LD PI = acos(-1.0);
57
+
58
+ bool Read(int &x)
59
+ {
60
+ char c,r=0,n=0;
61
+ x=0;
62
+ for(;;)
63
+ {
64
+ c=getchar();
65
+ if ((c<0) && (!r))
66
+ return(0);
67
+ if ((c=='-') && (!r))
68
+ n=1;
69
+ else
70
+ if ((c>='0') && (c<='9'))
71
+ x=x*10+c-'0',r=1;
72
+ else
73
+ if (r)
74
+ break;
75
+ }
76
+ if (n)
77
+ x=-x;
78
+ return(1);
79
+ }
80
+
81
+ #define LIM 500000
82
+ #define LIM2 2100000
83
+ #define MOD 1000000007
84
+
85
+ int ind;
86
+ int L[2][LIM],R[2][LIM],S[2][LIM];
87
+ vector<int> con[LIM];
88
+
89
+ int sz;
90
+ vector<int> lst[LIM2];
91
+
92
+ void rec(int z,int i,int p)
93
+ {
94
+ int j,k;
95
+ L[z][i]=ind++;
96
+ Fox(j,Sz(con[i]))
97
+ if ((k=con[i][j])!=p)
98
+ rec(z,k,i);
99
+ R[z][i]=ind-1;
100
+ S[z][i]=R[z][i]-L[z][i];
101
+ }
102
+
103
+ int Query(int i,int r1,int r2,int a,int b,int v1,int v2)
104
+ {
105
+ if ((a<=r1) && (r2<=b))
106
+ {
107
+ return(
108
+ lower_bound(lst[i].begin(),lst[i].end(),v2+1) -
109
+ lower_bound(lst[i].begin(),lst[i].end(),v1)
110
+ );
111
+ }
112
+ i<<=1;
113
+ int m=(r1+r2)>>1,s=0;
114
+ if (a<=m)
115
+ s+=Query(i,r1,m,a,b,v1,v2);
116
+ if (b>m)
117
+ s+=Query(i+1,m+1,r2,a,b,v1,v2);
118
+ return(s);
119
+ }
120
+
121
+ int main()
122
+ {
123
+ // vars
124
+ int T,t;
125
+ int N,M;
126
+ int i,j,k,a,b,z,z1,z2;
127
+ int ans,tot;
128
+ char c1,c2;
129
+ // testcase loop
130
+ Read(T);
131
+ Fox1(t,T)
132
+ {
133
+ // input
134
+ Read(N),Read(M);
135
+ Fox(z,2)
136
+ {
137
+ // clear graph
138
+ Fox(i,N)
139
+ con[i].clear();
140
+ // input tree
141
+ Fox(i,N-1)
142
+ {
143
+ Read(j),Read(k),j--,k--;
144
+ con[j].pb(k);
145
+ con[k].pb(j);
146
+ }
147
+ // calculate DFS ordering for this tree
148
+ ind=0;
149
+ rec(z,0,0);
150
+ }
151
+ // construct segment tree
152
+ for(sz=1;sz<N;sz<<=1);
153
+ Fox(i,sz<<1)
154
+ lst[i].clear();
155
+ Fox(i,N)
156
+ lst[sz+L[0][i]].pb(L[1][i]);
157
+ FoxR1(i,sz-1)
158
+ {
159
+ j=i<<1,k=j+1;
160
+ a=b=0;
161
+ while ((a<Sz(lst[j])) && (b<Sz(lst[k])))
162
+ if (lst[j][a]<lst[k][b])
163
+ lst[i].pb(lst[j][a++]);
164
+ else
165
+ lst[i].pb(lst[k][b++]);
166
+ while (a<Sz(lst[j]))
167
+ lst[i].pb(lst[j][a++]);
168
+ while (b<Sz(lst[k]))
169
+ lst[i].pb(lst[k][b++]);
170
+ }
171
+ // handle days
172
+ tot=0;
173
+ while (M--)
174
+ {
175
+ // input
176
+ Read(i),Read(j),i--,j--;
177
+ scanf("%c %c",&c1,&c2);
178
+ z1=c1=='T' ? 0 : 1;
179
+ z2=c2=='T' ? 0 : 1;
180
+ // same tree?
181
+ if (z1==z2)
182
+ {
183
+ z=z1;
184
+ if (L[z][i]>L[z][j])
185
+ swap(i,j);
186
+ // nested subtrees?
187
+ if (L[z][j]<=R[z][i])
188
+ {
189
+ ans=2*S[z][i] + S[z][j];
190
+ goto Done;
191
+ }
192
+ // disjoint subtrees
193
+ ans=2*(S[z][i] + S[z][j]);
194
+ goto Done;
195
+ }
196
+ // different trees
197
+ if (z1)
198
+ swap(i,j);
199
+ ans=2*(S[0][i] + S[1][j]);
200
+ if ((S[0][i]) && (S[1][j]))
201
+ ans-=Query(1,0,sz-1,L[0][i]+1,R[0][i],L[1][j]+1,R[1][j]);
202
+ // update total
203
+ Done:;
204
+ tot=((LL)tot*12345+ans)%MOD;
205
+ }
206
+ //output
207
+ printf("Case #%d: %d\n",t,tot);
208
+ }
209
+ return(0);
210
+ }
2017/finals/tolls.html ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ A group of <strong>N</strong> Foxen reside in a peaceful forest community.
3
+ Each Fox's property consists of a tree stump as well as an underground den.
4
+ There are <strong>N</strong> - 1 two-way paths on the ground running amongst the tree stumps,
5
+ with the <em>i</em>th path connecting the stumps belonging to two different Foxen
6
+ <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>,
7
+ such that all <strong>N</strong> stumps can be reached from one another by following a sequence of paths.
8
+ Similarly, there are <strong>N</strong> - 1 underground tunnels running amongst the dens,
9
+ with the <em>i</em>th tunnel connecting the dens belonging to Foxen
10
+ <strong>C<sub>i</sub></strong> and <strong>D<sub>i</sub></strong>,
11
+ such that all <strong>N</strong> dens can be reached from one another.
12
+ There's additionally a passageway connecting the tree stump and den belonging to the 1st Fox,
13
+ which is the only way in the whole forest to get underground from the surface and vice versa.
14
+ </p>
15
+
16
+ <p>
17
+ At night the Foxen sleep in their dens, but during the daytime, they like to emerge and relax lazily on their tree stumps.
18
+ Each day, every Fox takes a trip from their den to their tree stump,
19
+ taking the unique shortest path through the system of tunnels and paths to get there.
20
+ However, this often requires passing through other Foxen's properties, which they don't appreciate a whole lot.
21
+ To compensate, the Foxen have started charging each other tolls for said passage.
22
+ They don't have much of a currency, but Foxen do love crackers, so those will do.
23
+ Over a given period of <strong>M</strong> days, on the <em>i</em>th day, two different Foxen
24
+ <strong>W<sub>i</sub></strong> and <strong>X<sub>i</sub></strong> will each charge tolls for one of their pieces of property.
25
+ If <strong>Y<sub>i</sub></strong> = "T",
26
+ then Fox <strong>W<sub>i</sub></strong> will be charging tolls for passage through their tree stump.
27
+ Otherwise, if <strong>Y<sub>i</sub></strong> = "D",
28
+ then Fox <strong>W<sub>i</sub></strong> will instead be charging tolls for passage through their den.
29
+ Similarly, Fox <strong>X<sub>i</sub></strong> will be charging tolls for passage through either their tree stump
30
+ (if <strong>Z<sub>i</sub></strong>= "T") or their den (if <strong>Z<sub>i</sub></strong>= "D").
31
+ </p>
32
+
33
+ <p>
34
+ Each day, whenever a Fox passes through another Fox's den or stump which is subject to tolls on that day,
35
+ they'll normally need to pay up with 2 crackers. However, if they've already paid a toll earlier on that same trip,
36
+ then the property-owning Fox will take pity and only charge them 1 cracker instead of 2.
37
+ As such, a Fox's daily trip may end up costing them at most 3 crackers. A Fox will never charge themselves a toll, of course. If a pair of Foxen both owe each other crackers, they'll still both pay up as normal, rather than attempting to minimize the number of cracker transactions performed.
38
+ </p>
39
+
40
+ <p>
41
+ The Foxen are having some trouble keeping track of how many crackers they owe one another. On each of the <strong>M</strong> days, they'd like to count up the total number of crackers which will be charged as part of the tolls for the <strong>N</strong> trips taken on that day. To avoid dealing with too many large numbers, they'd like to combine these <strong>M</strong> cracker counts into a single value as follows (where <strong>V<sub>i</sub></strong> is the <em>i</em>th day's count):
42
+ </p>
43
+
44
+ <p>
45
+ &nbsp;&nbsp;&nbsp;&nbsp;
46
+ ( ... (((<strong>V<sub>1</sub></strong> * 12,345) + <strong>V<sub>2</sub></strong>) * 12,345 + <strong>V<sub>3</sub></strong>) ... * 12,345 + <strong>V<sub>M</sub></strong>) modulo 1,000,000,007
47
+ </p>
48
+
49
+ <p>
50
+ Please help the Foxen compute this combined value!
51
+ </p>
52
+
53
+ <h3>Input</h3>
54
+
55
+ <p>
56
+ Input begins with an integer <strong>T</strong>, the number of different communities of Foxen.
57
+ For each community of Foxen, there is first a line containing the space-separated integers <strong>N</strong> and <strong>M</strong>.
58
+ Then <strong>N - 1</strong> lines follow, the <em>i</em>th of which contains the space-separated integers
59
+ <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>.
60
+ Then <strong>N - 1</strong> lines follow, the <em>i</em>th of which contains the space-separated integers
61
+ <strong>C<sub>i</sub></strong> and <strong>D<sub>i</sub></strong>.
62
+ Then <strong>M</strong> lines follow, the <em>i</em>th of which contains the integers
63
+ <strong>W<sub>i</sub></strong> and <strong>X<sub>i</sub></strong> and the characters
64
+ <strong>Y<sub>i</sub></strong> and <strong>Z<sub>i</sub></strong>, all separated by spaces.
65
+ </p>
66
+
67
+ <h3>Output</h3>
68
+
69
+ <p>
70
+ For the <em>i</em>th community of Foxen, print a line containing "Case #<strong>i</strong>: "
71
+ followed by a single integer, the requested combined value based on the <strong>M</strong> days' cracker counts, modulo 1,000,000,007.
72
+ </p>
73
+
74
+ <h3>Constraints</h3>
75
+
76
+ <p>
77
+ 1 &le; <strong>T</strong> &le; 30<br />
78
+ 2 &le; <strong>N</strong> &le; 500,000 <br />
79
+ 1 &le; <strong>M</strong> &le; 500,000 <br />
80
+ 1 &le;
81
+ <strong>A<sub>i</sub></strong>, <strong>B<sub>i</sub></strong>,
82
+ <strong>C<sub>i</sub></strong>, <strong>D<sub>i</sub></strong>,
83
+ <strong>W<sub>i</sub></strong>, <strong>X<sub>i</sub></strong>
84
+ &le; <strong>N</strong> <br />
85
+ Both the sum of <strong>N</strong> values and the sum of <strong>M</strong> values across all <strong>T</strong> cases do not exceed 1,500,000.
86
+ </p>
87
+
88
+ <h3>Explanation of Sample</h3>
89
+
90
+ <p>
91
+ In the first case, Fox 1 doesn't need to pay any tolls to get from its den to its tree stump, while Fox 2 must pay 2 crackers to complete its trip due to passing through Fox's 1 tree stump.
92
+ </p>
93
+
94
+ <p>
95
+ In the second case, 5 crackers will be charged on the first day (the 3 Foxen must pay 0, 2, and 3 crackers, respectively), 2 crackers will be charged on the second day, and none will be charged on the third day. This results in a final answer of (((5 * 12,345) + 2) * 12,345) + 0) modulo 1,000,000,007 = 762,019,815.
96
+ </p>
97
+
98
+ <p>
99
+ In the third case, 7, 6, and 4 crackers will be charged on each of the three days, respectively.
100
+ </p>
2017/finals/tolls.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1df58783e9feba1244b6e94657061d40c81c94a6d4c1df75f194e0f854256cb0
3
+ size 47154883
2017/finals/tolls.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A group of **N** Foxen reside in a peaceful forest community. Each Fox's
2
+ property consists of a tree stump as well as an underground den. There are
3
+ **N** \- 1 two-way paths on the ground running amongst the tree stumps, with
4
+ the _i_th path connecting the stumps belonging to two different Foxen **Ai**
5
+ and **Bi**, such that all **N** stumps can be reached from one another by
6
+ following a sequence of paths. Similarly, there are **N** \- 1 underground
7
+ tunnels running amongst the dens, with the _i_th tunnel connecting the dens
8
+ belonging to Foxen **Ci** and **Di**, such that all **N** dens can be reached
9
+ from one another. There's additionally a passageway connecting the tree stump
10
+ and den belonging to the 1st Fox, which is the only way in the whole forest to
11
+ get underground from the surface and vice versa.
12
+
13
+ At night the Foxen sleep in their dens, but during the daytime, they like to
14
+ emerge and relax lazily on their tree stumps. Each day, every Fox takes a trip
15
+ from their den to their tree stump, taking the unique shortest path through
16
+ the system of tunnels and paths to get there. However, this often requires
17
+ passing through other Foxen's properties, which they don't appreciate a whole
18
+ lot. To compensate, the Foxen have started charging each other tolls for said
19
+ passage. They don't have much of a currency, but Foxen do love crackers, so
20
+ those will do. Over a given period of **M** days, on the _i_th day, two
21
+ different Foxen **Wi** and **Xi** will each charge tolls for one of their
22
+ pieces of property. If **Yi** = "T", then Fox **Wi** will be charging tolls
23
+ for passage through their tree stump. Otherwise, if **Yi** = "D", then Fox
24
+ **Wi** will instead be charging tolls for passage through their den.
25
+ Similarly, Fox **Xi** will be charging tolls for passage through either their
26
+ tree stump (if **Zi**= "T") or their den (if **Zi**= "D").
27
+
28
+ Each day, whenever a Fox passes through another Fox's den or stump which is
29
+ subject to tolls on that day, they'll normally need to pay up with 2 crackers.
30
+ However, if they've already paid a toll earlier on that same trip, then the
31
+ property-owning Fox will take pity and only charge them 1 cracker instead of
32
+ 2. As such, a Fox's daily trip may end up costing them at most 3 crackers. A
33
+ Fox will never charge themselves a toll, of course. If a pair of Foxen both
34
+ owe each other crackers, they'll still both pay up as normal, rather than
35
+ attempting to minimize the number of cracker transactions performed.
36
+
37
+ The Foxen are having some trouble keeping track of how many crackers they owe
38
+ one another. On each of the **M** days, they'd like to count up the total
39
+ number of crackers which will be charged as part of the tolls for the **N**
40
+ trips taken on that day. To avoid dealing with too many large numbers, they'd
41
+ like to combine these **M** cracker counts into a single value as follows
42
+ (where **Vi** is the _i_th day's count):
43
+
44
+ ( ... (((**V1** * 12,345) + **V2**) * 12,345 + **V3**) ... * 12,345 + **VM**)
45
+ modulo 1,000,000,007
46
+
47
+ Please help the Foxen compute this combined value!
48
+
49
+ ### Input
50
+
51
+ Input begins with an integer **T**, the number of different communities of
52
+ Foxen. For each community of Foxen, there is first a line containing the
53
+ space-separated integers **N** and **M**. Then **N - 1** lines follow, the
54
+ _i_th of which contains the space-separated integers **Ai** and **Bi**. Then
55
+ **N - 1** lines follow, the _i_th of which contains the space-separated
56
+ integers **Ci** and **Di**. Then **M** lines follow, the _i_th of which
57
+ contains the integers **Wi** and **Xi** and the characters **Yi** and **Zi**,
58
+ all separated by spaces.
59
+
60
+ ### Output
61
+
62
+ For the _i_th community of Foxen, print a line containing "Case #**i**: "
63
+ followed by a single integer, the requested combined value based on the **M**
64
+ days' cracker counts, modulo 1,000,000,007.
65
+
66
+ ### Constraints
67
+
68
+ 1 ≤ **T** ≤ 30
69
+ 2 ≤ **N** ≤ 500,000
70
+ 1 ≤ **M** ≤ 500,000
71
+ 1 ≤ **Ai**, **Bi**, **Ci**, **Di**, **Wi**, **Xi** ≤ **N**
72
+ Both the sum of **N** values and the sum of **M** values across all **T**
73
+ cases do not exceed 1,500,000.
74
+
75
+ ### Explanation of Sample
76
+
77
+ In the first case, Fox 1 doesn't need to pay any tolls to get from its den to
78
+ its tree stump, while Fox 2 must pay 2 crackers to complete its trip due to
79
+ passing through Fox's 1 tree stump.
80
+
81
+ In the second case, 5 crackers will be charged on the first day (the 3 Foxen
82
+ must pay 0, 2, and 3 crackers, respectively), 2 crackers will be charged on
83
+ the second day, and none will be charged on the third day. This results in a
84
+ final answer of (((5 * 12,345) + 2) * 12,345) + 0) modulo 1,000,000,007 =
85
+ 762,019,815.
86
+
87
+ In the third case, 7, 6, and 4 crackers will be charged on each of the three
88
+ days, respectively.
89
+
2017/finals/tolls.out ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 762019815
3
+ Case #3: 66867242
4
+ Case #4: 537335547
5
+ Case #5: 874784450
6
+ Case #6: 2
7
+ Case #7: 24692
8
+ Case #8: 73447302
9
+ Case #9: 669976683
10
+ Case #10: 219446081
11
+ Case #11: 904947270
12
+ Case #12: 409408195
13
+ Case #13: 865385861
14
+ Case #14: 389014816
15
+ Case #15: 181175579
16
+ Case #16: 908478491
17
+ Case #17: 794274425
18
+ Case #18: 546269402
19
+ Case #19: 475069547
20
+ Case #20: 702572093
21
+ Case #21: 326135465
22
+ Case #22: 35062074
23
+ Case #23: 726328157
24
+ Case #24: 388616994
25
+ Case #25: 186249620
26
+ Case #26: 395528232
27
+ Case #27: 912756755
28
+ Case #28: 708169574
29
+ Case #29: 158143482
30
+ Case #30: 67974385
2017/quals/592385891651966.jpg ADDED

Git LFS Details

  • SHA256: c7315bb51ccdf27a89722e1f8450896350098ac723b5090d866dcb18b950d148
  • Pointer size: 129 Bytes
  • Size of remote file: 5.13 kB
2017/quals/fightingthezombie.html ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ <strong>"Okay, Wizard, cast your spell!"</strong>
3
+ </p>
4
+
5
+ <p>
6
+ But which of your many spells to cast? In the ever-popular role-playing game
7
+ <em>Dungeons & Dragons</em>, or <em>D&D</em>, you determine a spell's damage
8
+ by rolling polyhedral
9
+ dice with 4, 6, 8, 10, 12, or 20 sides. Since there's a lot of dice-rolling
10
+ involved, players use shorthand to denote which dice should be rolled.
11
+ <strong>X</strong>d<strong>Y</strong> means
12
+ "roll a <strong>Y</strong>-sided die <strong>X</strong> times, and sum the rolls''.
13
+ Sometimes, you must add or subtract a value <strong>Z</strong> after
14
+ you finish rolling, in which case the notation is
15
+ <strong>X</strong>d<strong>Y</strong>+<strong>Z</strong> or
16
+ <strong>X</strong>d<strong>Y</strong>-<strong>Z</strong> respectively.
17
+ </p>
18
+
19
+ <p>
20
+ For example, if you roll 2d4+1, you'll end up with a result between 3 and 9
21
+ inclusive. If you roll 1d6-3, your result will be between -2 and 3 inclusive.
22
+ </p>
23
+
24
+ <p>
25
+ In <em>D&D</em>, wizards are powerful but flimsy spellcasters. As a wizard
26
+ fighting a zombie, your best strategy is to maximize the chance that you can
27
+ kill the zombie with a single spell before it has a chance to retaliate. What
28
+ spell should you cast?
29
+ </p>
30
+
31
+
32
+
33
+ <h3>Input</h3>
34
+
35
+ <p>
36
+ Input begins with an integer <strong>T</strong>, the number of zombies
37
+ you'll fight. For each zombie, there are two lines. The first contains two
38
+ integers, <strong>H</strong> and <strong>S</strong>, the minimum amount of
39
+ damage it takes to defeat the zombie, and the number of spells you have prepared,
40
+ respectively. The second line contains <strong>S</strong> spell descriptions separated by
41
+ single spaces. A spell description is simply the amount of damage a spell does
42
+ in the notation described above.
43
+ </p>
44
+
45
+
46
+
47
+ <h3>Output</h3>
48
+
49
+ <p>
50
+ For each zombie, print a line containing the probability of defeating the zombie if you select your spell optimally.
51
+ </p>
52
+
53
+ <p>
54
+ Absolute and relative errors of up to 1e-6 will be ignored.
55
+ </p>
56
+
57
+ <h3>Constraints</h3>
58
+
59
+ <p>
60
+ 1 &le; <strong>T</strong> &le; 1,000 <br />
61
+ 1 &le; <strong>H</strong> &le; 10,000 <br />
62
+ 2 &le; <strong>S</strong> &le; 10 <br />
63
+ </p>
64
+
65
+ <p>
66
+ Additionally, the following constraints will hold for each spell:
67
+ </p>
68
+
69
+ <p>
70
+ 1 &le; <strong>X</strong> &le; 20 <br />
71
+ <strong>Y</strong> &isin; {4, 6, 8, 10, 12, 20} <br />
72
+ 1 &le; <strong>Z</strong> &le; 10,000, if <strong>Z</strong> is specified. <br />
73
+ <strong>X</strong>, <strong>Y</strong>, and <strong>Z</strong>
74
+ will be integers with no leading zeros. <br />
75
+ </p>
76
+
77
+ <h3>Explanation of Sample</h3>
78
+
79
+ <p>
80
+ In the first case, you can guarantee a kill with the first spell, which must always do at least 2 damage.
81
+ </p>
82
+
83
+ <p>
84
+ In the third case, your first spell is the best. If you roll a 4, you'll do the requisite 8 damage. The second spell requires
85
+ rolling a 4 on two dice rather than just one, and the third spell requires rolling a 4 on all three dice.
86
+ </p>
2017/quals/fightingthezombie.in ADDED
The diff for this file is too large to render. See raw diff
 
2017/quals/fightingthezombie.java ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Qualification Round
3
+ // Fighting The Zombie
4
+ // Wesley May
5
+
6
+ import java.util.*;
7
+
8
+ public class FightingTheZombie
9
+ {
10
+ static int H;
11
+
12
+ public static void main(String args[])
13
+ {
14
+ double EPS = 0.000001;
15
+ Scanner scan = new Scanner(System.in);
16
+ int T = scan.nextInt();
17
+
18
+ for(int ca=1;ca <= T;ca++)
19
+ {
20
+ H = scan.nextInt();
21
+ int S = scan.nextInt();
22
+ Spell[] a = new Spell[S];
23
+
24
+ for(int i=0;i < S;i++)
25
+ {
26
+ String str = scan.next();
27
+ int X, Y, Z;
28
+
29
+ int didx = str.indexOf("d");
30
+ int plusidx = str.indexOf("+");
31
+ int minusidx = str.indexOf("-");
32
+
33
+ X = Integer.parseInt(str.substring(0, didx));
34
+
35
+ if(plusidx >= 0)
36
+ {
37
+ Y = Integer.parseInt(str.substring(didx+1, plusidx));
38
+ Z = Integer.parseInt(str.substring(plusidx));
39
+ }
40
+ else if(minusidx >= 0)
41
+ {
42
+ Y = Integer.parseInt(str.substring(didx+1,minusidx));
43
+ Z = Integer.parseInt(str.substring(minusidx));
44
+ }
45
+ else
46
+ {
47
+ Y = Integer.parseInt(str.substring(didx+1));
48
+ Z = 0;
49
+ }
50
+
51
+ a[i] = new Spell(X, Y, Z);
52
+ }
53
+
54
+ Arrays.sort(a);
55
+
56
+ System.out.printf("Case #%d: %.6f\n", ca, a[0].p);
57
+ }
58
+ }
59
+
60
+ static class Spell implements Comparable<Spell>
61
+ {
62
+ int x, y, z;
63
+ public double p;
64
+ double[][] dp;
65
+
66
+ public Spell(int ix, int iy, int iz)
67
+ {
68
+ x = ix;
69
+ y = iy;
70
+ z = iz;
71
+ int newH = H - z;
72
+
73
+ if(newH <= 0)
74
+ {
75
+ p = 1;
76
+ return;
77
+ }
78
+
79
+ dp = new double[newH+1][x+1];
80
+ for(int i=0;i < dp.length;i++)
81
+ Arrays.fill(dp[i], -1);
82
+
83
+ p = f(newH, x);
84
+ }
85
+
86
+ private double f(int h, int d)
87
+ {
88
+ if(h <= 0) return 1;
89
+ if(d == 0) return 0;
90
+ if(dp[h][d] >= 0) return dp[h][d];
91
+
92
+ double ans = 0;
93
+ for(int i=1;i <= y;i++)
94
+ {
95
+ ans += (1.0 / y) * f(h-i, d-1);
96
+ }
97
+
98
+ return dp[h][d] = ans;
99
+ }
100
+
101
+ public int compareTo(Spell that) {
102
+ if(this.p > that.p) return -1;
103
+ if(this.p < that.p) return 1;
104
+ return 0;
105
+ }
106
+ }
107
+ }
2017/quals/fightingthezombie.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **"Okay, Wizard, cast your spell!"**
2
+
3
+ But which of your many spells to cast? In the ever-popular role-playing game
4
+ _Dungeons & Dragons_, or _D&D_, you determine a spell's damage by rolling
5
+ polyhedral dice with 4, 6, 8, 10, 12, or 20 sides. Since there's a lot of
6
+ dice-rolling involved, players use shorthand to denote which dice should be
7
+ rolled. **X**d**Y** means "roll a **Y**-sided die **X** times, and sum the
8
+ rolls''. Sometimes, you must add or subtract a value **Z** after you finish
9
+ rolling, in which case the notation is **X**d**Y**+**Z** or **X**d**Y**-**Z**
10
+ respectively.
11
+
12
+ For example, if you roll 2d4+1, you'll end up with a result between 3 and 9
13
+ inclusive. If you roll 1d6-3, your result will be between -2 and 3 inclusive.
14
+
15
+ In _D&D_, wizards are powerful but flimsy spellcasters. As a wizard fighting a
16
+ zombie, your best strategy is to maximize the chance that you can kill the
17
+ zombie with a single spell before it has a chance to retaliate. What spell
18
+ should you cast?
19
+
20
+ ### Input
21
+
22
+ Input begins with an integer **T**, the number of zombies you'll fight. For
23
+ each zombie, there are two lines. The first contains two integers, **H** and
24
+ **S**, the minimum amount of damage it takes to defeat the zombie, and the
25
+ number of spells you have prepared, respectively. The second line contains
26
+ **S** spell descriptions separated by single spaces. A spell description is
27
+ simply the amount of damage a spell does in the notation described above.
28
+
29
+ ### Output
30
+
31
+ For each zombie, print a line containing the probability of defeating the
32
+ zombie if you select your spell optimally.
33
+
34
+ Absolute and relative errors of up to 1e-6 will be ignored.
35
+
36
+ ### Constraints
37
+
38
+ 1 ≤ **T** ≤ 1,000
39
+ 1 ≤ **H** ≤ 10,000
40
+ 2 ≤ **S** ≤ 10
41
+
42
+ Additionally, the following constraints will hold for each spell:
43
+
44
+ 1 ≤ **X** ≤ 20
45
+ **Y** ∈ {4, 6, 8, 10, 12, 20}
46
+ 1 ≤ **Z** ≤ 10,000, if **Z** is specified.
47
+ **X**, **Y**, and **Z** will be integers with no leading zeros.
48
+
49
+ ### Explanation of Sample
50
+
51
+ In the first case, you can guarantee a kill with the first spell, which must
52
+ always do at least 2 damage.
53
+
54
+ In the third case, your first spell is the best. If you roll a 4, you'll do
55
+ the requisite 8 damage. The second spell requires rolling a 4 on two dice
56
+ rather than just one, and the third spell requires rolling a 4 on all three
57
+ dice.
58
+
2017/quals/fightingthezombie.out ADDED
@@ -0,0 +1,2005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1.000000
2
+ Case #2: 0.998520
3
+ Case #3: 0.250000
4
+ Case #4: 0.002500
5
+ Case #5: 0.400000
6
+ Case #6: 1.000000
7
+ Case #7: 0.000233
8
+ Case #8: 1.000000
9
+ Case #9: 1.000000
10
+ Case #10: 1.000000
11
+ Case #11: 0.999959
12
+ Case #12: 1.000000
13
+ Case #13: 0.999869
14
+ Case #14: 0.999892
15
+ Case #15: 1.000000
16
+ Case #16: 1.000000
17
+ Case #17: 1.000000
18
+ Case #18: 1.000000
19
+ Case #19: 1.000000
20
+ Case #20: 0.964421
21
+ Case #21: 0.000000
22
+ Case #22: 0.983925
23
+ Case #23: 0.999995
24
+ Case #24: 1.000000
25
+ Case #25: 0.999973
26
+ Case #26: 1.000000
27
+ Case #27: 0.981068
28
+ Case #28: 0.998299
29
+ Case #29: 0.954580
30
+ Case #30: 1.000000
31
+ Case #31: 1.000000
32
+ Case #32: 0.999939
33
+ Case #33: 1.000000
34
+ Case #34: 0.864193
35
+ Case #35: 1.000000
36
+ Case #36: 0.999976
37
+ Case #37: 1.000000
38
+ Case #38: 1.000000
39
+ Case #39: 1.000000
40
+ Case #40: 0.546425
41
+ Case #41: 1.000000
42
+ Case #42: 0.999659
43
+ Case #43: 1.000000
44
+ Case #44: 1.000000
45
+ Case #45: 0.999892
46
+ Case #46: 1.000000
47
+ Case #47: 1.000000
48
+ Case #48: 0.336282
49
+ Case #49: 1.000000
50
+ Case #50: 0.999982
51
+ Case #51: 0.998978
52
+ Case #52: 1.000000
53
+ Case #53: 0.977943
54
+ Case #54: 1.000000
55
+ Case #55: 1.000000
56
+ Case #56: 1.000000
57
+ Case #57: 1.000000
58
+ Case #58: 0.999991
59
+ Case #59: 0.000016
60
+ Case #60: 0.999366
61
+ Case #61: 1.000000
62
+ Case #62: 0.968075
63
+ Case #63: 0.086123
64
+ Case #64: 1.000000
65
+ Case #65: 0.999976
66
+ Case #66: 1.000000
67
+ Case #67: 1.000000
68
+ Case #68: 0.982362
69
+ Case #69: 0.996338
70
+ Case #70: 1.000000
71
+ Case #71: 0.987706
72
+ Case #72: 1.000000
73
+ Case #73: 0.971707
74
+ Case #74: 0.000018
75
+ Case #75: 1.000000
76
+ Case #76: 0.001207
77
+ Case #77: 1.000000
78
+ Case #78: 0.663941
79
+ Case #79: 0.999629
80
+ Case #80: 1.000000
81
+ Case #81: 1.000000
82
+ Case #82: 1.000000
83
+ Case #83: 0.996675
84
+ Case #84: 0.987480
85
+ Case #85: 0.002587
86
+ Case #86: 0.999914
87
+ Case #87: 1.000000
88
+ Case #88: 1.000000
89
+ Case #89: 1.000000
90
+ Case #90: 0.999998
91
+ Case #91: 0.389099
92
+ Case #92: 0.999999
93
+ Case #93: 0.989286
94
+ Case #94: 1.000000
95
+ Case #95: 1.000000
96
+ Case #96: 0.933991
97
+ Case #97: 1.000000
98
+ Case #98: 0.821073
99
+ Case #99: 1.000000
100
+ Case #100: 1.000000
101
+ Case #101: 1.000000
102
+ Case #102: 0.083033
103
+ Case #103: 0.658445
104
+ Case #104: 0.700241
105
+ Case #105: 1.000000
106
+ Case #106: 0.888174
107
+ Case #107: 0.990281
108
+ Case #108: 0.999858
109
+ Case #109: 0.977055
110
+ Case #110: 1.000000
111
+ Case #111: 0.997906
112
+ Case #112: 1.000000
113
+ Case #113: 0.972764
114
+ Case #114: 1.000000
115
+ Case #115: 0.855255
116
+ Case #116: 0.662303
117
+ Case #117: 1.000000
118
+ Case #118: 1.000000
119
+ Case #119: 1.000000
120
+ Case #120: 0.999999
121
+ Case #121: 0.988194
122
+ Case #122: 1.000000
123
+ Case #123: 1.000000
124
+ Case #124: 0.999996
125
+ Case #125: 1.000000
126
+ Case #126: 1.000000
127
+ Case #127: 0.999453
128
+ Case #128: 0.999973
129
+ Case #129: 1.000000
130
+ Case #130: 0.999995
131
+ Case #131: 0.999980
132
+ Case #132: 0.999917
133
+ Case #133: 0.009258
134
+ Case #134: 1.000000
135
+ Case #135: 0.894842
136
+ Case #136: 0.999992
137
+ Case #137: 1.000000
138
+ Case #138: 1.000000
139
+ Case #139: 1.000000
140
+ Case #140: 1.000000
141
+ Case #141: 0.994821
142
+ Case #142: 0.999912
143
+ Case #143: 0.999979
144
+ Case #144: 1.000000
145
+ Case #145: 1.000000
146
+ Case #146: 0.018396
147
+ Case #147: 0.998735
148
+ Case #148: 0.085678
149
+ Case #149: 0.911379
150
+ Case #150: 0.992869
151
+ Case #151: 1.000000
152
+ Case #152: 0.143940
153
+ Case #153: 1.000000
154
+ Case #154: 1.000000
155
+ Case #155: 1.000000
156
+ Case #156: 0.258628
157
+ Case #157: 0.418266
158
+ Case #158: 1.000000
159
+ Case #159: 1.000000
160
+ Case #160: 0.998925
161
+ Case #161: 0.999982
162
+ Case #162: 1.000000
163
+ Case #163: 0.175668
164
+ Case #164: 0.999811
165
+ Case #165: 1.000000
166
+ Case #166: 1.000000
167
+ Case #167: 1.000000
168
+ Case #168: 0.251536
169
+ Case #169: 0.634878
170
+ Case #170: 1.000000
171
+ Case #171: 0.874498
172
+ Case #172: 1.000000
173
+ Case #173: 0.990470
174
+ Case #174: 1.000000
175
+ Case #175: 1.000000
176
+ Case #176: 0.999998
177
+ Case #177: 1.000000
178
+ Case #178: 0.988586
179
+ Case #179: 0.999692
180
+ Case #180: 0.999991
181
+ Case #181: 1.000000
182
+ Case #182: 0.978541
183
+ Case #183: 1.000000
184
+ Case #184: 0.805556
185
+ Case #185: 1.000000
186
+ Case #186: 0.947340
187
+ Case #187: 0.998707
188
+ Case #188: 1.000000
189
+ Case #189: 0.001151
190
+ Case #190: 0.473714
191
+ Case #191: 0.995358
192
+ Case #192: 1.000000
193
+ Case #193: 0.949930
194
+ Case #194: 1.000000
195
+ Case #195: 0.999976
196
+ Case #196: 1.000000
197
+ Case #197: 1.000000
198
+ Case #198: 1.000000
199
+ Case #199: 0.799600
200
+ Case #200: 0.147309
201
+ Case #201: 1.000000
202
+ Case #202: 0.060663
203
+ Case #203: 0.329834
204
+ Case #204: 0.000000
205
+ Case #205: 1.000000
206
+ Case #206: 0.999963
207
+ Case #207: 1.000000
208
+ Case #208: 1.000000
209
+ Case #209: 1.000000
210
+ Case #210: 0.999998
211
+ Case #211: 0.872667
212
+ Case #212: 1.000000
213
+ Case #213: 1.000000
214
+ Case #214: 0.538327
215
+ Case #215: 1.000000
216
+ Case #216: 0.999954
217
+ Case #217: 0.001962
218
+ Case #218: 0.999993
219
+ Case #219: 1.000000
220
+ Case #220: 0.926237
221
+ Case #221: 1.000000
222
+ Case #222: 1.000000
223
+ Case #223: 0.999747
224
+ Case #224: 0.000000
225
+ Case #225: 1.000000
226
+ Case #226: 0.406616
227
+ Case #227: 0.978664
228
+ Case #228: 0.999999
229
+ Case #229: 0.110985
230
+ Case #230: 1.000000
231
+ Case #231: 0.959743
232
+ Case #232: 0.986895
233
+ Case #233: 1.000000
234
+ Case #234: 1.000000
235
+ Case #235: 1.000000
236
+ Case #236: 0.999927
237
+ Case #237: 1.000000
238
+ Case #238: 1.000000
239
+ Case #239: 0.995914
240
+ Case #240: 1.000000
241
+ Case #241: 1.000000
242
+ Case #242: 0.994729
243
+ Case #243: 1.000000
244
+ Case #244: 0.999867
245
+ Case #245: 0.986895
246
+ Case #246: 1.000000
247
+ Case #247: 0.674402
248
+ Case #248: 1.000000
249
+ Case #249: 1.000000
250
+ Case #250: 0.999905
251
+ Case #251: 0.970590
252
+ Case #252: 1.000000
253
+ Case #253: 0.797458
254
+ Case #254: 0.215281
255
+ Case #255: 1.000000
256
+ Case #256: 1.000000
257
+ Case #257: 0.999994
258
+ Case #258: 0.999892
259
+ Case #259: 1.000000
260
+ Case #260: 0.990961
261
+ Case #261: 0.993895
262
+ Case #262: 0.999981
263
+ Case #263: 1.000000
264
+ Case #264: 1.000000
265
+ Case #265: 1.000000
266
+ Case #266: 0.999917
267
+ Case #267: 1.000000
268
+ Case #268: 0.178314
269
+ Case #269: 0.999996
270
+ Case #270: 1.000000
271
+ Case #271: 0.999992
272
+ Case #272: 1.000000
273
+ Case #273: 0.957793
274
+ Case #274: 1.000000
275
+ Case #275: 1.000000
276
+ Case #276: 0.117238
277
+ Case #277: 0.999985
278
+ Case #278: 0.999999
279
+ Case #279: 1.000000
280
+ Case #280: 0.999991
281
+ Case #281: 1.000000
282
+ Case #282: 1.000000
283
+ Case #283: 0.789916
284
+ Case #284: 0.905973
285
+ Case #285: 0.406027
286
+ Case #286: 1.000000
287
+ Case #287: 1.000000
288
+ Case #288: 0.999994
289
+ Case #289: 1.000000
290
+ Case #290: 0.990847
291
+ Case #291: 0.970183
292
+ Case #292: 1.000000
293
+ Case #293: 1.000000
294
+ Case #294: 1.000000
295
+ Case #295: 1.000000
296
+ Case #296: 0.752963
297
+ Case #297: 0.999998
298
+ Case #298: 0.967070
299
+ Case #299: 0.949402
300
+ Case #300: 1.000000
301
+ Case #301: 0.992311
302
+ Case #302: 1.000000
303
+ Case #303: 1.000000
304
+ Case #304: 0.999991
305
+ Case #305: 0.999981
306
+ Case #306: 1.000000
307
+ Case #307: 0.998531
308
+ Case #308: 1.000000
309
+ Case #309: 0.997420
310
+ Case #310: 1.000000
311
+ Case #311: 1.000000
312
+ Case #312: 0.999998
313
+ Case #313: 0.000000
314
+ Case #314: 1.000000
315
+ Case #315: 0.953125
316
+ Case #316: 0.999998
317
+ Case #317: 1.000000
318
+ Case #318: 0.994617
319
+ Case #319: 0.002063
320
+ Case #320: 1.000000
321
+ Case #321: 1.000000
322
+ Case #322: 1.000000
323
+ Case #323: 0.013688
324
+ Case #324: 0.648782
325
+ Case #325: 1.000000
326
+ Case #326: 1.000000
327
+ Case #327: 0.999997
328
+ Case #328: 1.000000
329
+ Case #329: 0.398225
330
+ Case #330: 1.000000
331
+ Case #331: 1.000000
332
+ Case #332: 1.000000
333
+ Case #333: 1.000000
334
+ Case #334: 1.000000
335
+ Case #335: 0.999677
336
+ Case #336: 0.115688
337
+ Case #337: 1.000000
338
+ Case #338: 0.999996
339
+ Case #339: 1.000000
340
+ Case #340: 0.999552
341
+ Case #341: 1.000000
342
+ Case #342: 0.999527
343
+ Case #343: 0.999983
344
+ Case #344: 1.000000
345
+ Case #345: 0.998238
346
+ Case #346: 1.000000
347
+ Case #347: 1.000000
348
+ Case #348: 0.967792
349
+ Case #349: 0.999954
350
+ Case #350: 0.037066
351
+ Case #351: 1.000000
352
+ Case #352: 1.000000
353
+ Case #353: 1.000000
354
+ Case #354: 0.902302
355
+ Case #355: 1.000000
356
+ Case #356: 0.518357
357
+ Case #357: 1.000000
358
+ Case #358: 1.000000
359
+ Case #359: 1.000000
360
+ Case #360: 1.000000
361
+ Case #361: 1.000000
362
+ Case #362: 1.000000
363
+ Case #363: 0.997938
364
+ Case #364: 0.979664
365
+ Case #365: 0.367250
366
+ Case #366: 1.000000
367
+ Case #367: 0.997903
368
+ Case #368: 0.999990
369
+ Case #369: 0.049500
370
+ Case #370: 1.000000
371
+ Case #371: 1.000000
372
+ Case #372: 0.015326
373
+ Case #373: 1.000000
374
+ Case #374: 1.000000
375
+ Case #375: 0.999997
376
+ Case #376: 1.000000
377
+ Case #377: 0.999989
378
+ Case #378: 0.935200
379
+ Case #379: 0.999292
380
+ Case #380: 0.774778
381
+ Case #381: 0.966624
382
+ Case #382: 1.000000
383
+ Case #383: 1.000000
384
+ Case #384: 1.000000
385
+ Case #385: 0.765625
386
+ Case #386: 1.000000
387
+ Case #387: 0.027236
388
+ Case #388: 1.000000
389
+ Case #389: 1.000000
390
+ Case #390: 1.000000
391
+ Case #391: 0.997964
392
+ Case #392: 0.581734
393
+ Case #393: 0.999999
394
+ Case #394: 0.999904
395
+ Case #395: 0.998925
396
+ Case #396: 0.817803
397
+ Case #397: 0.994185
398
+ Case #398: 0.000033
399
+ Case #399: 1.000000
400
+ Case #400: 1.000000
401
+ Case #401: 1.000000
402
+ Case #402: 0.394980
403
+ Case #403: 0.999999
404
+ Case #404: 0.999999
405
+ Case #405: 1.000000
406
+ Case #406: 1.000000
407
+ Case #407: 1.000000
408
+ Case #408: 1.000000
409
+ Case #409: 1.000000
410
+ Case #410: 0.963475
411
+ Case #411: 0.105839
412
+ Case #412: 0.998678
413
+ Case #413: 0.994284
414
+ Case #414: 0.987151
415
+ Case #415: 1.000000
416
+ Case #416: 0.947491
417
+ Case #417: 1.000000
418
+ Case #418: 1.000000
419
+ Case #419: 0.999995
420
+ Case #420: 1.000000
421
+ Case #421: 1.000000
422
+ Case #422: 1.000000
423
+ Case #423: 0.000183
424
+ Case #424: 0.421243
425
+ Case #425: 0.907437
426
+ Case #426: 0.025450
427
+ Case #427: 0.999996
428
+ Case #428: 1.000000
429
+ Case #429: 0.912892
430
+ Case #430: 1.000000
431
+ Case #431: 1.000000
432
+ Case #432: 0.999846
433
+ Case #433: 0.994839
434
+ Case #434: 0.000000
435
+ Case #435: 1.000000
436
+ Case #436: 0.954343
437
+ Case #437: 0.997428
438
+ Case #438: 1.000000
439
+ Case #439: 0.838735
440
+ Case #440: 1.000000
441
+ Case #441: 1.000000
442
+ Case #442: 1.000000
443
+ Case #443: 1.000000
444
+ Case #444: 0.999999
445
+ Case #445: 0.000000
446
+ Case #446: 1.000000
447
+ Case #447: 1.000000
448
+ Case #448: 1.000000
449
+ Case #449: 1.000000
450
+ Case #450: 0.948799
451
+ Case #451: 1.000000
452
+ Case #452: 1.000000
453
+ Case #453: 1.000000
454
+ Case #454: 0.831844
455
+ Case #455: 0.634878
456
+ Case #456: 0.999998
457
+ Case #457: 0.999961
458
+ Case #458: 0.952555
459
+ Case #459: 1.000000
460
+ Case #460: 1.000000
461
+ Case #461: 0.973219
462
+ Case #462: 0.999862
463
+ Case #463: 1.000000
464
+ Case #464: 1.000000
465
+ Case #465: 0.000241
466
+ Case #466: 1.000000
467
+ Case #467: 0.957931
468
+ Case #468: 1.000000
469
+ Case #469: 0.999936
470
+ Case #470: 0.999941
471
+ Case #471: 0.999228
472
+ Case #472: 0.006093
473
+ Case #473: 0.000000
474
+ Case #474: 1.000000
475
+ Case #475: 0.999989
476
+ Case #476: 0.999994
477
+ Case #477: 0.999423
478
+ Case #478: 0.950500
479
+ Case #479: 1.000000
480
+ Case #480: 1.000000
481
+ Case #481: 0.860379
482
+ Case #482: 1.000000
483
+ Case #483: 1.000000
484
+ Case #484: 1.000000
485
+ Case #485: 1.000000
486
+ Case #486: 1.000000
487
+ Case #487: 0.999321
488
+ Case #488: 0.999864
489
+ Case #489: 1.000000
490
+ Case #490: 0.956577
491
+ Case #491: 0.999999
492
+ Case #492: 1.000000
493
+ Case #493: 0.825293
494
+ Case #494: 0.993789
495
+ Case #495: 0.980867
496
+ Case #496: 0.976466
497
+ Case #497: 0.996000
498
+ Case #498: 0.947491
499
+ Case #499: 0.999642
500
+ Case #500: 0.999533
501
+ Case #501: 1.000000
502
+ Case #502: 0.999996
503
+ Case #503: 0.994600
504
+ Case #504: 1.000000
505
+ Case #505: 1.000000
506
+ Case #506: 1.000000
507
+ Case #507: 1.000000
508
+ Case #508: 0.197537
509
+ Case #509: 1.000000
510
+ Case #510: 0.999999
511
+ Case #511: 1.000000
512
+ Case #512: 1.000000
513
+ Case #513: 1.000000
514
+ Case #514: 1.000000
515
+ Case #515: 1.000000
516
+ Case #516: 1.000000
517
+ Case #517: 0.999957
518
+ Case #518: 0.999975
519
+ Case #519: 0.001786
520
+ Case #520: 1.000000
521
+ Case #521: 0.904514
522
+ Case #522: 1.000000
523
+ Case #523: 0.925228
524
+ Case #524: 1.000000
525
+ Case #525: 1.000000
526
+ Case #526: 0.999992
527
+ Case #527: 0.999999
528
+ Case #528: 1.000000
529
+ Case #529: 1.000000
530
+ Case #530: 0.550772
531
+ Case #531: 1.000000
532
+ Case #532: 0.999257
533
+ Case #533: 1.000000
534
+ Case #534: 0.998267
535
+ Case #535: 0.999997
536
+ Case #536: 1.000000
537
+ Case #537: 0.421590
538
+ Case #538: 0.999994
539
+ Case #539: 1.000000
540
+ Case #540: 1.000000
541
+ Case #541: 1.000000
542
+ Case #542: 0.999701
543
+ Case #543: 1.000000
544
+ Case #544: 0.094492
545
+ Case #545: 0.993744
546
+ Case #546: 1.000000
547
+ Case #547: 0.549768
548
+ Case #548: 0.999999
549
+ Case #549: 0.999994
550
+ Case #550: 1.000000
551
+ Case #551: 1.000000
552
+ Case #552: 0.991712
553
+ Case #553: 0.970317
554
+ Case #554: 1.000000
555
+ Case #555: 0.999944
556
+ Case #556: 0.993738
557
+ Case #557: 1.000000
558
+ Case #558: 1.000000
559
+ Case #559: 1.000000
560
+ Case #560: 0.991401
561
+ Case #561: 1.000000
562
+ Case #562: 1.000000
563
+ Case #563: 1.000000
564
+ Case #564: 1.000000
565
+ Case #565: 0.656997
566
+ Case #566: 1.000000
567
+ Case #567: 1.000000
568
+ Case #568: 1.000000
569
+ Case #569: 1.000000
570
+ Case #570: 1.000000
571
+ Case #571: 0.500000
572
+ Case #572: 0.999999
573
+ Case #573: 0.106837
574
+ Case #574: 1.000000
575
+ Case #575: 1.000000
576
+ Case #576: 0.998962
577
+ Case #577: 1.000000
578
+ Case #578: 1.000000
579
+ Case #579: 1.000000
580
+ Case #580: 1.000000
581
+ Case #581: 1.000000
582
+ Case #582: 1.000000
583
+ Case #583: 0.999947
584
+ Case #584: 0.999832
585
+ Case #585: 1.000000
586
+ Case #586: 1.000000
587
+ Case #587: 1.000000
588
+ Case #588: 1.000000
589
+ Case #589: 1.000000
590
+ Case #590: 1.000000
591
+ Case #591: 1.000000
592
+ Case #592: 1.000000
593
+ Case #593: 1.000000
594
+ Case #594: 1.000000
595
+ Case #595: 0.999828
596
+ Case #596: 1.000000
597
+ Case #597: 1.000000
598
+ Case #598: 0.997420
599
+ Case #599: 0.999998
600
+ Case #600: 0.999997
601
+ Case #601: 1.000000
602
+ Case #602: 0.000000
603
+ Case #603: 1.000000
604
+ Case #604: 0.252240
605
+ Case #605: 1.000000
606
+ Case #606: 0.999772
607
+ Case #607: 0.999969
608
+ Case #608: 1.000000
609
+ Case #609: 1.000000
610
+ Case #610: 0.999999
611
+ Case #611: 0.999652
612
+ Case #612: 0.748500
613
+ Case #613: 0.999145
614
+ Case #614: 1.000000
615
+ Case #615: 1.000000
616
+ Case #616: 1.000000
617
+ Case #617: 1.000000
618
+ Case #618: 0.991998
619
+ Case #619: 0.999999
620
+ Case #620: 1.000000
621
+ Case #621: 1.000000
622
+ Case #622: 1.000000
623
+ Case #623: 0.784050
624
+ Case #624: 0.999705
625
+ Case #625: 1.000000
626
+ Case #626: 1.000000
627
+ Case #627: 1.000000
628
+ Case #628: 0.997307
629
+ Case #629: 1.000000
630
+ Case #630: 1.000000
631
+ Case #631: 0.940425
632
+ Case #632: 1.000000
633
+ Case #633: 1.000000
634
+ Case #634: 0.999997
635
+ Case #635: 0.999991
636
+ Case #636: 0.999984
637
+ Case #637: 1.000000
638
+ Case #638: 0.997897
639
+ Case #639: 1.000000
640
+ Case #640: 0.000037
641
+ Case #641: 0.897122
642
+ Case #642: 1.000000
643
+ Case #643: 0.999226
644
+ Case #644: 0.999847
645
+ Case #645: 1.000000
646
+ Case #646: 1.000000
647
+ Case #647: 1.000000
648
+ Case #648: 0.652248
649
+ Case #649: 1.000000
650
+ Case #650: 0.999387
651
+ Case #651: 1.000000
652
+ Case #652: 1.000000
653
+ Case #653: 1.000000
654
+ Case #654: 1.000000
655
+ Case #655: 1.000000
656
+ Case #656: 0.998406
657
+ Case #657: 1.000000
658
+ Case #658: 0.000001
659
+ Case #659: 0.834181
660
+ Case #660: 0.999994
661
+ Case #661: 0.999999
662
+ Case #662: 1.000000
663
+ Case #663: 1.000000
664
+ Case #664: 0.000000
665
+ Case #665: 0.999952
666
+ Case #666: 1.000000
667
+ Case #667: 0.996598
668
+ Case #668: 0.962543
669
+ Case #669: 0.999999
670
+ Case #670: 0.996000
671
+ Case #671: 0.000000
672
+ Case #672: 0.000000
673
+ Case #673: 0.671875
674
+ Case #674: 0.400428
675
+ Case #675: 0.031817
676
+ Case #676: 0.986972
677
+ Case #677: 1.000000
678
+ Case #678: 0.091139
679
+ Case #679: 0.999940
680
+ Case #680: 0.999992
681
+ Case #681: 0.020625
682
+ Case #682: 0.887913
683
+ Case #683: 1.000000
684
+ Case #684: 0.999801
685
+ Case #685: 0.999999
686
+ Case #686: 1.000000
687
+ Case #687: 1.000000
688
+ Case #688: 0.977943
689
+ Case #689: 1.000000
690
+ Case #690: 0.955590
691
+ Case #691: 1.000000
692
+ Case #692: 0.969375
693
+ Case #693: 1.000000
694
+ Case #694: 0.947137
695
+ Case #695: 0.999651
696
+ Case #696: 0.018114
697
+ Case #697: 0.891188
698
+ Case #698: 1.000000
699
+ Case #699: 1.000000
700
+ Case #700: 1.000000
701
+ Case #701: 1.000000
702
+ Case #702: 1.000000
703
+ Case #703: 1.000000
704
+ Case #704: 1.000000
705
+ Case #705: 1.000000
706
+ Case #706: 0.996338
707
+ Case #707: 0.500000
708
+ Case #708: 0.999790
709
+ Case #709: 1.000000
710
+ Case #710: 1.000000
711
+ Case #711: 0.987400
712
+ Case #712: 1.000000
713
+ Case #713: 0.999994
714
+ Case #714: 1.000000
715
+ Case #715: 1.000000
716
+ Case #716: 1.000000
717
+ Case #717: 1.000000
718
+ Case #718: 0.990784
719
+ Case #719: 0.000000
720
+ Case #720: 0.966406
721
+ Case #721: 0.998863
722
+ Case #722: 0.982063
723
+ Case #723: 1.000000
724
+ Case #724: 0.000129
725
+ Case #725: 0.983815
726
+ Case #726: 1.000000
727
+ Case #727: 0.923396
728
+ Case #728: 1.000000
729
+ Case #729: 0.892819
730
+ Case #730: 0.998356
731
+ Case #731: 0.983354
732
+ Case #732: 1.000000
733
+ Case #733: 1.000000
734
+ Case #734: 1.000000
735
+ Case #735: 0.999999
736
+ Case #736: 0.999990
737
+ Case #737: 1.000000
738
+ Case #738: 1.000000
739
+ Case #739: 0.994729
740
+ Case #740: 1.000000
741
+ Case #741: 0.999984
742
+ Case #742: 0.729515
743
+ Case #743: 0.440218
744
+ Case #744: 0.993481
745
+ Case #745: 1.000000
746
+ Case #746: 0.999866
747
+ Case #747: 0.988426
748
+ Case #748: 0.999943
749
+ Case #749: 1.000000
750
+ Case #750: 1.000000
751
+ Case #751: 1.000000
752
+ Case #752: 1.000000
753
+ Case #753: 0.977223
754
+ Case #754: 0.995465
755
+ Case #755: 0.999985
756
+ Case #756: 0.999999
757
+ Case #757: 1.000000
758
+ Case #758: 1.000000
759
+ Case #759: 1.000000
760
+ Case #760: 0.999999
761
+ Case #761: 1.000000
762
+ Case #762: 1.000000
763
+ Case #763: 1.000000
764
+ Case #764: 0.979448
765
+ Case #765: 1.000000
766
+ Case #766: 0.999875
767
+ Case #767: 0.989874
768
+ Case #768: 0.996625
769
+ Case #769: 1.000000
770
+ Case #770: 0.999843
771
+ Case #771: 1.000000
772
+ Case #772: 0.000000
773
+ Case #773: 0.180813
774
+ Case #774: 0.000001
775
+ Case #775: 0.997888
776
+ Case #776: 0.624682
777
+ Case #777: 1.000000
778
+ Case #778: 1.000000
779
+ Case #779: 1.000000
780
+ Case #780: 0.998577
781
+ Case #781: 0.999820
782
+ Case #782: 1.000000
783
+ Case #783: 0.837963
784
+ Case #784: 1.000000
785
+ Case #785: 1.000000
786
+ Case #786: 0.516627
787
+ Case #787: 0.999857
788
+ Case #788: 1.000000
789
+ Case #789: 0.999995
790
+ Case #790: 0.715006
791
+ Case #791: 0.997625
792
+ Case #792: 0.999998
793
+ Case #793: 0.999900
794
+ Case #794: 0.997731
795
+ Case #795: 1.000000
796
+ Case #796: 0.999828
797
+ Case #797: 1.000000
798
+ Case #798: 1.000000
799
+ Case #799: 0.999947
800
+ Case #800: 0.873924
801
+ Case #801: 1.000000
802
+ Case #802: 0.554918
803
+ Case #803: 0.995994
804
+ Case #804: 1.000000
805
+ Case #805: 0.999887
806
+ Case #806: 1.000000
807
+ Case #807: 1.000000
808
+ Case #808: 1.000000
809
+ Case #809: 0.854167
810
+ Case #810: 0.000000
811
+ Case #811: 0.954838
812
+ Case #812: 1.000000
813
+ Case #813: 0.999638
814
+ Case #814: 0.999421
815
+ Case #815: 0.805556
816
+ Case #816: 1.000000
817
+ Case #817: 1.000000
818
+ Case #818: 1.000000
819
+ Case #819: 0.984375
820
+ Case #820: 0.993738
821
+ Case #821: 0.999996
822
+ Case #822: 1.000000
823
+ Case #823: 0.999747
824
+ Case #824: 1.000000
825
+ Case #825: 1.000000
826
+ Case #826: 1.000000
827
+ Case #827: 0.999970
828
+ Case #828: 0.809758
829
+ Case #829: 0.999883
830
+ Case #830: 0.999929
831
+ Case #831: 0.015456
832
+ Case #832: 0.995574
833
+ Case #833: 0.999996
834
+ Case #834: 1.000000
835
+ Case #835: 1.000000
836
+ Case #836: 0.999713
837
+ Case #837: 0.999992
838
+ Case #838: 1.000000
839
+ Case #839: 1.000000
840
+ Case #840: 0.999964
841
+ Case #841: 0.999995
842
+ Case #842: 0.691689
843
+ Case #843: 0.944812
844
+ Case #844: 0.999152
845
+ Case #845: 0.999849
846
+ Case #846: 1.000000
847
+ Case #847: 1.000000
848
+ Case #848: 1.000000
849
+ Case #849: 0.145294
850
+ Case #850: 0.988499
851
+ Case #851: 1.000000
852
+ Case #852: 1.000000
853
+ Case #853: 0.560820
854
+ Case #854: 1.000000
855
+ Case #855: 1.000000
856
+ Case #856: 1.000000
857
+ Case #857: 1.000000
858
+ Case #858: 0.992171
859
+ Case #859: 0.996935
860
+ Case #860: 1.000000
861
+ Case #861: 0.999976
862
+ Case #862: 0.000017
863
+ Case #863: 0.389099
864
+ Case #864: 1.000000
865
+ Case #865: 1.000000
866
+ Case #866: 1.000000
867
+ Case #867: 0.000025
868
+ Case #868: 1.000000
869
+ Case #869: 0.005815
870
+ Case #870: 1.000000
871
+ Case #871: 0.965679
872
+ Case #872: 0.038464
873
+ Case #873: 1.000000
874
+ Case #874: 1.000000
875
+ Case #875: 1.000000
876
+ Case #876: 1.000000
877
+ Case #877: 1.000000
878
+ Case #878: 0.133758
879
+ Case #879: 0.119873
880
+ Case #880: 0.999745
881
+ Case #881: 0.405820
882
+ Case #882: 0.000027
883
+ Case #883: 0.183825
884
+ Case #884: 1.000000
885
+ Case #885: 1.000000
886
+ Case #886: 1.000000
887
+ Case #887: 0.999996
888
+ Case #888: 1.000000
889
+ Case #889: 0.999946
890
+ Case #890: 0.999999
891
+ Case #891: 0.963797
892
+ Case #892: 1.000000
893
+ Case #893: 1.000000
894
+ Case #894: 0.011156
895
+ Case #895: 0.999657
896
+ Case #896: 1.000000
897
+ Case #897: 0.999995
898
+ Case #898: 1.000000
899
+ Case #899: 0.853233
900
+ Case #900: 0.999996
901
+ Case #901: 0.999892
902
+ Case #902: 0.999979
903
+ Case #903: 0.001876
904
+ Case #904: 0.999999
905
+ Case #905: 0.998892
906
+ Case #906: 1.000000
907
+ Case #907: 0.999985
908
+ Case #908: 1.000000
909
+ Case #909: 0.994412
910
+ Case #910: 1.000000
911
+ Case #911: 1.000000
912
+ Case #912: 0.972140
913
+ Case #913: 1.000000
914
+ Case #914: 0.027345
915
+ Case #915: 0.999659
916
+ Case #916: 0.000000
917
+ Case #917: 0.999985
918
+ Case #918: 0.775873
919
+ Case #919: 0.999950
920
+ Case #920: 0.001476
921
+ Case #921: 1.000000
922
+ Case #922: 1.000000
923
+ Case #923: 1.000000
924
+ Case #924: 1.000000
925
+ Case #925: 0.668002
926
+ Case #926: 0.997256
927
+ Case #927: 0.021000
928
+ Case #928: 0.396072
929
+ Case #929: 0.999657
930
+ Case #930: 0.533500
931
+ Case #931: 0.997757
932
+ Case #932: 0.721234
933
+ Case #933: 1.000000
934
+ Case #934: 0.500000
935
+ Case #935: 1.000000
936
+ Case #936: 1.000000
937
+ Case #937: 1.000000
938
+ Case #938: 1.000000
939
+ Case #939: 1.000000
940
+ Case #940: 0.007185
941
+ Case #941: 0.999990
942
+ Case #942: 0.999922
943
+ Case #943: 0.999921
944
+ Case #944: 1.000000
945
+ Case #945: 0.999891
946
+ Case #946: 1.000000
947
+ Case #947: 1.000000
948
+ Case #948: 1.000000
949
+ Case #949: 1.000000
950
+ Case #950: 1.000000
951
+ Case #951: 1.000000
952
+ Case #952: 1.000000
953
+ Case #953: 0.994617
954
+ Case #954: 0.999306
955
+ Case #955: 1.000000
956
+ Case #956: 0.998994
957
+ Case #957: 0.059304
958
+ Case #958: 1.000000
959
+ Case #959: 0.044804
960
+ Case #960: 0.703043
961
+ Case #961: 0.999987
962
+ Case #962: 0.069496
963
+ Case #963: 0.998912
964
+ Case #964: 1.000000
965
+ Case #965: 0.617197
966
+ Case #966: 1.000000
967
+ Case #967: 0.999674
968
+ Case #968: 1.000000
969
+ Case #969: 0.999999
970
+ Case #970: 0.949796
971
+ Case #971: 0.996348
972
+ Case #972: 0.994083
973
+ Case #973: 0.999081
974
+ Case #974: 0.500000
975
+ Case #975: 0.458762
976
+ Case #976: 0.853630
977
+ Case #977: 1.000000
978
+ Case #978: 1.000000
979
+ Case #979: 0.999991
980
+ Case #980: 1.000000
981
+ Case #981: 0.999548
982
+ Case #982: 1.000000
983
+ Case #983: 0.979216
984
+ Case #984: 1.000000
985
+ Case #985: 0.999999
986
+ Case #986: 0.500000
987
+ Case #987: 1.000000
988
+ Case #988: 1.000000
989
+ Case #989: 1.000000
990
+ Case #990: 1.000000
991
+ Case #991: 1.000000
992
+ Case #992: 1.000000
993
+ Case #993: 0.006777
994
+ Case #994: 1.000000
995
+ Case #995: 1.000000
996
+ Case #996: 1.000000
997
+ Case #997: 0.842197
998
+ Case #998: 0.986395
999
+ Case #999: 0.586136
1000
+ Case #1000: 1.000000
1001
+ Case #1001: 1.000000
1002
+ Case #1002: 0.999441
1003
+ Case #1003: 1.000000
1004
+ Case #1004: 0.999680
1005
+ Case #1005: 1.000000
1006
+ Case #1006: 0.000000
1007
+ Case #1007: 0.948428
1008
+ Case #1008: 0.000188
1009
+ Case #1009: 1.000000
1010
+ Case #1010: 0.999320
1011
+ Case #1011: 1.000000
1012
+ Case #1012: 1.000000
1013
+ Case #1013: 0.990339
1014
+ Case #1014: 1.000000
1015
+ Case #1015: 0.959671
1016
+ Case #1016: 1.000000
1017
+ Case #1017: 0.999991
1018
+ Case #1018: 0.996930
1019
+ Case #1019: 0.995992
1020
+ Case #1020: 0.000000
1021
+ Case #1021: 0.966495
1022
+ Case #1022: 0.590300
1023
+ Case #1023: 1.000000
1024
+ Case #1024: 1.000000
1025
+ Case #1025: 0.999751
1026
+ Case #1026: 0.397995
1027
+ Case #1027: 1.000000
1028
+ Case #1028: 1.000000
1029
+ Case #1029: 0.701739
1030
+ Case #1030: 1.000000
1031
+ Case #1031: 0.000000
1032
+ Case #1032: 1.000000
1033
+ Case #1033: 1.000000
1034
+ Case #1034: 1.000000
1035
+ Case #1035: 0.011727
1036
+ Case #1036: 1.000000
1037
+ Case #1037: 1.000000
1038
+ Case #1038: 0.461673
1039
+ Case #1039: 1.000000
1040
+ Case #1040: 0.500000
1041
+ Case #1041: 0.999995
1042
+ Case #1042: 0.396072
1043
+ Case #1043: 0.995849
1044
+ Case #1044: 1.000000
1045
+ Case #1045: 1.000000
1046
+ Case #1046: 1.000000
1047
+ Case #1047: 1.000000
1048
+ Case #1048: 0.999967
1049
+ Case #1049: 0.998822
1050
+ Case #1050: 1.000000
1051
+ Case #1051: 1.000000
1052
+ Case #1052: 1.000000
1053
+ Case #1053: 0.998011
1054
+ Case #1054: 1.000000
1055
+ Case #1055: 0.989150
1056
+ Case #1056: 1.000000
1057
+ Case #1057: 0.934659
1058
+ Case #1058: 0.000002
1059
+ Case #1059: 0.999756
1060
+ Case #1060: 1.000000
1061
+ Case #1061: 0.999987
1062
+ Case #1062: 1.000000
1063
+ Case #1063: 0.995739
1064
+ Case #1064: 0.003376
1065
+ Case #1065: 0.958580
1066
+ Case #1066: 0.874894
1067
+ Case #1067: 1.000000
1068
+ Case #1068: 0.999999
1069
+ Case #1069: 1.000000
1070
+ Case #1070: 0.999934
1071
+ Case #1071: 0.058389
1072
+ Case #1072: 0.999982
1073
+ Case #1073: 0.368866
1074
+ Case #1074: 0.999364
1075
+ Case #1075: 1.000000
1076
+ Case #1076: 1.000000
1077
+ Case #1077: 0.317119
1078
+ Case #1078: 1.000000
1079
+ Case #1079: 0.000000
1080
+ Case #1080: 1.000000
1081
+ Case #1081: 0.988423
1082
+ Case #1082: 1.000000
1083
+ Case #1083: 0.042221
1084
+ Case #1084: 0.870447
1085
+ Case #1085: 0.999999
1086
+ Case #1086: 1.000000
1087
+ Case #1087: 0.999959
1088
+ Case #1088: 0.997430
1089
+ Case #1089: 0.768588
1090
+ Case #1090: 0.765389
1091
+ Case #1091: 1.000000
1092
+ Case #1092: 0.999705
1093
+ Case #1093: 0.443107
1094
+ Case #1094: 0.999751
1095
+ Case #1095: 0.998363
1096
+ Case #1096: 0.000000
1097
+ Case #1097: 0.866242
1098
+ Case #1098: 1.000000
1099
+ Case #1099: 1.000000
1100
+ Case #1100: 0.604894
1101
+ Case #1101: 0.994675
1102
+ Case #1102: 0.703043
1103
+ Case #1103: 0.089929
1104
+ Case #1104: 1.000000
1105
+ Case #1105: 0.976114
1106
+ Case #1106: 0.982381
1107
+ Case #1107: 0.999782
1108
+ Case #1108: 0.952998
1109
+ Case #1109: 0.997971
1110
+ Case #1110: 1.000000
1111
+ Case #1111: 0.001006
1112
+ Case #1112: 1.000000
1113
+ Case #1113: 0.999918
1114
+ Case #1114: 0.211341
1115
+ Case #1115: 0.687500
1116
+ Case #1116: 0.440818
1117
+ Case #1117: 1.000000
1118
+ Case #1118: 1.000000
1119
+ Case #1119: 1.000000
1120
+ Case #1120: 1.000000
1121
+ Case #1121: 1.000000
1122
+ Case #1122: 0.246431
1123
+ Case #1123: 1.000000
1124
+ Case #1124: 1.000000
1125
+ Case #1125: 0.998524
1126
+ Case #1126: 0.636015
1127
+ Case #1127: 0.999851
1128
+ Case #1128: 1.000000
1129
+ Case #1129: 1.000000
1130
+ Case #1130: 0.999161
1131
+ Case #1131: 0.999996
1132
+ Case #1132: 0.999999
1133
+ Case #1133: 1.000000
1134
+ Case #1134: 0.995728
1135
+ Case #1135: 1.000000
1136
+ Case #1136: 0.188406
1137
+ Case #1137: 1.000000
1138
+ Case #1138: 1.000000
1139
+ Case #1139: 0.175249
1140
+ Case #1140: 0.999999
1141
+ Case #1141: 0.999680
1142
+ Case #1142: 0.999998
1143
+ Case #1143: 1.000000
1144
+ Case #1144: 1.000000
1145
+ Case #1145: 0.353281
1146
+ Case #1146: 0.005815
1147
+ Case #1147: 0.999829
1148
+ Case #1148: 1.000000
1149
+ Case #1149: 0.000001
1150
+ Case #1150: 1.000000
1151
+ Case #1151: 1.000000
1152
+ Case #1152: 0.776997
1153
+ Case #1153: 0.999990
1154
+ Case #1154: 1.000000
1155
+ Case #1155: 0.998877
1156
+ Case #1156: 0.072329
1157
+ Case #1157: 0.999990
1158
+ Case #1158: 0.999925
1159
+ Case #1159: 0.000003
1160
+ Case #1160: 1.000000
1161
+ Case #1161: 0.999999
1162
+ Case #1162: 1.000000
1163
+ Case #1163: 1.000000
1164
+ Case #1164: 1.000000
1165
+ Case #1165: 1.000000
1166
+ Case #1166: 0.979097
1167
+ Case #1167: 1.000000
1168
+ Case #1168: 0.164063
1169
+ Case #1169: 0.944783
1170
+ Case #1170: 0.041982
1171
+ Case #1171: 0.999997
1172
+ Case #1172: 0.963123
1173
+ Case #1173: 1.000000
1174
+ Case #1174: 1.000000
1175
+ Case #1175: 1.000000
1176
+ Case #1176: 0.873070
1177
+ Case #1177: 0.999100
1178
+ Case #1178: 0.999999
1179
+ Case #1179: 1.000000
1180
+ Case #1180: 0.253346
1181
+ Case #1181: 0.983864
1182
+ Case #1182: 1.000000
1183
+ Case #1183: 1.000000
1184
+ Case #1184: 1.000000
1185
+ Case #1185: 0.089063
1186
+ Case #1186: 1.000000
1187
+ Case #1187: 0.999966
1188
+ Case #1188: 0.999999
1189
+ Case #1189: 1.000000
1190
+ Case #1190: 1.000000
1191
+ Case #1191: 0.999993
1192
+ Case #1192: 0.999979
1193
+ Case #1193: 0.999811
1194
+ Case #1194: 1.000000
1195
+ Case #1195: 0.999999
1196
+ Case #1196: 1.000000
1197
+ Case #1197: 1.000000
1198
+ Case #1198: 0.210624
1199
+ Case #1199: 1.000000
1200
+ Case #1200: 0.999998
1201
+ Case #1201: 1.000000
1202
+ Case #1202: 1.000000
1203
+ Case #1203: 1.000000
1204
+ Case #1204: 1.000000
1205
+ Case #1205: 0.174707
1206
+ Case #1206: 1.000000
1207
+ Case #1207: 0.999988
1208
+ Case #1208: 1.000000
1209
+ Case #1209: 1.000000
1210
+ Case #1210: 0.804583
1211
+ Case #1211: 1.000000
1212
+ Case #1212: 1.000000
1213
+ Case #1213: 0.000841
1214
+ Case #1214: 0.035352
1215
+ Case #1215: 1.000000
1216
+ Case #1216: 0.992765
1217
+ Case #1217: 1.000000
1218
+ Case #1218: 0.089594
1219
+ Case #1219: 1.000000
1220
+ Case #1220: 0.092488
1221
+ Case #1221: 1.000000
1222
+ Case #1222: 0.004888
1223
+ Case #1223: 1.000000
1224
+ Case #1224: 1.000000
1225
+ Case #1225: 1.000000
1226
+ Case #1226: 0.999921
1227
+ Case #1227: 1.000000
1228
+ Case #1228: 1.000000
1229
+ Case #1229: 1.000000
1230
+ Case #1230: 1.000000
1231
+ Case #1231: 0.785981
1232
+ Case #1232: 1.000000
1233
+ Case #1233: 0.267509
1234
+ Case #1234: 0.999234
1235
+ Case #1235: 1.000000
1236
+ Case #1236: 1.000000
1237
+ Case #1237: 1.000000
1238
+ Case #1238: 0.052890
1239
+ Case #1239: 1.000000
1240
+ Case #1240: 0.999999
1241
+ Case #1241: 0.999848
1242
+ Case #1242: 0.947137
1243
+ Case #1243: 1.000000
1244
+ Case #1244: 1.000000
1245
+ Case #1245: 1.000000
1246
+ Case #1246: 0.000000
1247
+ Case #1247: 1.000000
1248
+ Case #1248: 0.999973
1249
+ Case #1249: 0.883953
1250
+ Case #1250: 1.000000
1251
+ Case #1251: 1.000000
1252
+ Case #1252: 0.999996
1253
+ Case #1253: 1.000000
1254
+ Case #1254: 0.999789
1255
+ Case #1255: 0.999998
1256
+ Case #1256: 1.000000
1257
+ Case #1257: 1.000000
1258
+ Case #1258: 1.000000
1259
+ Case #1259: 0.920171
1260
+ Case #1260: 1.000000
1261
+ Case #1261: 0.999911
1262
+ Case #1262: 0.964065
1263
+ Case #1263: 1.000000
1264
+ Case #1264: 0.920508
1265
+ Case #1265: 0.999991
1266
+ Case #1266: 0.967772
1267
+ Case #1267: 1.000000
1268
+ Case #1268: 1.000000
1269
+ Case #1269: 1.000000
1270
+ Case #1270: 1.000000
1271
+ Case #1271: 0.982953
1272
+ Case #1272: 1.000000
1273
+ Case #1273: 0.000003
1274
+ Case #1274: 0.809617
1275
+ Case #1275: 0.916903
1276
+ Case #1276: 0.835793
1277
+ Case #1277: 0.999798
1278
+ Case #1278: 1.000000
1279
+ Case #1279: 0.999685
1280
+ Case #1280: 1.000000
1281
+ Case #1281: 0.984687
1282
+ Case #1282: 0.001164
1283
+ Case #1283: 0.005235
1284
+ Case #1284: 0.999602
1285
+ Case #1285: 0.999998
1286
+ Case #1286: 0.102358
1287
+ Case #1287: 0.116758
1288
+ Case #1288: 0.212972
1289
+ Case #1289: 1.000000
1290
+ Case #1290: 0.959167
1291
+ Case #1291: 1.000000
1292
+ Case #1292: 0.000000
1293
+ Case #1293: 1.000000
1294
+ Case #1294: 0.986633
1295
+ Case #1295: 0.999646
1296
+ Case #1296: 0.907074
1297
+ Case #1297: 1.000000
1298
+ Case #1298: 0.989150
1299
+ Case #1299: 0.999099
1300
+ Case #1300: 1.000000
1301
+ Case #1301: 1.000000
1302
+ Case #1302: 0.000000
1303
+ Case #1303: 1.000000
1304
+ Case #1304: 0.999986
1305
+ Case #1305: 0.996938
1306
+ Case #1306: 0.999685
1307
+ Case #1307: 1.000000
1308
+ Case #1308: 1.000000
1309
+ Case #1309: 0.000178
1310
+ Case #1310: 0.312773
1311
+ Case #1311: 1.000000
1312
+ Case #1312: 1.000000
1313
+ Case #1313: 1.000000
1314
+ Case #1314: 0.252274
1315
+ Case #1315: 1.000000
1316
+ Case #1316: 1.000000
1317
+ Case #1317: 0.999998
1318
+ Case #1318: 1.000000
1319
+ Case #1319: 0.999996
1320
+ Case #1320: 0.774635
1321
+ Case #1321: 0.971935
1322
+ Case #1322: 0.853367
1323
+ Case #1323: 1.000000
1324
+ Case #1324: 0.737500
1325
+ Case #1325: 1.000000
1326
+ Case #1326: 1.000000
1327
+ Case #1327: 0.999738
1328
+ Case #1328: 1.000000
1329
+ Case #1329: 1.000000
1330
+ Case #1330: 0.999964
1331
+ Case #1331: 0.991215
1332
+ Case #1332: 1.000000
1333
+ Case #1333: 0.964250
1334
+ Case #1334: 1.000000
1335
+ Case #1335: 1.000000
1336
+ Case #1336: 1.000000
1337
+ Case #1337: 1.000000
1338
+ Case #1338: 0.995136
1339
+ Case #1339: 0.999997
1340
+ Case #1340: 0.423852
1341
+ Case #1341: 0.999951
1342
+ Case #1342: 1.000000
1343
+ Case #1343: 0.081392
1344
+ Case #1344: 0.023709
1345
+ Case #1345: 0.000000
1346
+ Case #1346: 1.000000
1347
+ Case #1347: 1.000000
1348
+ Case #1348: 0.999999
1349
+ Case #1349: 1.000000
1350
+ Case #1350: 1.000000
1351
+ Case #1351: 0.998181
1352
+ Case #1352: 1.000000
1353
+ Case #1353: 0.000835
1354
+ Case #1354: 1.000000
1355
+ Case #1355: 0.000000
1356
+ Case #1356: 0.999992
1357
+ Case #1357: 1.000000
1358
+ Case #1358: 1.000000
1359
+ Case #1359: 1.000000
1360
+ Case #1360: 0.450000
1361
+ Case #1361: 0.440252
1362
+ Case #1362: 1.000000
1363
+ Case #1363: 0.636204
1364
+ Case #1364: 0.990742
1365
+ Case #1365: 0.999790
1366
+ Case #1366: 1.000000
1367
+ Case #1367: 0.072443
1368
+ Case #1368: 1.000000
1369
+ Case #1369: 0.992145
1370
+ Case #1370: 0.054298
1371
+ Case #1371: 1.000000
1372
+ Case #1372: 0.999984
1373
+ Case #1373: 1.000000
1374
+ Case #1374: 0.999683
1375
+ Case #1375: 1.000000
1376
+ Case #1376: 0.999962
1377
+ Case #1377: 0.412281
1378
+ Case #1378: 0.999998
1379
+ Case #1379: 0.000000
1380
+ Case #1380: 0.920291
1381
+ Case #1381: 0.977999
1382
+ Case #1382: 1.000000
1383
+ Case #1383: 0.999997
1384
+ Case #1384: 0.116924
1385
+ Case #1385: 0.999983
1386
+ Case #1386: 1.000000
1387
+ Case #1387: 0.779135
1388
+ Case #1388: 0.999970
1389
+ Case #1389: 0.671950
1390
+ Case #1390: 1.000000
1391
+ Case #1391: 1.000000
1392
+ Case #1392: 1.000000
1393
+ Case #1393: 0.988086
1394
+ Case #1394: 1.000000
1395
+ Case #1395: 1.000000
1396
+ Case #1396: 0.999998
1397
+ Case #1397: 1.000000
1398
+ Case #1398: 1.000000
1399
+ Case #1399: 1.000000
1400
+ Case #1400: 1.000000
1401
+ Case #1401: 0.002363
1402
+ Case #1402: 0.598913
1403
+ Case #1403: 0.353696
1404
+ Case #1404: 0.147070
1405
+ Case #1405: 0.973115
1406
+ Case #1406: 0.076547
1407
+ Case #1407: 0.984375
1408
+ Case #1408: 0.970456
1409
+ Case #1409: 0.463654
1410
+ Case #1410: 0.999668
1411
+ Case #1411: 1.000000
1412
+ Case #1412: 0.000000
1413
+ Case #1413: 1.000000
1414
+ Case #1414: 0.000000
1415
+ Case #1415: 0.999922
1416
+ Case #1416: 0.500000
1417
+ Case #1417: 0.000004
1418
+ Case #1418: 0.998962
1419
+ Case #1419: 0.464676
1420
+ Case #1420: 1.000000
1421
+ Case #1421: 0.568692
1422
+ Case #1422: 0.994782
1423
+ Case #1423: 0.999994
1424
+ Case #1424: 1.000000
1425
+ Case #1425: 0.998356
1426
+ Case #1426: 0.998638
1427
+ Case #1427: 0.997256
1428
+ Case #1428: 0.999875
1429
+ Case #1429: 1.000000
1430
+ Case #1430: 0.000001
1431
+ Case #1431: 1.000000
1432
+ Case #1432: 0.998487
1433
+ Case #1433: 0.000000
1434
+ Case #1434: 0.000000
1435
+ Case #1435: 0.999112
1436
+ Case #1436: 1.000000
1437
+ Case #1437: 1.000000
1438
+ Case #1438: 0.999996
1439
+ Case #1439: 0.000000
1440
+ Case #1440: 0.999222
1441
+ Case #1441: 1.000000
1442
+ Case #1442: 1.000000
1443
+ Case #1443: 1.000000
1444
+ Case #1444: 0.999971
1445
+ Case #1445: 0.999255
1446
+ Case #1446: 0.999996
1447
+ Case #1447: 0.999940
1448
+ Case #1448: 0.997589
1449
+ Case #1449: 0.996939
1450
+ Case #1450: 0.791347
1451
+ Case #1451: 0.999990
1452
+ Case #1452: 1.000000
1453
+ Case #1453: 1.000000
1454
+ Case #1454: 1.000000
1455
+ Case #1455: 0.999233
1456
+ Case #1456: 1.000000
1457
+ Case #1457: 0.998793
1458
+ Case #1458: 1.000000
1459
+ Case #1459: 1.000000
1460
+ Case #1460: 0.095589
1461
+ Case #1461: 1.000000
1462
+ Case #1462: 0.902006
1463
+ Case #1463: 1.000000
1464
+ Case #1464: 1.000000
1465
+ Case #1465: 1.000000
1466
+ Case #1466: 0.999981
1467
+ Case #1467: 0.999918
1468
+ Case #1468: 0.981322
1469
+ Case #1469: 1.000000
1470
+ Case #1470: 1.000000
1471
+ Case #1471: 0.634825
1472
+ Case #1472: 0.982212
1473
+ Case #1473: 1.000000
1474
+ Case #1474: 1.000000
1475
+ Case #1475: 0.999951
1476
+ Case #1476: 1.000000
1477
+ Case #1477: 1.000000
1478
+ Case #1478: 0.873984
1479
+ Case #1479: 0.000180
1480
+ Case #1480: 1.000000
1481
+ Case #1481: 1.000000
1482
+ Case #1482: 1.000000
1483
+ Case #1483: 0.998101
1484
+ Case #1484: 1.000000
1485
+ Case #1485: 0.988830
1486
+ Case #1486: 1.000000
1487
+ Case #1487: 0.037500
1488
+ Case #1488: 1.000000
1489
+ Case #1489: 1.000000
1490
+ Case #1490: 1.000000
1491
+ Case #1491: 0.999914
1492
+ Case #1492: 1.000000
1493
+ Case #1493: 1.000000
1494
+ Case #1494: 0.999979
1495
+ Case #1495: 1.000000
1496
+ Case #1496: 1.000000
1497
+ Case #1497: 0.999991
1498
+ Case #1498: 0.563108
1499
+ Case #1499: 0.999994
1500
+ Case #1500: 1.000000
1501
+ Case #1501: 0.476981
1502
+ Case #1502: 1.000000
1503
+ Case #1503: 0.005735
1504
+ Case #1504: 1.000000
1505
+ Case #1505: 0.000000
1506
+ Case #1506: 1.000000
1507
+ Case #1507: 0.930931
1508
+ Case #1508: 0.999998
1509
+ Case #1509: 0.679628
1510
+ Case #1510: 1.000000
1511
+ Case #1511: 1.000000
1512
+ Case #1512: 0.866161
1513
+ Case #1513: 1.000000
1514
+ Case #1514: 0.999991
1515
+ Case #1515: 0.999991
1516
+ Case #1516: 1.000000
1517
+ Case #1517: 1.000000
1518
+ Case #1518: 1.000000
1519
+ Case #1519: 1.000000
1520
+ Case #1520: 0.999999
1521
+ Case #1521: 1.000000
1522
+ Case #1522: 1.000000
1523
+ Case #1523: 0.000000
1524
+ Case #1524: 1.000000
1525
+ Case #1525: 1.000000
1526
+ Case #1526: 0.999968
1527
+ Case #1527: 1.000000
1528
+ Case #1528: 0.999998
1529
+ Case #1529: 1.000000
1530
+ Case #1530: 0.000001
1531
+ Case #1531: 0.996071
1532
+ Case #1532: 1.000000
1533
+ Case #1533: 1.000000
1534
+ Case #1534: 1.000000
1535
+ Case #1535: 0.816175
1536
+ Case #1536: 0.999886
1537
+ Case #1537: 0.716834
1538
+ Case #1538: 1.000000
1539
+ Case #1539: 0.184299
1540
+ Case #1540: 1.000000
1541
+ Case #1541: 1.000000
1542
+ Case #1542: 0.920012
1543
+ Case #1543: 1.000000
1544
+ Case #1544: 0.999993
1545
+ Case #1545: 0.831631
1546
+ Case #1546: 0.999900
1547
+ Case #1547: 0.997964
1548
+ Case #1548: 1.000000
1549
+ Case #1549: 1.000000
1550
+ Case #1550: 1.000000
1551
+ Case #1551: 0.999985
1552
+ Case #1552: 0.999949
1553
+ Case #1553: 1.000000
1554
+ Case #1554: 1.000000
1555
+ Case #1555: 0.925622
1556
+ Case #1556: 1.000000
1557
+ Case #1557: 1.000000
1558
+ Case #1558: 1.000000
1559
+ Case #1559: 1.000000
1560
+ Case #1560: 1.000000
1561
+ Case #1561: 1.000000
1562
+ Case #1562: 0.999374
1563
+ Case #1563: 1.000000
1564
+ Case #1564: 1.000000
1565
+ Case #1565: 1.000000
1566
+ Case #1566: 1.000000
1567
+ Case #1567: 1.000000
1568
+ Case #1568: 0.121866
1569
+ Case #1569: 0.999998
1570
+ Case #1570: 1.000000
1571
+ Case #1571: 0.993789
1572
+ Case #1572: 0.998047
1573
+ Case #1573: 0.000154
1574
+ Case #1574: 1.000000
1575
+ Case #1575: 0.855001
1576
+ Case #1576: 1.000000
1577
+ Case #1577: 0.997413
1578
+ Case #1578: 0.729662
1579
+ Case #1579: 0.000001
1580
+ Case #1580: 1.000000
1581
+ Case #1581: 0.954343
1582
+ Case #1582: 0.990934
1583
+ Case #1583: 1.000000
1584
+ Case #1584: 1.000000
1585
+ Case #1585: 1.000000
1586
+ Case #1586: 1.000000
1587
+ Case #1587: 1.000000
1588
+ Case #1588: 0.999997
1589
+ Case #1589: 0.999869
1590
+ Case #1590: 1.000000
1591
+ Case #1591: 1.000000
1592
+ Case #1592: 0.998038
1593
+ Case #1593: 0.990567
1594
+ Case #1594: 1.000000
1595
+ Case #1595: 1.000000
1596
+ Case #1596: 1.000000
1597
+ Case #1597: 1.000000
1598
+ Case #1598: 0.033003
1599
+ Case #1599: 1.000000
1600
+ Case #1600: 1.000000
1601
+ Case #1601: 0.999993
1602
+ Case #1602: 1.000000
1603
+ Case #1603: 0.999999
1604
+ Case #1604: 0.000000
1605
+ Case #1605: 1.000000
1606
+ Case #1606: 0.998577
1607
+ Case #1607: 1.000000
1608
+ Case #1608: 0.999677
1609
+ Case #1609: 1.000000
1610
+ Case #1610: 0.002888
1611
+ Case #1611: 1.000000
1612
+ Case #1612: 1.000000
1613
+ Case #1613: 0.978300
1614
+ Case #1614: 0.999936
1615
+ Case #1615: 1.000000
1616
+ Case #1616: 0.998795
1617
+ Case #1617: 1.000000
1618
+ Case #1618: 1.000000
1619
+ Case #1619: 0.999668
1620
+ Case #1620: 1.000000
1621
+ Case #1621: 0.993367
1622
+ Case #1622: 0.071975
1623
+ Case #1623: 1.000000
1624
+ Case #1624: 1.000000
1625
+ Case #1625: 0.662056
1626
+ Case #1626: 0.000154
1627
+ Case #1627: 1.000000
1628
+ Case #1628: 0.424927
1629
+ Case #1629: 0.838245
1630
+ Case #1630: 1.000000
1631
+ Case #1631: 1.000000
1632
+ Case #1632: 1.000000
1633
+ Case #1633: 1.000000
1634
+ Case #1634: 0.999909
1635
+ Case #1635: 0.999939
1636
+ Case #1636: 1.000000
1637
+ Case #1637: 1.000000
1638
+ Case #1638: 0.257184
1639
+ Case #1639: 1.000000
1640
+ Case #1640: 1.000000
1641
+ Case #1641: 0.992707
1642
+ Case #1642: 0.000000
1643
+ Case #1643: 0.975273
1644
+ Case #1644: 0.999999
1645
+ Case #1645: 0.913877
1646
+ Case #1646: 1.000000
1647
+ Case #1647: 1.000000
1648
+ Case #1648: 1.000000
1649
+ Case #1649: 0.880595
1650
+ Case #1650: 0.999998
1651
+ Case #1651: 0.000013
1652
+ Case #1652: 0.997420
1653
+ Case #1653: 0.999994
1654
+ Case #1654: 1.000000
1655
+ Case #1655: 0.977525
1656
+ Case #1656: 1.000000
1657
+ Case #1657: 0.602005
1658
+ Case #1658: 0.995116
1659
+ Case #1659: 0.129553
1660
+ Case #1660: 0.992040
1661
+ Case #1661: 0.993924
1662
+ Case #1662: 1.000000
1663
+ Case #1663: 1.000000
1664
+ Case #1664: 0.970999
1665
+ Case #1665: 1.000000
1666
+ Case #1666: 1.000000
1667
+ Case #1667: 1.000000
1668
+ Case #1668: 1.000000
1669
+ Case #1669: 1.000000
1670
+ Case #1670: 0.999898
1671
+ Case #1671: 0.000095
1672
+ Case #1672: 0.424927
1673
+ Case #1673: 1.000000
1674
+ Case #1674: 0.999381
1675
+ Case #1675: 0.999997
1676
+ Case #1676: 0.999132
1677
+ Case #1677: 0.978191
1678
+ Case #1678: 0.999988
1679
+ Case #1679: 1.000000
1680
+ Case #1680: 0.874485
1681
+ Case #1681: 1.000000
1682
+ Case #1682: 1.000000
1683
+ Case #1683: 0.559748
1684
+ Case #1684: 0.990629
1685
+ Case #1685: 1.000000
1686
+ Case #1686: 0.541667
1687
+ Case #1687: 0.968181
1688
+ Case #1688: 0.474317
1689
+ Case #1689: 0.417951
1690
+ Case #1690: 0.983500
1691
+ Case #1691: 0.893494
1692
+ Case #1692: 0.997180
1693
+ Case #1693: 1.000000
1694
+ Case #1694: 1.000000
1695
+ Case #1695: 1.000000
1696
+ Case #1696: 1.000000
1697
+ Case #1697: 1.000000
1698
+ Case #1698: 1.000000
1699
+ Case #1699: 1.000000
1700
+ Case #1700: 1.000000
1701
+ Case #1701: 0.011433
1702
+ Case #1702: 0.757465
1703
+ Case #1703: 1.000000
1704
+ Case #1704: 1.000000
1705
+ Case #1705: 1.000000
1706
+ Case #1706: 1.000000
1707
+ Case #1707: 0.998262
1708
+ Case #1708: 0.967176
1709
+ Case #1709: 0.999988
1710
+ Case #1710: 0.999985
1711
+ Case #1711: 1.000000
1712
+ Case #1712: 1.000000
1713
+ Case #1713: 0.885454
1714
+ Case #1714: 1.000000
1715
+ Case #1715: 0.999998
1716
+ Case #1716: 1.000000
1717
+ Case #1717: 1.000000
1718
+ Case #1718: 0.999994
1719
+ Case #1719: 0.222021
1720
+ Case #1720: 0.023616
1721
+ Case #1721: 0.999998
1722
+ Case #1722: 0.000000
1723
+ Case #1723: 1.000000
1724
+ Case #1724: 1.000000
1725
+ Case #1725: 0.998214
1726
+ Case #1726: 1.000000
1727
+ Case #1727: 1.000000
1728
+ Case #1728: 1.000000
1729
+ Case #1729: 1.000000
1730
+ Case #1730: 0.990407
1731
+ Case #1731: 0.999740
1732
+ Case #1732: 1.000000
1733
+ Case #1733: 0.003683
1734
+ Case #1734: 0.952555
1735
+ Case #1735: 0.999505
1736
+ Case #1736: 0.983068
1737
+ Case #1737: 0.999973
1738
+ Case #1738: 0.968832
1739
+ Case #1739: 0.127333
1740
+ Case #1740: 0.990296
1741
+ Case #1741: 1.000000
1742
+ Case #1742: 0.804083
1743
+ Case #1743: 0.999984
1744
+ Case #1744: 1.000000
1745
+ Case #1745: 0.911458
1746
+ Case #1746: 1.000000
1747
+ Case #1747: 1.000000
1748
+ Case #1748: 0.999902
1749
+ Case #1749: 1.000000
1750
+ Case #1750: 0.752856
1751
+ Case #1751: 1.000000
1752
+ Case #1752: 0.023261
1753
+ Case #1753: 0.999995
1754
+ Case #1754: 0.999551
1755
+ Case #1755: 1.000000
1756
+ Case #1756: 1.000000
1757
+ Case #1757: 1.000000
1758
+ Case #1758: 1.000000
1759
+ Case #1759: 1.000000
1760
+ Case #1760: 1.000000
1761
+ Case #1761: 0.999994
1762
+ Case #1762: 1.000000
1763
+ Case #1763: 1.000000
1764
+ Case #1764: 0.999985
1765
+ Case #1765: 1.000000
1766
+ Case #1766: 0.999998
1767
+ Case #1767: 0.933512
1768
+ Case #1768: 1.000000
1769
+ Case #1769: 1.000000
1770
+ Case #1770: 1.000000
1771
+ Case #1771: 1.000000
1772
+ Case #1772: 1.000000
1773
+ Case #1773: 1.000000
1774
+ Case #1774: 0.999620
1775
+ Case #1775: 1.000000
1776
+ Case #1776: 1.000000
1777
+ Case #1777: 0.457337
1778
+ Case #1778: 0.104180
1779
+ Case #1779: 0.999965
1780
+ Case #1780: 1.000000
1781
+ Case #1781: 1.000000
1782
+ Case #1782: 1.000000
1783
+ Case #1783: 0.999983
1784
+ Case #1784: 0.974867
1785
+ Case #1785: 1.000000
1786
+ Case #1786: 0.894332
1787
+ Case #1787: 0.999997
1788
+ Case #1788: 1.000000
1789
+ Case #1789: 1.000000
1790
+ Case #1790: 1.000000
1791
+ Case #1791: 1.000000
1792
+ Case #1792: 0.992729
1793
+ Case #1793: 1.000000
1794
+ Case #1794: 1.000000
1795
+ Case #1795: 1.000000
1796
+ Case #1796: 0.999988
1797
+ Case #1797: 0.999991
1798
+ Case #1798: 0.999987
1799
+ Case #1799: 0.860031
1800
+ Case #1800: 1.000000
1801
+ Case #1801: 0.440218
1802
+ Case #1802: 1.000000
1803
+ Case #1803: 0.999997
1804
+ Case #1804: 1.000000
1805
+ Case #1805: 1.000000
1806
+ Case #1806: 0.853630
1807
+ Case #1807: 1.000000
1808
+ Case #1808: 0.500000
1809
+ Case #1809: 1.000000
1810
+ Case #1810: 1.000000
1811
+ Case #1811: 0.000000
1812
+ Case #1812: 1.000000
1813
+ Case #1813: 1.000000
1814
+ Case #1814: 1.000000
1815
+ Case #1815: 1.000000
1816
+ Case #1816: 1.000000
1817
+ Case #1817: 0.000000
1818
+ Case #1818: 0.000000
1819
+ Case #1819: 1.000000
1820
+ Case #1820: 1.000000
1821
+ Case #1821: 0.999976
1822
+ Case #1822: 1.000000
1823
+ Case #1823: 1.000000
1824
+ Case #1824: 0.873145
1825
+ Case #1825: 0.944783
1826
+ Case #1826: 1.000000
1827
+ Case #1827: 1.000000
1828
+ Case #1828: 1.000000
1829
+ Case #1829: 1.000000
1830
+ Case #1830: 1.000000
1831
+ Case #1831: 0.999981
1832
+ Case #1832: 1.000000
1833
+ Case #1833: 1.000000
1834
+ Case #1834: 0.999997
1835
+ Case #1835: 1.000000
1836
+ Case #1836: 1.000000
1837
+ Case #1837: 0.873145
1838
+ Case #1838: 0.910071
1839
+ Case #1839: 0.070939
1840
+ Case #1840: 1.000000
1841
+ Case #1841: 0.856304
1842
+ Case #1842: 0.994938
1843
+ Case #1843: 0.859409
1844
+ Case #1844: 1.000000
1845
+ Case #1845: 1.000000
1846
+ Case #1846: 1.000000
1847
+ Case #1847: 0.999497
1848
+ Case #1848: 1.000000
1849
+ Case #1849: 1.000000
1850
+ Case #1850: 0.999933
1851
+ Case #1851: 0.999971
1852
+ Case #1852: 1.000000
1853
+ Case #1853: 0.997623
1854
+ Case #1854: 0.999914
1855
+ Case #1855: 1.000000
1856
+ Case #1856: 1.000000
1857
+ Case #1857: 1.000000
1858
+ Case #1858: 0.999991
1859
+ Case #1859: 0.574987
1860
+ Case #1860: 0.999982
1861
+ Case #1861: 0.996997
1862
+ Case #1862: 0.999998
1863
+ Case #1863: 1.000000
1864
+ Case #1864: 1.000000
1865
+ Case #1865: 1.000000
1866
+ Case #1866: 1.000000
1867
+ Case #1867: 0.999598
1868
+ Case #1868: 1.000000
1869
+ Case #1869: 1.000000
1870
+ Case #1870: 0.999997
1871
+ Case #1871: 0.890627
1872
+ Case #1872: 0.000000
1873
+ Case #1873: 0.000901
1874
+ Case #1874: 1.000000
1875
+ Case #1875: 1.000000
1876
+ Case #1876: 1.000000
1877
+ Case #1877: 1.000000
1878
+ Case #1878: 1.000000
1879
+ Case #1879: 0.973516
1880
+ Case #1880: 0.515743
1881
+ Case #1881: 0.676836
1882
+ Case #1882: 1.000000
1883
+ Case #1883: 1.000000
1884
+ Case #1884: 1.000000
1885
+ Case #1885: 1.000000
1886
+ Case #1886: 0.999998
1887
+ Case #1887: 1.000000
1888
+ Case #1888: 1.000000
1889
+ Case #1889: 1.000000
1890
+ Case #1890: 1.000000
1891
+ Case #1891: 0.988410
1892
+ Case #1892: 0.446420
1893
+ Case #1893: 1.000000
1894
+ Case #1894: 1.000000
1895
+ Case #1895: 0.999642
1896
+ Case #1896: 0.730071
1897
+ Case #1897: 0.999217
1898
+ Case #1898: 1.000000
1899
+ Case #1899: 1.000000
1900
+ Case #1900: 0.993003
1901
+ Case #1901: 1.000000
1902
+ Case #1902: 1.000000
1903
+ Case #1903: 1.000000
1904
+ Case #1904: 1.000000
1905
+ Case #1905: 0.988465
1906
+ Case #1906: 0.999979
1907
+ Case #1907: 0.737500
1908
+ Case #1908: 1.000000
1909
+ Case #1909: 1.000000
1910
+ Case #1910: 1.000000
1911
+ Case #1911: 1.000000
1912
+ Case #1912: 0.991429
1913
+ Case #1913: 1.000000
1914
+ Case #1914: 1.000000
1915
+ Case #1915: 1.000000
1916
+ Case #1916: 1.000000
1917
+ Case #1917: 1.000000
1918
+ Case #1918: 0.999950
1919
+ Case #1919: 0.933566
1920
+ Case #1920: 0.000000
1921
+ Case #1921: 0.999738
1922
+ Case #1922: 0.791106
1923
+ Case #1923: 1.000000
1924
+ Case #1924: 0.992815
1925
+ Case #1925: 0.000086
1926
+ Case #1926: 1.000000
1927
+ Case #1927: 1.000000
1928
+ Case #1928: 1.000000
1929
+ Case #1929: 0.710478
1930
+ Case #1930: 1.000000
1931
+ Case #1931: 1.000000
1932
+ Case #1932: 0.999985
1933
+ Case #1933: 1.000000
1934
+ Case #1934: 0.987706
1935
+ Case #1935: 0.994675
1936
+ Case #1936: 1.000000
1937
+ Case #1937: 0.990629
1938
+ Case #1938: 1.000000
1939
+ Case #1939: 0.971769
1940
+ Case #1940: 0.999940
1941
+ Case #1941: 0.919434
1942
+ Case #1942: 0.999955
1943
+ Case #1943: 1.000000
1944
+ Case #1944: 0.999984
1945
+ Case #1945: 0.999531
1946
+ Case #1946: 0.190454
1947
+ Case #1947: 1.000000
1948
+ Case #1948: 1.000000
1949
+ Case #1949: 1.000000
1950
+ Case #1950: 0.000000
1951
+ Case #1951: 0.703089
1952
+ Case #1952: 0.086650
1953
+ Case #1953: 0.639535
1954
+ Case #1954: 0.999998
1955
+ Case #1955: 0.992524
1956
+ Case #1956: 1.000000
1957
+ Case #1957: 0.967070
1958
+ Case #1958: 0.998953
1959
+ Case #1959: 0.997100
1960
+ Case #1960: 0.277778
1961
+ Case #1961: 0.834441
1962
+ Case #1962: 0.014453
1963
+ Case #1963: 0.477336
1964
+ Case #1964: 1.000000
1965
+ Case #1965: 0.948508
1966
+ Case #1966: 0.977958
1967
+ Case #1967: 0.995917
1968
+ Case #1968: 0.180315
1969
+ Case #1969: 0.810528
1970
+ Case #1970: 1.000000
1971
+ Case #1971: 1.000000
1972
+ Case #1972: 1.000000
1973
+ Case #1973: 1.000000
1974
+ Case #1974: 1.000000
1975
+ Case #1975: 1.000000
1976
+ Case #1976: 0.999659
1977
+ Case #1977: 1.000000
1978
+ Case #1978: 0.994542
1979
+ Case #1979: 0.999958
1980
+ Case #1980: 1.000000
1981
+ Case #1981: 0.999997
1982
+ Case #1982: 1.000000
1983
+ Case #1983: 1.000000
1984
+ Case #1984: 0.999794
1985
+ Case #1985: 0.999684
1986
+ Case #1986: 1.000000
1987
+ Case #1987: 0.317536
1988
+ Case #1988: 0.999875
1989
+ Case #1989: 0.999438
1990
+ Case #1990: 1.000000
1991
+ Case #1991: 0.999997
1992
+ Case #1992: 0.805690
1993
+ Case #1993: 0.999991
1994
+ Case #1994: 0.999878
1995
+ Case #1995: 0.827148
1996
+ Case #1996: 0.809884
1997
+ Case #1997: 1.000000
1998
+ Case #1998: 0.507677
1999
+ Case #1999: 1.000000
2000
+ Case #2000: 1.000000
2001
+ Case #2001: 0.999999
2002
+ Case #2002: 1.000000
2003
+ Case #2003: 1.000000
2004
+ Case #2004: 1.000000
2005
+ Case #2005: 1.000000
2017/quals/lazyloading.html ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Wilson works for a moving company. His primary duty is to load household items into a moving truck.
3
+ Wilson has a bag that he uses to move these items. He puts a bunch of items in the bag, moves them
4
+ to the truck, and then drops the items off.
5
+ </p>
6
+
7
+ <p>
8
+ Wilson has a bit of a reputation as a lazy worker. Julie is Wilson's supervisor, and she's keen to make sure
9
+ that he doesn't slack off. She wants Wilson to carry at least 50 pounds of items in his bag every time he
10
+ goes to the truck.
11
+ </p>
12
+
13
+ <p>
14
+ Luckily for Wilson, his bag is opaque. When he carries a bagful of items, Julie can tell how many items are
15
+ in the bag (based on the height of the stack in the bag), and she can tell the weight of the top item. She can't, however,
16
+ tell how much the other items in the bag weigh.
17
+ She assumes that every item in the bag weighs at least as much as this top item, because surely Wilson,
18
+ as lazy as he is, would at least not be so dense as to put heavier items on top of lighter ones. Alas, Julie is woefully
19
+ ignorant of the extent of Wilson's lack of dedication to his duty, and this assumption is frequently incorrect.
20
+ </p>
21
+
22
+ <p>
23
+ Today there are <strong>N</strong> items to be moved, and Wilson, paid by the hour as he is, wants to maximize the
24
+ number of trips he makes to move all of them to the truck. What is the maximum number of trips Wilson can make
25
+ without getting berated by Julie?
26
+ </p>
27
+
28
+ <p>
29
+ Note that Julie is not aware of what items are to be moved today, and she is not keeping track of what Wilson has already
30
+ moved when she examines each bag of items. She simply assumes that each bagful contains a total weight of at least
31
+ <strong>k</strong> * <strong>w</strong>
32
+ where <strong>k</strong> is the number of items in the bag, and <strong>w</strong> is the weight of the top item.
33
+ </p>
34
+
35
+ <h3>Input</h3>
36
+
37
+ <p>
38
+ Input begins with an integer <strong>T</strong>, the number of days Wilson "works" at his job.
39
+ For each day, there is first a line containing the integer <strong>N</strong>.
40
+ Then there are <strong>N</strong> lines, the <strong>i</strong>th of which contains a single integer,
41
+ the weight of the <strong>i</strong>th item, <strong>W<sub>i</sub></strong>.
42
+ </p>
43
+
44
+ <h3>Output</h3>
45
+
46
+ <p>
47
+ For the <strong>i</strong>th day, print a line containing "Case #<strong>i</strong>: " followed by the maximum number
48
+ of trips Wilson can take that day.
49
+ </p>
50
+
51
+ <h3>Constraints</h3>
52
+
53
+ <p>
54
+ 1 &le; <strong>T</strong> &le; 500 <br />
55
+ 1 &le; <strong>N</strong> &le; 100 <br />
56
+ 1 &le; <strong>W<sub>i</sub></strong> &le; 100 <br />
57
+ </p>
58
+
59
+ <p>
60
+ On every day, it is guaranteed that the total weight of all of the items is at least 50 pounds.
61
+ </p>
62
+
63
+
64
+ <h3>Explanation of Sample</h3>
65
+
66
+ <p>
67
+ In the first case, Wilson can make two trips by stacking a 30-pound item on top of a 1-pound item,
68
+ making the bag appear to contain 60 pounds.
69
+ </p>
70
+
71
+ <p>
72
+ In the second case, Wilson needs to put all the items in the bag at once and can only make one trip.
73
+ </p>
74
+
75
+ <p>
76
+ In the third case, one possible solution is to put the items with odd weight in the bag for the first trip,
77
+ and then the items with even weight in the bag for the second trip, making sure to put the heaviest item on top.
78
+ </p>
2017/quals/lazyloading.in ADDED
The diff for this file is too large to render. See raw diff
 
2017/quals/lazyloading.java ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Qualification Round
3
+ // Lazy Loading
4
+ // Wesley May
5
+
6
+ import java.util.*;
7
+
8
+ public class LazyLoading
9
+ {
10
+ public static void main(String args[])
11
+ {
12
+ Scanner scan = new Scanner(System.in);
13
+ int T = scan.nextInt();
14
+
15
+ for(int ca=1;ca <= T;ca++)
16
+ {
17
+ int N = scan.nextInt();
18
+
19
+ int[] W = new int[N];
20
+
21
+ for(int i=0;i < N;i++)
22
+ W[i] = scan.nextInt();
23
+
24
+ Arrays.sort(W);
25
+
26
+ int ans = 0;
27
+ int L = 0;
28
+ int R = N-1;
29
+
30
+ while(L <= R)
31
+ {
32
+ int count = 1;
33
+ while(count * W[R] < 50)
34
+ count++;
35
+
36
+ if(count <= R - L + 1)
37
+ ans++;
38
+
39
+ L += count - 1;
40
+ R--;
41
+ }
42
+
43
+ System.out.println("Case #" + ca + ": " + ans);
44
+ }
45
+ }
46
+ }
2017/quals/lazyloading.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wilson works for a moving company. His primary duty is to load household items
2
+ into a moving truck. Wilson has a bag that he uses to move these items. He
3
+ puts a bunch of items in the bag, moves them to the truck, and then drops the
4
+ items off.
5
+
6
+ Wilson has a bit of a reputation as a lazy worker. Julie is Wilson's
7
+ supervisor, and she's keen to make sure that he doesn't slack off. She wants
8
+ Wilson to carry at least 50 pounds of items in his bag every time he goes to
9
+ the truck.
10
+
11
+ Luckily for Wilson, his bag is opaque. When he carries a bagful of items,
12
+ Julie can tell how many items are in the bag (based on the height of the stack
13
+ in the bag), and she can tell the weight of the top item. She can't, however,
14
+ tell how much the other items in the bag weigh. She assumes that every item in
15
+ the bag weighs at least as much as this top item, because surely Wilson, as
16
+ lazy as he is, would at least not be so dense as to put heavier items on top
17
+ of lighter ones. Alas, Julie is woefully ignorant of the extent of Wilson's
18
+ lack of dedication to his duty, and this assumption is frequently incorrect.
19
+
20
+ Today there are **N** items to be moved, and Wilson, paid by the hour as he
21
+ is, wants to maximize the number of trips he makes to move all of them to the
22
+ truck. What is the maximum number of trips Wilson can make without getting
23
+ berated by Julie?
24
+
25
+ Note that Julie is not aware of what items are to be moved today, and she is
26
+ not keeping track of what Wilson has already moved when she examines each bag
27
+ of items. She simply assumes that each bagful contains a total weight of at
28
+ least **k** * **w** where **k** is the number of items in the bag, and **w**
29
+ is the weight of the top item.
30
+
31
+ ### Input
32
+
33
+ Input begins with an integer **T**, the number of days Wilson "works" at his
34
+ job. For each day, there is first a line containing the integer **N**. Then
35
+ there are **N** lines, the **i**th of which contains a single integer, the
36
+ weight of the **i**th item, **Wi**.
37
+
38
+ ### Output
39
+
40
+ For the **i**th day, print a line containing "Case #**i**: " followed by the
41
+ maximum number of trips Wilson can take that day.
42
+
43
+ ### Constraints
44
+
45
+ 1 ≤ **T** ≤ 500
46
+ 1 ≤ **N** ≤ 100
47
+ 1 ≤ **Wi** ≤ 100
48
+
49
+ On every day, it is guaranteed that the total weight of all of the items is at
50
+ least 50 pounds.
51
+
52
+ ### Explanation of Sample
53
+
54
+ In the first case, Wilson can make two trips by stacking a 30-pound item on
55
+ top of a 1-pound item, making the bag appear to contain 60 pounds.
56
+
57
+ In the second case, Wilson needs to put all the items in the bag at once and
58
+ can only make one trip.
59
+
60
+ In the third case, one possible solution is to put the items with odd weight
61
+ in the bag for the first trip, and then the items with even weight in the bag
62
+ for the second trip, making sure to put the heaviest item on top.
63
+
2017/quals/lazyloading.out ADDED
@@ -0,0 +1,1005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 1
3
+ Case #3: 2
4
+ Case #4: 3
5
+ Case #5: 8
6
+ Case #6: 30
7
+ Case #7: 39
8
+ Case #8: 42
9
+ Case #9: 23
10
+ Case #10: 66
11
+ Case #11: 16
12
+ Case #12: 32
13
+ Case #13: 3
14
+ Case #14: 64
15
+ Case #15: 6
16
+ Case #16: 24
17
+ Case #17: 36
18
+ Case #18: 22
19
+ Case #19: 41
20
+ Case #20: 50
21
+ Case #21: 2
22
+ Case #22: 69
23
+ Case #23: 63
24
+ Case #24: 57
25
+ Case #25: 36
26
+ Case #26: 16
27
+ Case #27: 26
28
+ Case #28: 56
29
+ Case #29: 3
30
+ Case #30: 76
31
+ Case #31: 12
32
+ Case #32: 25
33
+ Case #33: 71
34
+ Case #34: 16
35
+ Case #35: 5
36
+ Case #36: 21
37
+ Case #37: 25
38
+ Case #38: 4
39
+ Case #39: 22
40
+ Case #40: 35
41
+ Case #41: 6
42
+ Case #42: 10
43
+ Case #43: 26
44
+ Case #44: 4
45
+ Case #45: 61
46
+ Case #46: 15
47
+ Case #47: 6
48
+ Case #48: 12
49
+ Case #49: 26
50
+ Case #50: 67
51
+ Case #51: 23
52
+ Case #52: 58
53
+ Case #53: 41
54
+ Case #54: 67
55
+ Case #55: 20
56
+ Case #56: 11
57
+ Case #57: 74
58
+ Case #58: 53
59
+ Case #59: 43
60
+ Case #60: 2
61
+ Case #61: 72
62
+ Case #62: 14
63
+ Case #63: 34
64
+ Case #64: 63
65
+ Case #65: 4
66
+ Case #66: 54
67
+ Case #67: 53
68
+ Case #68: 60
69
+ Case #69: 56
70
+ Case #70: 16
71
+ Case #71: 9
72
+ Case #72: 45
73
+ Case #73: 37
74
+ Case #74: 69
75
+ Case #75: 23
76
+ Case #76: 8
77
+ Case #77: 12
78
+ Case #78: 57
79
+ Case #79: 62
80
+ Case #80: 77
81
+ Case #81: 54
82
+ Case #82: 69
83
+ Case #83: 48
84
+ Case #84: 18
85
+ Case #85: 1
86
+ Case #86: 72
87
+ Case #87: 46
88
+ Case #88: 34
89
+ Case #89: 36
90
+ Case #90: 43
91
+ Case #91: 21
92
+ Case #92: 14
93
+ Case #93: 13
94
+ Case #94: 8
95
+ Case #95: 43
96
+ Case #96: 21
97
+ Case #97: 67
98
+ Case #98: 5
99
+ Case #99: 24
100
+ Case #100: 21
101
+ Case #101: 60
102
+ Case #102: 43
103
+ Case #103: 1
104
+ Case #104: 29
105
+ Case #105: 9
106
+ Case #106: 65
107
+ Case #107: 57
108
+ Case #108: 24
109
+ Case #109: 1
110
+ Case #110: 25
111
+ Case #111: 30
112
+ Case #112: 65
113
+ Case #113: 23
114
+ Case #114: 75
115
+ Case #115: 40
116
+ Case #116: 16
117
+ Case #117: 22
118
+ Case #118: 52
119
+ Case #119: 11
120
+ Case #120: 60
121
+ Case #121: 13
122
+ Case #122: 1
123
+ Case #123: 55
124
+ Case #124: 47
125
+ Case #125: 20
126
+ Case #126: 46
127
+ Case #127: 45
128
+ Case #128: 28
129
+ Case #129: 15
130
+ Case #130: 57
131
+ Case #131: 50
132
+ Case #132: 5
133
+ Case #133: 63
134
+ Case #134: 28
135
+ Case #135: 33
136
+ Case #136: 32
137
+ Case #137: 69
138
+ Case #138: 60
139
+ Case #139: 11
140
+ Case #140: 54
141
+ Case #141: 71
142
+ Case #142: 44
143
+ Case #143: 72
144
+ Case #144: 60
145
+ Case #145: 3
146
+ Case #146: 13
147
+ Case #147: 16
148
+ Case #148: 8
149
+ Case #149: 20
150
+ Case #150: 41
151
+ Case #151: 60
152
+ Case #152: 65
153
+ Case #153: 76
154
+ Case #154: 53
155
+ Case #155: 51
156
+ Case #156: 71
157
+ Case #157: 48
158
+ Case #158: 33
159
+ Case #159: 41
160
+ Case #160: 68
161
+ Case #161: 41
162
+ Case #162: 25
163
+ Case #163: 60
164
+ Case #164: 23
165
+ Case #165: 13
166
+ Case #166: 2
167
+ Case #167: 35
168
+ Case #168: 45
169
+ Case #169: 56
170
+ Case #170: 54
171
+ Case #171: 48
172
+ Case #172: 46
173
+ Case #173: 3
174
+ Case #174: 57
175
+ Case #175: 4
176
+ Case #176: 9
177
+ Case #177: 61
178
+ Case #178: 40
179
+ Case #179: 9
180
+ Case #180: 15
181
+ Case #181: 65
182
+ Case #182: 1
183
+ Case #183: 16
184
+ Case #184: 72
185
+ Case #185: 70
186
+ Case #186: 52
187
+ Case #187: 1
188
+ Case #188: 72
189
+ Case #189: 34
190
+ Case #190: 49
191
+ Case #191: 54
192
+ Case #192: 2
193
+ Case #193: 11
194
+ Case #194: 36
195
+ Case #195: 51
196
+ Case #196: 54
197
+ Case #197: 54
198
+ Case #198: 76
199
+ Case #199: 30
200
+ Case #200: 69
201
+ Case #201: 28
202
+ Case #202: 17
203
+ Case #203: 58
204
+ Case #204: 19
205
+ Case #205: 20
206
+ Case #206: 44
207
+ Case #207: 68
208
+ Case #208: 69
209
+ Case #209: 36
210
+ Case #210: 29
211
+ Case #211: 29
212
+ Case #212: 6
213
+ Case #213: 16
214
+ Case #214: 60
215
+ Case #215: 66
216
+ Case #216: 72
217
+ Case #217: 38
218
+ Case #218: 30
219
+ Case #219: 54
220
+ Case #220: 39
221
+ Case #221: 13
222
+ Case #222: 5
223
+ Case #223: 11
224
+ Case #224: 19
225
+ Case #225: 7
226
+ Case #226: 23
227
+ Case #227: 7
228
+ Case #228: 68
229
+ Case #229: 53
230
+ Case #230: 33
231
+ Case #231: 65
232
+ Case #232: 7
233
+ Case #233: 14
234
+ Case #234: 15
235
+ Case #235: 69
236
+ Case #236: 7
237
+ Case #237: 48
238
+ Case #238: 24
239
+ Case #239: 23
240
+ Case #240: 64
241
+ Case #241: 70
242
+ Case #242: 16
243
+ Case #243: 27
244
+ Case #244: 54
245
+ Case #245: 54
246
+ Case #246: 39
247
+ Case #247: 22
248
+ Case #248: 42
249
+ Case #249: 37
250
+ Case #250: 68
251
+ Case #251: 23
252
+ Case #252: 40
253
+ Case #253: 24
254
+ Case #254: 57
255
+ Case #255: 55
256
+ Case #256: 77
257
+ Case #257: 25
258
+ Case #258: 26
259
+ Case #259: 38
260
+ Case #260: 24
261
+ Case #261: 59
262
+ Case #262: 48
263
+ Case #263: 14
264
+ Case #264: 21
265
+ Case #265: 56
266
+ Case #266: 61
267
+ Case #267: 8
268
+ Case #268: 57
269
+ Case #269: 7
270
+ Case #270: 32
271
+ Case #271: 29
272
+ Case #272: 13
273
+ Case #273: 37
274
+ Case #274: 27
275
+ Case #275: 47
276
+ Case #276: 75
277
+ Case #277: 47
278
+ Case #278: 41
279
+ Case #279: 12
280
+ Case #280: 1
281
+ Case #281: 16
282
+ Case #282: 27
283
+ Case #283: 73
284
+ Case #284: 1
285
+ Case #285: 52
286
+ Case #286: 60
287
+ Case #287: 65
288
+ Case #288: 14
289
+ Case #289: 26
290
+ Case #290: 27
291
+ Case #291: 52
292
+ Case #292: 56
293
+ Case #293: 64
294
+ Case #294: 19
295
+ Case #295: 54
296
+ Case #296: 21
297
+ Case #297: 41
298
+ Case #298: 39
299
+ Case #299: 10
300
+ Case #300: 59
301
+ Case #301: 20
302
+ Case #302: 75
303
+ Case #303: 74
304
+ Case #304: 21
305
+ Case #305: 40
306
+ Case #306: 64
307
+ Case #307: 74
308
+ Case #308: 63
309
+ Case #309: 52
310
+ Case #310: 35
311
+ Case #311: 61
312
+ Case #312: 73
313
+ Case #313: 69
314
+ Case #314: 28
315
+ Case #315: 24
316
+ Case #316: 52
317
+ Case #317: 74
318
+ Case #318: 57
319
+ Case #319: 53
320
+ Case #320: 66
321
+ Case #321: 14
322
+ Case #322: 20
323
+ Case #323: 63
324
+ Case #324: 58
325
+ Case #325: 42
326
+ Case #326: 13
327
+ Case #327: 25
328
+ Case #328: 7
329
+ Case #329: 25
330
+ Case #330: 42
331
+ Case #331: 17
332
+ Case #332: 16
333
+ Case #333: 29
334
+ Case #334: 30
335
+ Case #335: 25
336
+ Case #336: 53
337
+ Case #337: 54
338
+ Case #338: 12
339
+ Case #339: 57
340
+ Case #340: 72
341
+ Case #341: 10
342
+ Case #342: 70
343
+ Case #343: 3
344
+ Case #344: 56
345
+ Case #345: 1
346
+ Case #346: 33
347
+ Case #347: 38
348
+ Case #348: 68
349
+ Case #349: 2
350
+ Case #350: 33
351
+ Case #351: 17
352
+ Case #352: 61
353
+ Case #353: 33
354
+ Case #354: 73
355
+ Case #355: 66
356
+ Case #356: 52
357
+ Case #357: 30
358
+ Case #358: 57
359
+ Case #359: 31
360
+ Case #360: 42
361
+ Case #361: 42
362
+ Case #362: 60
363
+ Case #363: 18
364
+ Case #364: 8
365
+ Case #365: 14
366
+ Case #366: 71
367
+ Case #367: 55
368
+ Case #368: 11
369
+ Case #369: 58
370
+ Case #370: 33
371
+ Case #371: 62
372
+ Case #372: 11
373
+ Case #373: 22
374
+ Case #374: 10
375
+ Case #375: 18
376
+ Case #376: 73
377
+ Case #377: 12
378
+ Case #378: 24
379
+ Case #379: 13
380
+ Case #380: 40
381
+ Case #381: 75
382
+ Case #382: 63
383
+ Case #383: 47
384
+ Case #384: 77
385
+ Case #385: 53
386
+ Case #386: 17
387
+ Case #387: 66
388
+ Case #388: 52
389
+ Case #389: 28
390
+ Case #390: 53
391
+ Case #391: 20
392
+ Case #392: 23
393
+ Case #393: 67
394
+ Case #394: 33
395
+ Case #395: 28
396
+ Case #396: 5
397
+ Case #397: 15
398
+ Case #398: 50
399
+ Case #399: 23
400
+ Case #400: 44
401
+ Case #401: 65
402
+ Case #402: 18
403
+ Case #403: 55
404
+ Case #404: 50
405
+ Case #405: 7
406
+ Case #406: 26
407
+ Case #407: 47
408
+ Case #408: 56
409
+ Case #409: 15
410
+ Case #410: 61
411
+ Case #411: 68
412
+ Case #412: 48
413
+ Case #413: 35
414
+ Case #414: 70
415
+ Case #415: 76
416
+ Case #416: 62
417
+ Case #417: 17
418
+ Case #418: 45
419
+ Case #419: 3
420
+ Case #420: 66
421
+ Case #421: 66
422
+ Case #422: 42
423
+ Case #423: 57
424
+ Case #424: 54
425
+ Case #425: 14
426
+ Case #426: 37
427
+ Case #427: 6
428
+ Case #428: 50
429
+ Case #429: 8
430
+ Case #430: 3
431
+ Case #431: 23
432
+ Case #432: 66
433
+ Case #433: 46
434
+ Case #434: 57
435
+ Case #435: 43
436
+ Case #436: 1
437
+ Case #437: 16
438
+ Case #438: 12
439
+ Case #439: 52
440
+ Case #440: 16
441
+ Case #441: 72
442
+ Case #442: 43
443
+ Case #443: 9
444
+ Case #444: 64
445
+ Case #445: 15
446
+ Case #446: 76
447
+ Case #447: 4
448
+ Case #448: 69
449
+ Case #449: 3
450
+ Case #450: 61
451
+ Case #451: 68
452
+ Case #452: 45
453
+ Case #453: 38
454
+ Case #454: 44
455
+ Case #455: 29
456
+ Case #456: 64
457
+ Case #457: 35
458
+ Case #458: 44
459
+ Case #459: 70
460
+ Case #460: 3
461
+ Case #461: 61
462
+ Case #462: 37
463
+ Case #463: 70
464
+ Case #464: 72
465
+ Case #465: 13
466
+ Case #466: 12
467
+ Case #467: 69
468
+ Case #468: 1
469
+ Case #469: 55
470
+ Case #470: 2
471
+ Case #471: 3
472
+ Case #472: 2
473
+ Case #473: 2
474
+ Case #474: 34
475
+ Case #475: 63
476
+ Case #476: 54
477
+ Case #477: 38
478
+ Case #478: 20
479
+ Case #479: 68
480
+ Case #480: 61
481
+ Case #481: 18
482
+ Case #482: 5
483
+ Case #483: 66
484
+ Case #484: 30
485
+ Case #485: 59
486
+ Case #486: 22
487
+ Case #487: 69
488
+ Case #488: 33
489
+ Case #489: 48
490
+ Case #490: 40
491
+ Case #491: 3
492
+ Case #492: 64
493
+ Case #493: 30
494
+ Case #494: 11
495
+ Case #495: 36
496
+ Case #496: 3
497
+ Case #497: 67
498
+ Case #498: 41
499
+ Case #499: 72
500
+ Case #500: 54
501
+ Case #501: 44
502
+ Case #502: 38
503
+ Case #503: 15
504
+ Case #504: 61
505
+ Case #505: 31
506
+ Case #506: 48
507
+ Case #507: 63
508
+ Case #508: 37
509
+ Case #509: 66
510
+ Case #510: 20
511
+ Case #511: 16
512
+ Case #512: 21
513
+ Case #513: 16
514
+ Case #514: 44
515
+ Case #515: 43
516
+ Case #516: 54
517
+ Case #517: 56
518
+ Case #518: 28
519
+ Case #519: 60
520
+ Case #520: 60
521
+ Case #521: 29
522
+ Case #522: 61
523
+ Case #523: 65
524
+ Case #524: 75
525
+ Case #525: 19
526
+ Case #526: 12
527
+ Case #527: 55
528
+ Case #528: 18
529
+ Case #529: 38
530
+ Case #530: 54
531
+ Case #531: 58
532
+ Case #532: 44
533
+ Case #533: 62
534
+ Case #534: 26
535
+ Case #535: 42
536
+ Case #536: 56
537
+ Case #537: 39
538
+ Case #538: 70
539
+ Case #539: 50
540
+ Case #540: 34
541
+ Case #541: 14
542
+ Case #542: 72
543
+ Case #543: 60
544
+ Case #544: 15
545
+ Case #545: 42
546
+ Case #546: 64
547
+ Case #547: 76
548
+ Case #548: 10
549
+ Case #549: 30
550
+ Case #550: 56
551
+ Case #551: 59
552
+ Case #552: 63
553
+ Case #553: 75
554
+ Case #554: 67
555
+ Case #555: 3
556
+ Case #556: 65
557
+ Case #557: 43
558
+ Case #558: 32
559
+ Case #559: 38
560
+ Case #560: 53
561
+ Case #561: 48
562
+ Case #562: 17
563
+ Case #563: 22
564
+ Case #564: 61
565
+ Case #565: 5
566
+ Case #566: 39
567
+ Case #567: 57
568
+ Case #568: 51
569
+ Case #569: 38
570
+ Case #570: 63
571
+ Case #571: 14
572
+ Case #572: 42
573
+ Case #573: 56
574
+ Case #574: 70
575
+ Case #575: 40
576
+ Case #576: 15
577
+ Case #577: 71
578
+ Case #578: 65
579
+ Case #579: 73
580
+ Case #580: 60
581
+ Case #581: 15
582
+ Case #582: 5
583
+ Case #583: 20
584
+ Case #584: 13
585
+ Case #585: 16
586
+ Case #586: 47
587
+ Case #587: 61
588
+ Case #588: 49
589
+ Case #589: 55
590
+ Case #590: 67
591
+ Case #591: 7
592
+ Case #592: 67
593
+ Case #593: 49
594
+ Case #594: 15
595
+ Case #595: 39
596
+ Case #596: 72
597
+ Case #597: 28
598
+ Case #598: 58
599
+ Case #599: 6
600
+ Case #600: 24
601
+ Case #601: 6
602
+ Case #602: 29
603
+ Case #603: 50
604
+ Case #604: 57
605
+ Case #605: 56
606
+ Case #606: 9
607
+ Case #607: 48
608
+ Case #608: 58
609
+ Case #609: 43
610
+ Case #610: 48
611
+ Case #611: 23
612
+ Case #612: 25
613
+ Case #613: 74
614
+ Case #614: 56
615
+ Case #615: 27
616
+ Case #616: 58
617
+ Case #617: 41
618
+ Case #618: 59
619
+ Case #619: 24
620
+ Case #620: 14
621
+ Case #621: 47
622
+ Case #622: 73
623
+ Case #623: 75
624
+ Case #624: 26
625
+ Case #625: 71
626
+ Case #626: 54
627
+ Case #627: 49
628
+ Case #628: 19
629
+ Case #629: 62
630
+ Case #630: 4
631
+ Case #631: 57
632
+ Case #632: 19
633
+ Case #633: 45
634
+ Case #634: 8
635
+ Case #635: 6
636
+ Case #636: 54
637
+ Case #637: 47
638
+ Case #638: 2
639
+ Case #639: 66
640
+ Case #640: 35
641
+ Case #641: 28
642
+ Case #642: 19
643
+ Case #643: 46
644
+ Case #644: 11
645
+ Case #645: 64
646
+ Case #646: 60
647
+ Case #647: 31
648
+ Case #648: 43
649
+ Case #649: 8
650
+ Case #650: 45
651
+ Case #651: 29
652
+ Case #652: 57
653
+ Case #653: 56
654
+ Case #654: 47
655
+ Case #655: 59
656
+ Case #656: 2
657
+ Case #657: 15
658
+ Case #658: 43
659
+ Case #659: 23
660
+ Case #660: 1
661
+ Case #661: 41
662
+ Case #662: 71
663
+ Case #663: 10
664
+ Case #664: 6
665
+ Case #665: 61
666
+ Case #666: 7
667
+ Case #667: 73
668
+ Case #668: 4
669
+ Case #669: 41
670
+ Case #670: 63
671
+ Case #671: 43
672
+ Case #672: 45
673
+ Case #673: 43
674
+ Case #674: 66
675
+ Case #675: 14
676
+ Case #676: 8
677
+ Case #677: 64
678
+ Case #678: 17
679
+ Case #679: 4
680
+ Case #680: 73
681
+ Case #681: 61
682
+ Case #682: 69
683
+ Case #683: 36
684
+ Case #684: 11
685
+ Case #685: 68
686
+ Case #686: 43
687
+ Case #687: 15
688
+ Case #688: 43
689
+ Case #689: 6
690
+ Case #690: 52
691
+ Case #691: 30
692
+ Case #692: 54
693
+ Case #693: 8
694
+ Case #694: 52
695
+ Case #695: 19
696
+ Case #696: 9
697
+ Case #697: 68
698
+ Case #698: 45
699
+ Case #699: 2
700
+ Case #700: 29
701
+ Case #701: 34
702
+ Case #702: 43
703
+ Case #703: 71
704
+ Case #704: 42
705
+ Case #705: 70
706
+ Case #706: 73
707
+ Case #707: 54
708
+ Case #708: 14
709
+ Case #709: 22
710
+ Case #710: 26
711
+ Case #711: 66
712
+ Case #712: 33
713
+ Case #713: 35
714
+ Case #714: 17
715
+ Case #715: 37
716
+ Case #716: 61
717
+ Case #717: 36
718
+ Case #718: 2
719
+ Case #719: 8
720
+ Case #720: 56
721
+ Case #721: 4
722
+ Case #722: 38
723
+ Case #723: 48
724
+ Case #724: 65
725
+ Case #725: 30
726
+ Case #726: 70
727
+ Case #727: 59
728
+ Case #728: 57
729
+ Case #729: 71
730
+ Case #730: 67
731
+ Case #731: 57
732
+ Case #732: 22
733
+ Case #733: 4
734
+ Case #734: 59
735
+ Case #735: 65
736
+ Case #736: 25
737
+ Case #737: 12
738
+ Case #738: 57
739
+ Case #739: 9
740
+ Case #740: 51
741
+ Case #741: 11
742
+ Case #742: 26
743
+ Case #743: 67
744
+ Case #744: 44
745
+ Case #745: 45
746
+ Case #746: 1
747
+ Case #747: 23
748
+ Case #748: 45
749
+ Case #749: 60
750
+ Case #750: 46
751
+ Case #751: 16
752
+ Case #752: 59
753
+ Case #753: 63
754
+ Case #754: 37
755
+ Case #755: 29
756
+ Case #756: 24
757
+ Case #757: 23
758
+ Case #758: 76
759
+ Case #759: 45
760
+ Case #760: 42
761
+ Case #761: 65
762
+ Case #762: 18
763
+ Case #763: 12
764
+ Case #764: 31
765
+ Case #765: 2
766
+ Case #766: 61
767
+ Case #767: 10
768
+ Case #768: 60
769
+ Case #769: 56
770
+ Case #770: 29
771
+ Case #771: 50
772
+ Case #772: 64
773
+ Case #773: 30
774
+ Case #774: 20
775
+ Case #775: 47
776
+ Case #776: 4
777
+ Case #777: 1
778
+ Case #778: 39
779
+ Case #779: 28
780
+ Case #780: 53
781
+ Case #781: 16
782
+ Case #782: 47
783
+ Case #783: 43
784
+ Case #784: 50
785
+ Case #785: 37
786
+ Case #786: 12
787
+ Case #787: 43
788
+ Case #788: 14
789
+ Case #789: 12
790
+ Case #790: 75
791
+ Case #791: 55
792
+ Case #792: 33
793
+ Case #793: 31
794
+ Case #794: 8
795
+ Case #795: 62
796
+ Case #796: 44
797
+ Case #797: 42
798
+ Case #798: 68
799
+ Case #799: 37
800
+ Case #800: 12
801
+ Case #801: 70
802
+ Case #802: 19
803
+ Case #803: 62
804
+ Case #804: 28
805
+ Case #805: 26
806
+ Case #806: 11
807
+ Case #807: 32
808
+ Case #808: 11
809
+ Case #809: 43
810
+ Case #810: 30
811
+ Case #811: 38
812
+ Case #812: 35
813
+ Case #813: 7
814
+ Case #814: 67
815
+ Case #815: 20
816
+ Case #816: 1
817
+ Case #817: 60
818
+ Case #818: 56
819
+ Case #819: 26
820
+ Case #820: 34
821
+ Case #821: 4
822
+ Case #822: 18
823
+ Case #823: 61
824
+ Case #824: 21
825
+ Case #825: 13
826
+ Case #826: 73
827
+ Case #827: 56
828
+ Case #828: 27
829
+ Case #829: 8
830
+ Case #830: 36
831
+ Case #831: 24
832
+ Case #832: 9
833
+ Case #833: 38
834
+ Case #834: 34
835
+ Case #835: 43
836
+ Case #836: 73
837
+ Case #837: 38
838
+ Case #838: 56
839
+ Case #839: 29
840
+ Case #840: 34
841
+ Case #841: 69
842
+ Case #842: 5
843
+ Case #843: 21
844
+ Case #844: 11
845
+ Case #845: 40
846
+ Case #846: 13
847
+ Case #847: 66
848
+ Case #848: 10
849
+ Case #849: 23
850
+ Case #850: 29
851
+ Case #851: 51
852
+ Case #852: 26
853
+ Case #853: 33
854
+ Case #854: 10
855
+ Case #855: 32
856
+ Case #856: 17
857
+ Case #857: 71
858
+ Case #858: 1
859
+ Case #859: 35
860
+ Case #860: 48
861
+ Case #861: 50
862
+ Case #862: 44
863
+ Case #863: 63
864
+ Case #864: 55
865
+ Case #865: 34
866
+ Case #866: 62
867
+ Case #867: 61
868
+ Case #868: 28
869
+ Case #869: 15
870
+ Case #870: 55
871
+ Case #871: 55
872
+ Case #872: 44
873
+ Case #873: 6
874
+ Case #874: 30
875
+ Case #875: 61
876
+ Case #876: 45
877
+ Case #877: 15
878
+ Case #878: 66
879
+ Case #879: 19
880
+ Case #880: 32
881
+ Case #881: 23
882
+ Case #882: 21
883
+ Case #883: 69
884
+ Case #884: 67
885
+ Case #885: 39
886
+ Case #886: 2
887
+ Case #887: 48
888
+ Case #888: 45
889
+ Case #889: 66
890
+ Case #890: 10
891
+ Case #891: 40
892
+ Case #892: 23
893
+ Case #893: 65
894
+ Case #894: 34
895
+ Case #895: 26
896
+ Case #896: 30
897
+ Case #897: 26
898
+ Case #898: 59
899
+ Case #899: 67
900
+ Case #900: 41
901
+ Case #901: 10
902
+ Case #902: 56
903
+ Case #903: 19
904
+ Case #904: 43
905
+ Case #905: 42
906
+ Case #906: 6
907
+ Case #907: 9
908
+ Case #908: 54
909
+ Case #909: 10
910
+ Case #910: 29
911
+ Case #911: 32
912
+ Case #912: 46
913
+ Case #913: 39
914
+ Case #914: 52
915
+ Case #915: 33
916
+ Case #916: 37
917
+ Case #917: 4
918
+ Case #918: 6
919
+ Case #919: 5
920
+ Case #920: 72
921
+ Case #921: 68
922
+ Case #922: 37
923
+ Case #923: 74
924
+ Case #924: 60
925
+ Case #925: 62
926
+ Case #926: 74
927
+ Case #927: 14
928
+ Case #928: 44
929
+ Case #929: 51
930
+ Case #930: 50
931
+ Case #931: 42
932
+ Case #932: 9
933
+ Case #933: 24
934
+ Case #934: 51
935
+ Case #935: 26
936
+ Case #936: 65
937
+ Case #937: 54
938
+ Case #938: 21
939
+ Case #939: 25
940
+ Case #940: 32
941
+ Case #941: 59
942
+ Case #942: 45
943
+ Case #943: 23
944
+ Case #944: 27
945
+ Case #945: 22
946
+ Case #946: 65
947
+ Case #947: 20
948
+ Case #948: 12
949
+ Case #949: 8
950
+ Case #950: 24
951
+ Case #951: 34
952
+ Case #952: 19
953
+ Case #953: 7
954
+ Case #954: 42
955
+ Case #955: 26
956
+ Case #956: 18
957
+ Case #957: 22
958
+ Case #958: 2
959
+ Case #959: 46
960
+ Case #960: 54
961
+ Case #961: 2
962
+ Case #962: 62
963
+ Case #963: 45
964
+ Case #964: 10
965
+ Case #965: 21
966
+ Case #966: 61
967
+ Case #967: 71
968
+ Case #968: 25
969
+ Case #969: 33
970
+ Case #970: 36
971
+ Case #971: 55
972
+ Case #972: 29
973
+ Case #973: 77
974
+ Case #974: 71
975
+ Case #975: 60
976
+ Case #976: 71
977
+ Case #977: 67
978
+ Case #978: 13
979
+ Case #979: 5
980
+ Case #980: 24
981
+ Case #981: 47
982
+ Case #982: 50
983
+ Case #983: 17
984
+ Case #984: 26
985
+ Case #985: 23
986
+ Case #986: 54
987
+ Case #987: 38
988
+ Case #988: 73
989
+ Case #989: 51
990
+ Case #990: 15
991
+ Case #991: 50
992
+ Case #992: 52
993
+ Case #993: 5
994
+ Case #994: 35
995
+ Case #995: 55
996
+ Case #996: 56
997
+ Case #997: 49
998
+ Case #998: 72
999
+ Case #999: 31
1000
+ Case #1000: 13
1001
+ Case #1001: 32
1002
+ Case #1002: 12
1003
+ Case #1003: 67
1004
+ Case #1004: 21
1005
+ Case #1005: 31
2017/quals/progresspie.html ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Some progress bars fill you with anticipation.
3
+ Some are finished before you know it and make you wonder why there was a progress bar at all.
4
+ </p>
5
+
6
+ <p>
7
+ Some progress bars progress at a pleasant, steady rate.
8
+ Some are chaotic, lurching forward and then pausing for long periods.
9
+ Some seem to slow down as they go, never quite reaching 100%.
10
+ </p>
11
+
12
+ <p>
13
+ Some progress bars are in fact not bars at all, but circles.
14
+ </p>
15
+
16
+ <p>
17
+ On your screen is a progress pie, a sort of progress bar that shows its progress as a sector of a circle.
18
+ Envision your screen as a square on the plane with its bottom-left corner at (0, 0), and its upper-right corner at (100, 100).
19
+ Every point on the screen is either white or black.
20
+ Initially, the progress is 0%, and all points on the screen are white. When the progress percentage, <strong>P</strong>, is greater than 0%, a sector of angle (<strong>P</strong>% * 360) degrees
21
+ is colored black, anchored by the line segment from the center of the square to the center of the top side, and proceeding clockwise.
22
+ </p>
23
+
24
+ <img src="{{PHOTO_ID:592385891651966}}" />
25
+
26
+ <p>
27
+ While you wait for the progress pie to fill in, you find yourself thinking about whether certain points would be white or black at different amounts of progress.
28
+ </p>
29
+
30
+
31
+ <h3>Input</h3>
32
+
33
+ <p>
34
+ Input begins with an integer <strong>T</strong>, the number of points you're curious about.
35
+ For each point, there is a line containing three space-separated integers, <strong>P</strong>, the amount of progress as a percentage,
36
+ and <strong>X</strong> and <strong>Y</strong>, the coordinates of the point.
37
+ </p>
38
+
39
+ <h3>Output</h3>
40
+
41
+ <p>
42
+ For the <strong>i</strong>th point, print a line containing "Case #<strong>i</strong>: " followed by the color of the point, either
43
+ "black" or "white".
44
+ </p>
45
+
46
+ <h3>Constraints</h3>
47
+
48
+ <p>
49
+ 1 &le; <strong>T</strong> &le; 1,000 <br />
50
+ 0 &le; <strong>P</strong>, <strong>X</strong>, <strong>Y</strong> &le; 100 <br />
51
+ </p>
52
+
53
+ <p>
54
+ Whenever a point (<strong>X</strong>, <strong>Y</strong>) is queried, it's guaranteed that all points within a distance of 10<sup>-6</sup> of
55
+ (<strong>X</strong>, <strong>Y</strong>) are the same color as (<strong>X</strong>, <strong>Y</strong>).
56
+ </p>
57
+
58
+
59
+ <h3>Explanation of Sample</h3>
60
+
61
+ <p>
62
+ In the first case all of the points are white, so the point at (55, 55) is of course white.
63
+ </p>
64
+
65
+ <p>
66
+ In the second case, (55, 55) is close to the filled-in sector of the circle, but it's still white.
67
+ </p>
68
+
69
+ <p>
70
+ In the third case, the filled-in sector of the circle now covers (55, 55), coloring it black.
71
+ </p>
72
+
2017/quals/progresspie.in ADDED
@@ -0,0 +1,2006 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2005
2
+ 0 55 55
3
+ 12 55 55
4
+ 13 55 55
5
+ 99 99 99
6
+ 87 20 40
7
+ 100 1 1
8
+ 57 28 81
9
+ 31 9 97
10
+ 81 64 71
11
+ 38 10 22
12
+ 73 60 73
13
+ 35 99 22
14
+ 63 43 23
15
+ 70 25 2
16
+ 94 41 86
17
+ 88 45 37
18
+ 48 100 27
19
+ 65 70 12
20
+ 87 40 57
21
+ 42 13 34
22
+ 20 46 39
23
+ 43 47 33
24
+ 77 75 10
25
+ 97 48 53
26
+ 46 4 73
27
+ 50 20 90
28
+ 36 65 62
29
+ 83 53 23
30
+ 73 79 96
31
+ 70 87 37
32
+ 76 86 17
33
+ 53 5 47
34
+ 56 22 38
35
+ 61 6 25
36
+ 17 37 79
37
+ 25 69 7
38
+ 89 48 41
39
+ 71 28 11
40
+ 21 53 4
41
+ 81 88 84
42
+ 39 62 18
43
+ 51 26 61
44
+ 15 27 85
45
+ 41 67 73
46
+ 0 33 60
47
+ 24 26 19
48
+ 100 91 42
49
+ 66 89 30
50
+ 17 89 70
51
+ 41 98 74
52
+ 6 90 7
53
+ 46 38 10
54
+ 79 100 64
55
+ 33 44 96
56
+ 59 43 87
57
+ 24 89 95
58
+ 61 63 52
59
+ 73 7 6
60
+ 90 47 68
61
+ 82 56 91
62
+ 34 72 48
63
+ 83 45 78
64
+ 66 69 9
65
+ 61 30 32
66
+ 93 91 57
67
+ 84 69 3
68
+ 32 68 96
69
+ 77 89 85
70
+ 4 1 83
71
+ 63 5 13
72
+ 5 47 9
73
+ 95 23 15
74
+ 0 57 27
75
+ 67 73 45
76
+ 39 81 80
77
+ 41 97 37
78
+ 79 37 2
79
+ 28 100 1
80
+ 83 81 21
81
+ 75 71 84
82
+ 49 37 81
83
+ 12 7 78
84
+ 84 79 77
85
+ 68 82 88
86
+ 78 84 95
87
+ 100 47 93
88
+ 13 98 74
89
+ 38 20 36
90
+ 45 3 87
91
+ 11 69 57
92
+ 29 94 95
93
+ 31 86 25
94
+ 58 16 65
95
+ 66 19 66
96
+ 51 22 21
97
+ 58 36 22
98
+ 67 45 84
99
+ 92 67 54
100
+ 37 54 52
101
+ 33 84 61
102
+ 32 46 61
103
+ 98 41 60
104
+ 89 21 73
105
+ 56 80 4
106
+ 98 80 87
107
+ 70 100 38
108
+ 62 17 79
109
+ 7 62 58
110
+ 3 40 45
111
+ 7 56 41
112
+ 53 85 73
113
+ 74 13 7
114
+ 45 94 28
115
+ 16 81 80
116
+ 28 9 52
117
+ 41 62 75
118
+ 13 45 52
119
+ 100 35 40
120
+ 64 96 55
121
+ 46 65 73
122
+ 61 38 36
123
+ 88 55 34
124
+ 62 48 83
125
+ 34 67 6
126
+ 50 91 58
127
+ 15 14 85
128
+ 13 17 1
129
+ 46 100 80
130
+ 92 7 98
131
+ 93 85 66
132
+ 44 4 23
133
+ 99 91 5
134
+ 71 75 75
135
+ 45 39 23
136
+ 70 44 46
137
+ 71 35 27
138
+ 79 88 11
139
+ 73 32 97
140
+ 62 57 13
141
+ 68 88 23
142
+ 91 63 31
143
+ 8 34 45
144
+ 5 98 52
145
+ 31 83 25
146
+ 67 94 53
147
+ 47 85 3
148
+ 44 71 96
149
+ 11 99 88
150
+ 14 81 78
151
+ 26 4 85
152
+ 41 12 92
153
+ 77 67 94
154
+ 12 8 16
155
+ 72 53 57
156
+ 33 35 34
157
+ 13 62 69
158
+ 69 62 92
159
+ 21 28 21
160
+ 46 18 82
161
+ 31 43 35
162
+ 34 26 6
163
+ 65 77 76
164
+ 79 31 94
165
+ 93 62 88
166
+ 19 61 77
167
+ 97 10 17
168
+ 1 45 6
169
+ 59 75 48
170
+ 4 47 5
171
+ 73 94 45
172
+ 24 81 77
173
+ 23 5 33
174
+ 90 70 34
175
+ 75 23 60
176
+ 78 23 25
177
+ 60 81 24
178
+ 51 39 32
179
+ 63 90 6
180
+ 32 43 54
181
+ 25 43 2
182
+ 63 4 15
183
+ 7 33 36
184
+ 96 44 13
185
+ 99 8 69
186
+ 67 12 75
187
+ 71 76 48
188
+ 66 96 69
189
+ 49 35 2
190
+ 58 99 46
191
+ 83 77 98
192
+ 50 22 62
193
+ 48 69 67
194
+ 62 87 92
195
+ 54 7 5
196
+ 91 83 54
197
+ 35 87 31
198
+ 68 31 60
199
+ 98 28 93
200
+ 2 94 46
201
+ 32 74 85
202
+ 47 88 38
203
+ 2 76 15
204
+ 85 71 33
205
+ 1 22 6
206
+ 46 74 16
207
+ 69 44 38
208
+ 18 66 28
209
+ 79 94 60
210
+ 29 75 87
211
+ 46 13 17
212
+ 57 27 68
213
+ 49 86 5
214
+ 65 69 32
215
+ 60 98 27
216
+ 30 15 68
217
+ 84 24 17
218
+ 97 83 99
219
+ 99 77 4
220
+ 48 38 28
221
+ 54 93 10
222
+ 40 5 31
223
+ 26 92 27
224
+ 85 33 65
225
+ 49 42 78
226
+ 61 12 61
227
+ 51 16 83
228
+ 16 86 48
229
+ 100 90 10
230
+ 17 24 45
231
+ 50 22 86
232
+ 61 87 41
233
+ 95 53 33
234
+ 21 81 30
235
+ 29 21 89
236
+ 37 29 63
237
+ 14 30 25
238
+ 77 88 1
239
+ 11 73 54
240
+ 47 27 8
241
+ 79 91 11
242
+ 49 47 74
243
+ 46 83 61
244
+ 70 67 75
245
+ 21 17 22
246
+ 85 67 94
247
+ 91 59 33
248
+ 10 87 38
249
+ 25 74 22
250
+ 97 82 93
251
+ 49 43 41
252
+ 30 94 18
253
+ 34 85 73
254
+ 52 72 19
255
+ 82 65 54
256
+ 77 18 99
257
+ 2 93 86
258
+ 48 46 58
259
+ 65 81 74
260
+ 66 22 24
261
+ 61 9 64
262
+ 18 57 73
263
+ 75 97 39
264
+ 92 33 47
265
+ 49 34 10
266
+ 7 55 85
267
+ 81 3 94
268
+ 10 33 33
269
+ 62 24 38
270
+ 25 23 43
271
+ 49 2 81
272
+ 1 74 53
273
+ 49 79 11
274
+ 34 16 89
275
+ 52 36 12
276
+ 83 15 78
277
+ 49 22 17
278
+ 30 64 56
279
+ 100 45 18
280
+ 12 25 45
281
+ 23 65 87
282
+ 82 47 30
283
+ 55 98 32
284
+ 70 59 36
285
+ 5 85 97
286
+ 92 10 71
287
+ 70 57 74
288
+ 55 36 81
289
+ 99 8 47
290
+ 35 22 38
291
+ 6 33 77
292
+ 34 66 96
293
+ 100 27 67
294
+ 75 12 4
295
+ 99 10 38
296
+ 35 55 63
297
+ 8 67 44
298
+ 14 36 81
299
+ 30 60 84
300
+ 77 65 16
301
+ 18 13 17
302
+ 89 86 90
303
+ 65 88 97
304
+ 10 34 81
305
+ 39 43 22
306
+ 30 41 28
307
+ 36 67 58
308
+ 83 77 15
309
+ 51 7 31
310
+ 2 64 93
311
+ 99 3 95
312
+ 16 86 46
313
+ 70 29 55
314
+ 23 74 80
315
+ 51 61 55
316
+ 86 15 32
317
+ 56 48 75
318
+ 86 92 88
319
+ 50 42 68
320
+ 28 14 70
321
+ 34 99 40
322
+ 13 28 46
323
+ 22 2 57
324
+ 41 58 27
325
+ 93 73 82
326
+ 31 40 41
327
+ 20 41 6
328
+ 88 64 68
329
+ 73 6 68
330
+ 72 69 8
331
+ 57 85 91
332
+ 64 38 29
333
+ 72 17 12
334
+ 53 80 34
335
+ 53 86 23
336
+ 58 18 38
337
+ 43 54 4
338
+ 7 29 92
339
+ 57 98 14
340
+ 4 80 61
341
+ 99 92 73
342
+ 97 88 98
343
+ 20 56 46
344
+ 10 22 75
345
+ 86 89 75
346
+ 98 29 77
347
+ 54 47 14
348
+ 36 17 39
349
+ 47 74 14
350
+ 50 96 59
351
+ 79 48 76
352
+ 59 83 100
353
+ 8 100 13
354
+ 69 26 21
355
+ 83 25 47
356
+ 13 63 44
357
+ 90 58 66
358
+ 41 32 82
359
+ 44 68 69
360
+ 82 89 7
361
+ 37 13 100
362
+ 57 76 70
363
+ 80 78 67
364
+ 92 4 28
365
+ 87 63 16
366
+ 78 21 43
367
+ 67 7 97
368
+ 38 91 22
369
+ 12 72 15
370
+ 74 35 78
371
+ 16 20 69
372
+ 62 44 84
373
+ 9 100 8
374
+ 63 73 6
375
+ 37 56 98
376
+ 2 21 41
377
+ 73 100 14
378
+ 33 56 65
379
+ 0 42 24
380
+ 57 52 31
381
+ 16 46 80
382
+ 81 45 30
383
+ 85 9 98
384
+ 61 58 61
385
+ 37 59 59
386
+ 94 73 33
387
+ 85 84 21
388
+ 34 92 25
389
+ 0 30 70
390
+ 80 2 41
391
+ 1 73 59
392
+ 27 5 38
393
+ 14 59 83
394
+ 21 88 44
395
+ 84 98 55
396
+ 34 68 35
397
+ 19 8 1
398
+ 29 81 85
399
+ 14 19 22
400
+ 39 39 55
401
+ 16 15 64
402
+ 39 72 57
403
+ 94 62 11
404
+ 14 65 87
405
+ 63 53 74
406
+ 46 100 56
407
+ 72 40 83
408
+ 67 95 83
409
+ 53 77 48
410
+ 33 18 17
411
+ 8 92 17
412
+ 55 12 25
413
+ 95 59 36
414
+ 64 70 73
415
+ 91 63 85
416
+ 42 93 80
417
+ 57 26 71
418
+ 75 9 23
419
+ 8 58 1
420
+ 35 8 16
421
+ 11 72 92
422
+ 86 41 9
423
+ 22 14 70
424
+ 55 32 37
425
+ 44 52 32
426
+ 43 9 84
427
+ 52 68 7
428
+ 91 10 23
429
+ 91 22 82
430
+ 70 72 24
431
+ 1 69 27
432
+ 51 66 33
433
+ 78 31 43
434
+ 45 58 33
435
+ 25 47 39
436
+ 48 48 69
437
+ 82 94 57
438
+ 99 61 22
439
+ 7 29 86
440
+ 50 45 96
441
+ 16 96 54
442
+ 41 85 37
443
+ 74 92 31
444
+ 1 54 73
445
+ 24 1 68
446
+ 33 24 78
447
+ 38 27 52
448
+ 0 65 91
449
+ 30 5 25
450
+ 8 61 41
451
+ 74 29 63
452
+ 25 25 97
453
+ 28 95 81
454
+ 89 80 24
455
+ 74 9 58
456
+ 100 28 10
457
+ 75 52 73
458
+ 81 4 75
459
+ 45 12 15
460
+ 54 28 31
461
+ 4 64 60
462
+ 19 15 33
463
+ 14 84 31
464
+ 91 74 34
465
+ 23 7 3
466
+ 44 33 42
467
+ 37 2 41
468
+ 84 58 8
469
+ 5 5 86
470
+ 44 27 57
471
+ 82 70 56
472
+ 78 12 41
473
+ 25 68 86
474
+ 27 69 53
475
+ 66 75 25
476
+ 28 46 55
477
+ 21 60 67
478
+ 25 93 2
479
+ 30 86 56
480
+ 25 12 74
481
+ 93 62 100
482
+ 30 44 90
483
+ 77 46 25
484
+ 23 76 96
485
+ 81 16 88
486
+ 31 37 19
487
+ 42 4 54
488
+ 52 22 97
489
+ 13 66 1
490
+ 0 99 43
491
+ 96 80 66
492
+ 39 68 98
493
+ 79 40 83
494
+ 75 56 53
495
+ 0 54 4
496
+ 84 79 64
497
+ 75 53 41
498
+ 63 97 5
499
+ 36 69 53
500
+ 8 88 1
501
+ 32 94 82
502
+ 7 68 97
503
+ 37 24 17
504
+ 34 5 87
505
+ 66 16 67
506
+ 94 75 65
507
+ 7 34 65
508
+ 10 55 27
509
+ 68 13 87
510
+ 100 55 38
511
+ 79 67 41
512
+ 17 32 44
513
+ 33 39 73
514
+ 38 13 28
515
+ 100 89 79
516
+ 84 70 75
517
+ 33 6 28
518
+ 75 96 31
519
+ 56 6 32
520
+ 100 31 47
521
+ 67 43 20
522
+ 79 48 79
523
+ 35 29 87
524
+ 32 10 75
525
+ 67 43 16
526
+ 13 94 70
527
+ 85 96 27
528
+ 17 73 94
529
+ 19 59 93
530
+ 57 14 13
531
+ 12 72 83
532
+ 97 7 12
533
+ 7 83 47
534
+ 65 34 26
535
+ 55 80 45
536
+ 84 48 1
537
+ 21 26 87
538
+ 71 87 7
539
+ 37 77 96
540
+ 66 25 14
541
+ 24 66 29
542
+ 71 8 8
543
+ 91 96 80
544
+ 21 99 3
545
+ 42 62 90
546
+ 36 87 6
547
+ 35 43 32
548
+ 21 89 97
549
+ 93 28 75
550
+ 50 78 61
551
+ 2 98 62
552
+ 18 82 44
553
+ 91 48 60
554
+ 17 2 33
555
+ 22 97 31
556
+ 87 37 39
557
+ 13 82 4
558
+ 59 60 85
559
+ 16 97 9
560
+ 90 48 65
561
+ 93 6 84
562
+ 28 1 34
563
+ 72 45 65
564
+ 76 23 47
565
+ 25 60 20
566
+ 16 48 34
567
+ 12 71 89
568
+ 13 68 39
569
+ 65 46 89
570
+ 17 36 76
571
+ 59 82 94
572
+ 75 30 25
573
+ 72 9 77
574
+ 91 25 16
575
+ 94 13 95
576
+ 49 97 30
577
+ 81 38 96
578
+ 84 63 8
579
+ 16 54 82
580
+ 73 81 29
581
+ 65 48 46
582
+ 28 89 30
583
+ 62 17 11
584
+ 89 11 13
585
+ 5 47 66
586
+ 46 60 37
587
+ 100 91 95
588
+ 70 35 42
589
+ 6 36 66
590
+ 52 90 42
591
+ 35 55 45
592
+ 8 2 87
593
+ 56 84 29
594
+ 54 69 77
595
+ 26 54 1
596
+ 98 23 27
597
+ 65 77 35
598
+ 75 91 13
599
+ 44 95 98
600
+ 55 71 19
601
+ 51 34 61
602
+ 81 14 29
603
+ 39 85 37
604
+ 95 88 7
605
+ 13 9 38
606
+ 3 75 98
607
+ 6 74 68
608
+ 98 96 13
609
+ 17 43 82
610
+ 98 39 27
611
+ 100 17 30
612
+ 49 11 58
613
+ 50 27 13
614
+ 34 59 57
615
+ 66 26 38
616
+ 87 5 14
617
+ 67 10 77
618
+ 46 13 25
619
+ 91 88 3
620
+ 78 28 94
621
+ 38 18 74
622
+ 25 76 48
623
+ 72 36 27
624
+ 35 71 80
625
+ 87 57 12
626
+ 79 4 33
627
+ 8 44 91
628
+ 29 72 80
629
+ 16 5 23
630
+ 55 84 13
631
+ 41 20 71
632
+ 18 61 15
633
+ 35 9 73
634
+ 86 25 64
635
+ 95 52 21
636
+ 75 18 15
637
+ 49 18 95
638
+ 8 3 76
639
+ 6 74 32
640
+ 46 71 15
641
+ 61 11 61
642
+ 80 5 56
643
+ 0 39 48
644
+ 55 4 97
645
+ 14 98 61
646
+ 36 93 63
647
+ 42 91 58
648
+ 1 42 57
649
+ 86 33 83
650
+ 66 15 25
651
+ 88 7 40
652
+ 83 27 46
653
+ 69 25 52
654
+ 93 8 68
655
+ 67 45 63
656
+ 85 74 65
657
+ 91 41 56
658
+ 42 67 14
659
+ 28 75 45
660
+ 78 28 15
661
+ 42 12 84
662
+ 95 20 58
663
+ 74 3 72
664
+ 39 5 87
665
+ 47 52 75
666
+ 36 98 30
667
+ 4 90 64
668
+ 64 85 30
669
+ 90 78 19
670
+ 52 79 8
671
+ 84 58 56
672
+ 83 39 80
673
+ 22 75 38
674
+ 94 7 87
675
+ 54 72 3
676
+ 42 58 87
677
+ 85 85 34
678
+ 70 70 72
679
+ 44 19 7
680
+ 53 61 85
681
+ 10 33 56
682
+ 26 63 84
683
+ 34 15 71
684
+ 41 26 27
685
+ 11 92 53
686
+ 70 35 40
687
+ 64 76 28
688
+ 93 79 38
689
+ 54 36 40
690
+ 99 60 89
691
+ 74 32 16
692
+ 68 45 5
693
+ 81 38 43
694
+ 82 24 95
695
+ 93 94 28
696
+ 43 19 26
697
+ 52 44 12
698
+ 53 46 81
699
+ 46 54 18
700
+ 88 56 9
701
+ 99 13 4
702
+ 91 77 63
703
+ 75 93 5
704
+ 76 82 99
705
+ 65 77 89
706
+ 3 8 88
707
+ 0 2 42
708
+ 95 29 87
709
+ 93 68 55
710
+ 67 53 15
711
+ 34 92 69
712
+ 63 47 47
713
+ 23 58 58
714
+ 17 42 4
715
+ 21 63 84
716
+ 54 28 35
717
+ 59 30 79
718
+ 73 9 85
719
+ 99 62 71
720
+ 18 22 25
721
+ 63 38 11
722
+ 41 87 80
723
+ 15 72 4
724
+ 51 76 26
725
+ 37 62 67
726
+ 7 25 48
727
+ 85 73 67
728
+ 83 21 71
729
+ 25 61 69
730
+ 21 6 39
731
+ 54 6 54
732
+ 61 65 100
733
+ 81 13 32
734
+ 45 54 78
735
+ 90 69 64
736
+ 20 46 63
737
+ 13 47 81
738
+ 27 65 77
739
+ 43 48 99
740
+ 11 45 47
741
+ 11 45 87
742
+ 39 42 75
743
+ 47 1 94
744
+ 16 66 96
745
+ 20 28 98
746
+ 35 45 55
747
+ 75 97 59
748
+ 38 6 39
749
+ 1 55 20
750
+ 82 19 81
751
+ 84 93 54
752
+ 33 20 79
753
+ 100 98 41
754
+ 35 62 33
755
+ 23 79 47
756
+ 0 68 90
757
+ 96 95 29
758
+ 3 19 75
759
+ 66 92 12
760
+ 64 88 26
761
+ 0 15 62
762
+ 42 25 39
763
+ 11 83 30
764
+ 91 9 77
765
+ 42 8 52
766
+ 47 8 15
767
+ 52 71 59
768
+ 6 57 10
769
+ 33 36 11
770
+ 16 10 4
771
+ 99 26 64
772
+ 95 92 84
773
+ 65 91 93
774
+ 15 87 67
775
+ 45 83 96
776
+ 57 58 89
777
+ 63 39 40
778
+ 97 87 65
779
+ 5 97 10
780
+ 9 72 95
781
+ 37 33 85
782
+ 75 79 54
783
+ 60 38 13
784
+ 80 15 95
785
+ 73 67 79
786
+ 49 32 95
787
+ 12 59 63
788
+ 84 74 99
789
+ 57 10 21
790
+ 96 23 79
791
+ 55 47 53
792
+ 33 60 68
793
+ 67 83 21
794
+ 14 10 10
795
+ 38 96 19
796
+ 83 56 97
797
+ 84 95 42
798
+ 36 98 27
799
+ 38 31 43
800
+ 39 62 19
801
+ 56 44 57
802
+ 62 46 8
803
+ 19 67 40
804
+ 34 98 65
805
+ 57 64 92
806
+ 20 46 23
807
+ 15 100 82
808
+ 100 66 13
809
+ 36 42 44
810
+ 76 27 10
811
+ 53 90 67
812
+ 100 64 45
813
+ 6 23 99
814
+ 49 73 97
815
+ 13 15 91
816
+ 66 20 11
817
+ 4 84 60
818
+ 0 10 42
819
+ 80 74 70
820
+ 96 97 9
821
+ 12 33 57
822
+ 55 93 15
823
+ 62 59 95
824
+ 20 73 83
825
+ 85 7 21
826
+ 55 82 52
827
+ 78 22 46
828
+ 36 61 83
829
+ 37 26 33
830
+ 32 96 39
831
+ 22 4 96
832
+ 1 87 21
833
+ 67 60 11
834
+ 23 24 41
835
+ 43 58 83
836
+ 56 65 95
837
+ 100 89 96
838
+ 100 39 9
839
+ 61 71 58
840
+ 40 79 88
841
+ 80 80 99
842
+ 9 76 39
843
+ 22 64 65
844
+ 8 61 3
845
+ 69 11 77
846
+ 84 98 25
847
+ 19 90 69
848
+ 39 5 38
849
+ 3 66 73
850
+ 90 14 81
851
+ 32 98 7
852
+ 36 22 35
853
+ 85 73 70
854
+ 18 95 60
855
+ 10 86 69
856
+ 72 82 11
857
+ 3 82 67
858
+ 52 33 14
859
+ 80 70 89
860
+ 34 64 3
861
+ 0 27 62
862
+ 31 47 82
863
+ 80 94 17
864
+ 23 7 39
865
+ 28 13 37
866
+ 95 61 13
867
+ 31 46 91
868
+ 19 7 99
869
+ 100 6 94
870
+ 53 3 4
871
+ 37 21 1
872
+ 22 45 39
873
+ 53 92 12
874
+ 74 86 76
875
+ 38 55 3
876
+ 1 12 64
877
+ 85 85 71
878
+ 84 38 75
879
+ 43 41 16
880
+ 47 66 68
881
+ 35 57 4
882
+ 74 73 98
883
+ 31 3 8
884
+ 21 52 78
885
+ 91 77 4
886
+ 48 16 37
887
+ 48 100 7
888
+ 76 85 40
889
+ 75 68 11
890
+ 13 64 55
891
+ 92 31 9
892
+ 59 8 29
893
+ 7 72 10
894
+ 66 68 37
895
+ 34 10 100
896
+ 82 98 10
897
+ 89 80 48
898
+ 75 33 74
899
+ 32 15 55
900
+ 35 72 76
901
+ 20 11 46
902
+ 100 91 18
903
+ 42 33 8
904
+ 36 41 40
905
+ 51 57 31
906
+ 8 13 21
907
+ 15 70 53
908
+ 2 9 3
909
+ 55 83 24
910
+ 19 41 36
911
+ 54 70 59
912
+ 47 53 21
913
+ 20 71 63
914
+ 12 9 17
915
+ 36 64 15
916
+ 57 75 18
917
+ 3 53 40
918
+ 24 84 57
919
+ 58 86 97
920
+ 43 82 22
921
+ 19 80 12
922
+ 23 70 19
923
+ 44 31 91
924
+ 100 33 89
925
+ 47 32 85
926
+ 95 33 26
927
+ 28 81 52
928
+ 90 93 62
929
+ 52 27 3
930
+ 4 42 74
931
+ 9 70 2
932
+ 32 60 75
933
+ 79 20 6
934
+ 1 13 64
935
+ 34 29 37
936
+ 72 73 82
937
+ 5 74 9
938
+ 94 29 61
939
+ 13 46 10
940
+ 97 76 47
941
+ 13 78 5
942
+ 7 13 7
943
+ 75 83 75
944
+ 13 99 9
945
+ 23 60 91
946
+ 99 92 60
947
+ 34 78 21
948
+ 45 39 5
949
+ 6 27 73
950
+ 7 95 21
951
+ 11 30 40
952
+ 34 72 75
953
+ 97 40 45
954
+ 59 19 85
955
+ 88 17 98
956
+ 4 62 87
957
+ 30 83 16
958
+ 50 65 61
959
+ 85 70 9
960
+ 6 68 91
961
+ 88 27 3
962
+ 74 76 22
963
+ 1 52 5
964
+ 10 9 17
965
+ 8 20 80
966
+ 88 58 41
967
+ 31 90 6
968
+ 99 58 92
969
+ 39 68 89
970
+ 38 36 53
971
+ 78 56 13
972
+ 46 59 25
973
+ 38 73 58
974
+ 44 52 32
975
+ 77 83 58
976
+ 78 13 34
977
+ 11 78 3
978
+ 91 2 12
979
+ 34 78 66
980
+ 4 95 82
981
+ 35 35 60
982
+ 89 42 1
983
+ 12 88 91
984
+ 100 37 76
985
+ 75 69 6
986
+ 58 20 9
987
+ 35 97 48
988
+ 80 66 44
989
+ 73 91 41
990
+ 74 83 52
991
+ 22 89 58
992
+ 23 21 97
993
+ 67 89 59
994
+ 22 28 37
995
+ 17 55 29
996
+ 52 71 98
997
+ 65 89 98
998
+ 55 37 9
999
+ 27 39 58
1000
+ 85 68 41
1001
+ 75 76 37
1002
+ 48 64 69
1003
+ 24 57 9
1004
+ 76 10 62
1005
+ 90 72 20
1006
+ 25 63 58
1007
+ 91 2 82
1008
+ 76 21 60
1009
+ 41 9 44
1010
+ 79 7 62
1011
+ 95 82 27
1012
+ 40 67 34
1013
+ 76 47 70
1014
+ 38 8 35
1015
+ 96 55 72
1016
+ 78 3 72
1017
+ 39 12 84
1018
+ 14 89 2
1019
+ 34 27 91
1020
+ 31 10 68
1021
+ 43 82 18
1022
+ 85 55 91
1023
+ 67 67 62
1024
+ 73 41 26
1025
+ 37 3 58
1026
+ 37 33 18
1027
+ 81 30 41
1028
+ 72 21 28
1029
+ 68 94 26
1030
+ 69 74 98
1031
+ 59 46 2
1032
+ 55 3 20
1033
+ 52 37 89
1034
+ 2 32 95
1035
+ 80 60 28
1036
+ 2 72 59
1037
+ 10 72 100
1038
+ 17 17 24
1039
+ 60 87 90
1040
+ 64 20 30
1041
+ 49 78 52
1042
+ 48 62 3
1043
+ 6 90 18
1044
+ 80 33 25
1045
+ 20 14 88
1046
+ 69 82 83
1047
+ 97 61 94
1048
+ 34 38 11
1049
+ 82 20 52
1050
+ 100 84 31
1051
+ 17 52 13
1052
+ 27 63 72
1053
+ 17 69 21
1054
+ 11 10 80
1055
+ 78 100 69
1056
+ 59 30 95
1057
+ 49 48 55
1058
+ 79 8 72
1059
+ 54 73 68
1060
+ 45 4 63
1061
+ 44 5 97
1062
+ 80 22 42
1063
+ 53 76 77
1064
+ 43 97 35
1065
+ 61 11 30
1066
+ 2 47 93
1067
+ 6 12 13
1068
+ 94 54 91
1069
+ 6 56 93
1070
+ 45 61 96
1071
+ 100 54 94
1072
+ 96 67 6
1073
+ 9 67 78
1074
+ 98 31 67
1075
+ 16 88 96
1076
+ 25 85 66
1077
+ 10 67 92
1078
+ 76 78 55
1079
+ 61 11 97
1080
+ 47 25 9
1081
+ 87 70 20
1082
+ 16 79 40
1083
+ 28 88 81
1084
+ 91 86 32
1085
+ 91 54 60
1086
+ 2 35 88
1087
+ 67 56 15
1088
+ 34 54 33
1089
+ 38 3 52
1090
+ 67 68 52
1091
+ 24 60 67
1092
+ 89 41 20
1093
+ 97 44 60
1094
+ 79 29 41
1095
+ 98 57 37
1096
+ 12 83 57
1097
+ 7 79 5
1098
+ 25 40 82
1099
+ 13 69 20
1100
+ 56 56 52
1101
+ 29 23 13
1102
+ 98 69 74
1103
+ 65 39 45
1104
+ 73 81 87
1105
+ 74 24 4
1106
+ 75 36 52
1107
+ 97 96 54
1108
+ 4 45 66
1109
+ 1 23 28
1110
+ 96 23 25
1111
+ 20 98 70
1112
+ 27 6 1
1113
+ 48 52 2
1114
+ 89 8 11
1115
+ 77 91 2
1116
+ 50 22 39
1117
+ 61 85 22
1118
+ 24 24 77
1119
+ 47 88 70
1120
+ 90 67 82
1121
+ 41 97 68
1122
+ 84 75 56
1123
+ 68 23 60
1124
+ 73 5 80
1125
+ 14 78 60
1126
+ 71 75 25
1127
+ 33 69 55
1128
+ 72 83 63
1129
+ 100 60 84
1130
+ 93 21 57
1131
+ 90 77 46
1132
+ 46 25 23
1133
+ 8 78 93
1134
+ 4 86 31
1135
+ 15 29 66
1136
+ 86 82 81
1137
+ 86 54 55
1138
+ 23 35 44
1139
+ 76 45 72
1140
+ 38 87 35
1141
+ 25 43 87
1142
+ 34 44 91
1143
+ 28 95 98
1144
+ 15 40 98
1145
+ 60 4 61
1146
+ 55 71 46
1147
+ 42 67 86
1148
+ 89 84 47
1149
+ 14 58 26
1150
+ 87 81 48
1151
+ 96 100 18
1152
+ 88 76 98
1153
+ 82 93 96
1154
+ 92 38 94
1155
+ 66 43 12
1156
+ 69 91 72
1157
+ 37 17 62
1158
+ 82 79 96
1159
+ 7 13 96
1160
+ 91 5 25
1161
+ 34 29 29
1162
+ 53 89 74
1163
+ 27 97 67
1164
+ 48 19 14
1165
+ 38 13 25
1166
+ 63 93 100
1167
+ 27 23 13
1168
+ 80 25 64
1169
+ 22 21 46
1170
+ 59 31 96
1171
+ 30 5 55
1172
+ 3 89 85
1173
+ 56 57 34
1174
+ 16 74 2
1175
+ 68 88 5
1176
+ 16 58 27
1177
+ 48 77 79
1178
+ 84 5 4
1179
+ 21 61 42
1180
+ 5 21 40
1181
+ 1 28 70
1182
+ 84 79 48
1183
+ 60 5 38
1184
+ 79 13 6
1185
+ 28 62 38
1186
+ 61 53 3
1187
+ 74 86 67
1188
+ 2 67 55
1189
+ 71 52 15
1190
+ 19 77 72
1191
+ 15 73 20
1192
+ 70 88 73
1193
+ 13 21 19
1194
+ 66 96 69
1195
+ 0 34 29
1196
+ 60 83 20
1197
+ 54 12 86
1198
+ 51 37 95
1199
+ 100 87 47
1200
+ 71 83 38
1201
+ 8 47 90
1202
+ 92 40 17
1203
+ 19 53 6
1204
+ 19 78 93
1205
+ 4 25 17
1206
+ 30 29 57
1207
+ 75 40 70
1208
+ 73 4 82
1209
+ 87 28 17
1210
+ 98 83 39
1211
+ 16 39 79
1212
+ 97 14 17
1213
+ 59 75 32
1214
+ 62 18 5
1215
+ 93 92 92
1216
+ 94 53 82
1217
+ 67 23 25
1218
+ 40 47 81
1219
+ 87 22 56
1220
+ 61 56 2
1221
+ 31 11 66
1222
+ 52 91 16
1223
+ 68 63 40
1224
+ 11 32 65
1225
+ 23 7 57
1226
+ 15 28 37
1227
+ 70 42 40
1228
+ 77 21 90
1229
+ 15 81 30
1230
+ 21 84 62
1231
+ 59 89 41
1232
+ 60 24 94
1233
+ 36 4 21
1234
+ 20 60 75
1235
+ 60 81 83
1236
+ 76 41 73
1237
+ 51 32 31
1238
+ 96 10 58
1239
+ 85 13 84
1240
+ 0 20 25
1241
+ 82 86 16
1242
+ 20 56 69
1243
+ 55 99 81
1244
+ 97 24 78
1245
+ 20 18 1
1246
+ 23 1 19
1247
+ 24 8 15
1248
+ 83 41 63
1249
+ 55 48 15
1250
+ 60 2 68
1251
+ 43 86 20
1252
+ 82 35 76
1253
+ 30 17 52
1254
+ 22 42 25
1255
+ 36 60 91
1256
+ 82 77 39
1257
+ 77 83 32
1258
+ 54 13 86
1259
+ 66 90 100
1260
+ 94 30 5
1261
+ 42 35 78
1262
+ 35 16 42
1263
+ 57 71 100
1264
+ 47 12 95
1265
+ 48 59 23
1266
+ 68 6 13
1267
+ 71 59 9
1268
+ 80 65 25
1269
+ 28 2 36
1270
+ 88 40 84
1271
+ 44 62 13
1272
+ 79 69 11
1273
+ 61 18 70
1274
+ 8 87 8
1275
+ 10 22 55
1276
+ 79 6 30
1277
+ 65 42 19
1278
+ 90 24 63
1279
+ 84 40 70
1280
+ 6 37 12
1281
+ 23 17 75
1282
+ 100 31 11
1283
+ 52 23 15
1284
+ 89 74 71
1285
+ 30 25 5
1286
+ 81 58 33
1287
+ 87 21 91
1288
+ 38 86 11
1289
+ 43 81 99
1290
+ 4 57 29
1291
+ 33 34 86
1292
+ 61 89 91
1293
+ 45 58 69
1294
+ 87 66 72
1295
+ 10 38 38
1296
+ 84 30 23
1297
+ 0 71 40
1298
+ 57 38 52
1299
+ 35 68 35
1300
+ 96 33 27
1301
+ 36 86 34
1302
+ 98 100 65
1303
+ 40 76 92
1304
+ 48 86 21
1305
+ 70 16 5
1306
+ 85 2 99
1307
+ 70 93 6
1308
+ 41 35 64
1309
+ 40 31 94
1310
+ 52 27 39
1311
+ 70 15 34
1312
+ 29 37 5
1313
+ 74 35 91
1314
+ 100 6 31
1315
+ 40 29 7
1316
+ 41 48 10
1317
+ 45 24 72
1318
+ 45 19 56
1319
+ 13 42 34
1320
+ 95 22 15
1321
+ 80 32 67
1322
+ 46 69 58
1323
+ 52 39 2
1324
+ 58 90 100
1325
+ 22 54 16
1326
+ 93 26 48
1327
+ 78 71 68
1328
+ 73 29 39
1329
+ 81 40 43
1330
+ 25 24 95
1331
+ 67 1 56
1332
+ 95 85 18
1333
+ 85 86 56
1334
+ 77 46 98
1335
+ 19 32 19
1336
+ 48 39 20
1337
+ 23 68 11
1338
+ 42 63 85
1339
+ 16 53 10
1340
+ 98 85 64
1341
+ 78 53 78
1342
+ 80 46 30
1343
+ 17 8 18
1344
+ 96 31 25
1345
+ 98 55 70
1346
+ 77 97 48
1347
+ 97 10 91
1348
+ 86 7 52
1349
+ 19 13 36
1350
+ 95 11 94
1351
+ 5 77 3
1352
+ 71 86 34
1353
+ 94 30 1
1354
+ 67 3 26
1355
+ 42 33 100
1356
+ 16 43 68
1357
+ 28 43 83
1358
+ 16 11 38
1359
+ 1 94 5
1360
+ 19 95 1
1361
+ 78 12 26
1362
+ 34 21 80
1363
+ 82 28 71
1364
+ 31 80 31
1365
+ 31 15 100
1366
+ 10 32 14
1367
+ 52 20 71
1368
+ 94 20 21
1369
+ 37 87 8
1370
+ 56 35 42
1371
+ 38 18 100
1372
+ 38 4 40
1373
+ 99 70 27
1374
+ 40 32 40
1375
+ 54 86 32
1376
+ 5 77 17
1377
+ 100 74 54
1378
+ 53 28 74
1379
+ 25 54 15
1380
+ 9 3 8
1381
+ 91 35 47
1382
+ 1 97 39
1383
+ 17 79 13
1384
+ 43 24 79
1385
+ 60 34 72
1386
+ 77 76 20
1387
+ 67 14 93
1388
+ 66 98 21
1389
+ 85 12 5
1390
+ 84 63 23
1391
+ 30 74 67
1392
+ 55 94 47
1393
+ 44 65 58
1394
+ 42 7 15
1395
+ 53 48 15
1396
+ 87 37 94
1397
+ 38 92 85
1398
+ 67 88 33
1399
+ 38 100 15
1400
+ 41 5 75
1401
+ 54 8 62
1402
+ 34 74 94
1403
+ 32 27 27
1404
+ 2 1 3
1405
+ 71 28 4
1406
+ 17 31 57
1407
+ 67 54 42
1408
+ 79 74 13
1409
+ 11 99 92
1410
+ 100 26 16
1411
+ 84 90 1
1412
+ 0 53 42
1413
+ 9 10 84
1414
+ 47 2 34
1415
+ 5 100 52
1416
+ 68 76 65
1417
+ 55 55 17
1418
+ 35 73 75
1419
+ 47 66 45
1420
+ 6 54 76
1421
+ 41 54 55
1422
+ 51 65 58
1423
+ 76 84 67
1424
+ 73 94 6
1425
+ 97 81 53
1426
+ 65 18 82
1427
+ 57 41 42
1428
+ 56 91 37
1429
+ 2 36 39
1430
+ 51 61 95
1431
+ 95 21 59
1432
+ 28 44 77
1433
+ 83 98 82
1434
+ 100 9 27
1435
+ 52 79 95
1436
+ 98 87 25
1437
+ 22 95 30
1438
+ 29 42 62
1439
+ 23 8 13
1440
+ 23 100 5
1441
+ 10 28 72
1442
+ 72 96 80
1443
+ 19 23 85
1444
+ 35 81 8
1445
+ 6 53 79
1446
+ 96 46 59
1447
+ 67 19 16
1448
+ 42 65 78
1449
+ 94 30 67
1450
+ 57 87 8
1451
+ 29 25 59
1452
+ 44 35 57
1453
+ 22 20 89
1454
+ 46 60 87
1455
+ 33 61 4
1456
+ 34 9 32
1457
+ 14 33 90
1458
+ 73 44 1
1459
+ 11 60 98
1460
+ 33 29 79
1461
+ 67 48 15
1462
+ 31 32 20
1463
+ 22 88 73
1464
+ 29 16 45
1465
+ 83 62 4
1466
+ 84 1 80
1467
+ 19 77 96
1468
+ 70 91 100
1469
+ 27 23 72
1470
+ 84 26 67
1471
+ 64 16 62
1472
+ 59 98 12
1473
+ 7 84 22
1474
+ 16 66 92
1475
+ 93 73 87
1476
+ 54 84 33
1477
+ 94 11 37
1478
+ 32 67 10
1479
+ 99 97 98
1480
+ 50 95 41
1481
+ 94 6 97
1482
+ 15 90 92
1483
+ 57 75 37
1484
+ 69 39 59
1485
+ 3 38 18
1486
+ 5 42 25
1487
+ 43 89 76
1488
+ 58 91 89
1489
+ 61 55 7
1490
+ 61 95 87
1491
+ 79 46 84
1492
+ 75 31 59
1493
+ 76 70 22
1494
+ 21 66 14
1495
+ 74 32 14
1496
+ 42 93 63
1497
+ 26 20 90
1498
+ 87 78 17
1499
+ 46 13 67
1500
+ 84 90 42
1501
+ 15 74 4
1502
+ 6 54 76
1503
+ 86 22 44
1504
+ 41 31 52
1505
+ 100 18 7
1506
+ 12 85 59
1507
+ 75 63 74
1508
+ 50 36 93
1509
+ 13 9 61
1510
+ 55 77 36
1511
+ 31 9 91
1512
+ 10 19 4
1513
+ 18 69 54
1514
+ 73 93 3
1515
+ 97 18 34
1516
+ 60 29 94
1517
+ 82 87 30
1518
+ 99 95 91
1519
+ 59 78 24
1520
+ 87 12 14
1521
+ 59 22 76
1522
+ 41 88 72
1523
+ 2 48 25
1524
+ 99 35 58
1525
+ 23 89 93
1526
+ 100 61 33
1527
+ 79 87 63
1528
+ 53 22 1
1529
+ 12 3 26
1530
+ 55 82 21
1531
+ 10 36 76
1532
+ 5 19 45
1533
+ 16 93 89
1534
+ 14 46 40
1535
+ 90 98 72
1536
+ 18 56 55
1537
+ 93 5 46
1538
+ 100 84 72
1539
+ 57 48 78
1540
+ 71 81 41
1541
+ 81 69 83
1542
+ 63 42 23
1543
+ 54 18 72
1544
+ 18 75 8
1545
+ 86 98 75
1546
+ 87 15 84
1547
+ 36 54 38
1548
+ 73 35 23
1549
+ 52 56 84
1550
+ 5 95 26
1551
+ 2 59 23
1552
+ 29 90 66
1553
+ 5 20 37
1554
+ 32 81 7
1555
+ 29 2 60
1556
+ 8 59 6
1557
+ 31 30 58
1558
+ 28 11 21
1559
+ 7 52 70
1560
+ 56 82 23
1561
+ 66 17 16
1562
+ 34 44 71
1563
+ 45 24 7
1564
+ 22 41 17
1565
+ 14 72 37
1566
+ 77 41 62
1567
+ 76 7 28
1568
+ 61 29 41
1569
+ 58 63 62
1570
+ 76 5 76
1571
+ 35 64 17
1572
+ 51 72 5
1573
+ 43 72 63
1574
+ 31 9 89
1575
+ 75 28 25
1576
+ 34 14 7
1577
+ 24 64 84
1578
+ 100 97 2
1579
+ 96 2 72
1580
+ 53 52 65
1581
+ 63 75 34
1582
+ 57 61 15
1583
+ 52 58 41
1584
+ 27 81 7
1585
+ 9 78 90
1586
+ 100 66 7
1587
+ 98 38 32
1588
+ 79 26 26
1589
+ 30 64 33
1590
+ 13 15 75
1591
+ 54 84 77
1592
+ 47 92 81
1593
+ 2 96 76
1594
+ 60 68 69
1595
+ 67 60 99
1596
+ 100 63 3
1597
+ 40 9 35
1598
+ 91 2 11
1599
+ 17 81 100
1600
+ 90 22 23
1601
+ 53 97 9
1602
+ 27 56 28
1603
+ 33 12 86
1604
+ 63 18 95
1605
+ 25 17 18
1606
+ 56 83 72
1607
+ 23 3 100
1608
+ 73 66 59
1609
+ 52 96 17
1610
+ 16 20 13
1611
+ 16 81 32
1612
+ 31 57 62
1613
+ 100 23 20
1614
+ 48 21 33
1615
+ 3 31 48
1616
+ 57 59 38
1617
+ 5 34 58
1618
+ 4 8 40
1619
+ 19 38 41
1620
+ 0 44 99
1621
+ 17 53 33
1622
+ 94 24 53
1623
+ 19 57 99
1624
+ 56 1 93
1625
+ 53 66 72
1626
+ 57 92 78
1627
+ 92 82 14
1628
+ 40 58 61
1629
+ 76 58 19
1630
+ 68 55 29
1631
+ 51 52 94
1632
+ 16 12 2
1633
+ 60 52 78
1634
+ 13 62 100
1635
+ 97 70 4
1636
+ 23 34 79
1637
+ 57 66 7
1638
+ 75 55 81
1639
+ 47 71 80
1640
+ 83 89 31
1641
+ 49 60 88
1642
+ 30 9 85
1643
+ 98 85 38
1644
+ 95 44 79
1645
+ 21 57 20
1646
+ 52 69 42
1647
+ 40 29 19
1648
+ 6 45 79
1649
+ 50 66 61
1650
+ 6 10 20
1651
+ 58 58 81
1652
+ 95 24 55
1653
+ 4 38 5
1654
+ 20 73 91
1655
+ 58 12 24
1656
+ 27 86 68
1657
+ 93 54 6
1658
+ 5 92 68
1659
+ 33 17 14
1660
+ 7 52 33
1661
+ 39 94 64
1662
+ 27 61 19
1663
+ 15 12 1
1664
+ 75 18 61
1665
+ 79 6 20
1666
+ 23 36 86
1667
+ 60 86 100
1668
+ 28 74 83
1669
+ 30 57 67
1670
+ 22 61 99
1671
+ 62 86 17
1672
+ 7 78 53
1673
+ 91 24 30
1674
+ 4 92 13
1675
+ 97 16 13
1676
+ 74 77 38
1677
+ 72 15 93
1678
+ 38 2 57
1679
+ 54 31 99
1680
+ 8 31 78
1681
+ 67 5 11
1682
+ 69 77 100
1683
+ 84 18 41
1684
+ 8 7 32
1685
+ 8 90 85
1686
+ 92 3 36
1687
+ 26 7 46
1688
+ 26 57 61
1689
+ 31 20 6
1690
+ 24 57 38
1691
+ 62 90 75
1692
+ 75 46 17
1693
+ 90 37 82
1694
+ 52 29 5
1695
+ 2 57 53
1696
+ 31 8 81
1697
+ 18 28 91
1698
+ 90 76 61
1699
+ 15 19 12
1700
+ 45 38 11
1701
+ 55 94 27
1702
+ 7 55 65
1703
+ 7 84 93
1704
+ 32 14 83
1705
+ 81 79 13
1706
+ 51 36 99
1707
+ 13 64 42
1708
+ 89 99 82
1709
+ 1 95 53
1710
+ 65 83 43
1711
+ 88 5 55
1712
+ 4 99 34
1713
+ 17 78 67
1714
+ 17 75 28
1715
+ 52 68 11
1716
+ 83 88 33
1717
+ 30 61 23
1718
+ 17 46 54
1719
+ 55 68 37
1720
+ 79 70 92
1721
+ 7 38 80
1722
+ 62 46 1
1723
+ 20 2 14
1724
+ 87 37 36
1725
+ 38 42 11
1726
+ 51 82 15
1727
+ 10 37 85
1728
+ 98 4 46
1729
+ 32 38 20
1730
+ 55 58 79
1731
+ 32 47 87
1732
+ 90 69 60
1733
+ 84 71 12
1734
+ 61 34 14
1735
+ 19 87 86
1736
+ 93 81 97
1737
+ 97 58 73
1738
+ 100 70 91
1739
+ 10 5 43
1740
+ 21 1 14
1741
+ 26 2 42
1742
+ 17 6 40
1743
+ 50 58 100
1744
+ 67 58 20
1745
+ 73 43 35
1746
+ 33 58 9
1747
+ 76 9 32
1748
+ 84 53 47
1749
+ 56 92 59
1750
+ 5 4 81
1751
+ 56 61 7
1752
+ 82 47 46
1753
+ 9 67 98
1754
+ 44 26 6
1755
+ 4 11 83
1756
+ 83 12 56
1757
+ 40 87 59
1758
+ 29 35 24
1759
+ 100 89 76
1760
+ 18 75 3
1761
+ 74 27 60
1762
+ 87 47 83
1763
+ 85 93 63
1764
+ 22 84 76
1765
+ 1 81 66
1766
+ 56 87 92
1767
+ 3 96 47
1768
+ 69 96 28
1769
+ 37 73 10
1770
+ 72 98 89
1771
+ 84 32 46
1772
+ 24 100 35
1773
+ 37 92 57
1774
+ 25 18 17
1775
+ 64 25 83
1776
+ 82 32 14
1777
+ 91 65 22
1778
+ 82 2 69
1779
+ 21 80 63
1780
+ 14 12 58
1781
+ 28 96 15
1782
+ 47 27 41
1783
+ 2 86 38
1784
+ 93 24 72
1785
+ 10 33 21
1786
+ 86 67 92
1787
+ 64 15 25
1788
+ 90 63 36
1789
+ 93 37 34
1790
+ 20 24 95
1791
+ 97 69 86
1792
+ 72 68 30
1793
+ 22 15 99
1794
+ 89 37 94
1795
+ 93 61 47
1796
+ 43 30 26
1797
+ 19 25 7
1798
+ 20 39 43
1799
+ 6 26 84
1800
+ 4 47 1
1801
+ 88 93 40
1802
+ 37 87 64
1803
+ 53 6 61
1804
+ 97 37 34
1805
+ 11 97 8
1806
+ 43 44 59
1807
+ 7 54 41
1808
+ 30 65 81
1809
+ 25 65 34
1810
+ 96 46 9
1811
+ 55 94 1
1812
+ 88 98 52
1813
+ 77 23 24
1814
+ 42 73 40
1815
+ 10 34 82
1816
+ 69 96 3
1817
+ 52 60 75
1818
+ 57 53 73
1819
+ 68 23 92
1820
+ 69 18 21
1821
+ 1 23 57
1822
+ 72 84 72
1823
+ 86 23 47
1824
+ 0 92 67
1825
+ 82 45 77
1826
+ 47 39 84
1827
+ 86 75 33
1828
+ 12 39 71
1829
+ 54 99 95
1830
+ 97 44 64
1831
+ 78 92 39
1832
+ 13 35 36
1833
+ 97 40 88
1834
+ 82 55 91
1835
+ 1 90 31
1836
+ 67 77 35
1837
+ 28 53 36
1838
+ 12 98 95
1839
+ 44 60 67
1840
+ 57 76 73
1841
+ 17 63 22
1842
+ 95 62 96
1843
+ 29 21 13
1844
+ 0 32 79
1845
+ 16 35 59
1846
+ 51 16 84
1847
+ 77 61 9
1848
+ 92 100 81
1849
+ 65 19 26
1850
+ 100 68 14
1851
+ 98 22 42
1852
+ 1 87 71
1853
+ 76 77 73
1854
+ 28 16 5
1855
+ 1 7 59
1856
+ 98 42 24
1857
+ 48 55 54
1858
+ 12 24 3
1859
+ 19 32 69
1860
+ 9 77 77
1861
+ 66 30 100
1862
+ 94 29 22
1863
+ 32 71 93
1864
+ 45 62 57
1865
+ 81 64 70
1866
+ 45 70 62
1867
+ 12 100 82
1868
+ 7 21 17
1869
+ 50 69 97
1870
+ 5 66 37
1871
+ 79 12 10
1872
+ 69 3 81
1873
+ 15 48 19
1874
+ 50 82 26
1875
+ 68 47 78
1876
+ 20 94 40
1877
+ 38 15 17
1878
+ 25 55 35
1879
+ 10 55 4
1880
+ 91 47 20
1881
+ 91 61 19
1882
+ 100 76 79
1883
+ 2 20 12
1884
+ 62 67 78
1885
+ 92 80 87
1886
+ 55 65 61
1887
+ 53 70 66
1888
+ 12 65 66
1889
+ 74 98 45
1890
+ 4 78 15
1891
+ 36 12 28
1892
+ 4 79 33
1893
+ 16 58 42
1894
+ 4 17 11
1895
+ 99 41 62
1896
+ 88 98 54
1897
+ 98 6 75
1898
+ 81 8 37
1899
+ 87 63 13
1900
+ 4 64 27
1901
+ 56 30 6
1902
+ 83 83 38
1903
+ 14 60 30
1904
+ 3 98 22
1905
+ 53 100 79
1906
+ 14 63 94
1907
+ 53 48 96
1908
+ 59 72 79
1909
+ 95 11 94
1910
+ 77 89 75
1911
+ 75 37 68
1912
+ 51 9 46
1913
+ 95 85 81
1914
+ 32 77 66
1915
+ 28 37 95
1916
+ 22 34 52
1917
+ 64 81 11
1918
+ 28 12 87
1919
+ 19 54 59
1920
+ 64 82 82
1921
+ 4 99 54
1922
+ 36 32 85
1923
+ 38 68 94
1924
+ 2 77 57
1925
+ 61 88 67
1926
+ 88 17 100
1927
+ 26 26 94
1928
+ 77 31 9
1929
+ 55 2 71
1930
+ 80 53 38
1931
+ 75 2 67
1932
+ 5 36 8
1933
+ 44 7 12
1934
+ 92 55 47
1935
+ 52 10 20
1936
+ 51 46 69
1937
+ 77 28 9
1938
+ 46 26 68
1939
+ 19 71 93
1940
+ 58 27 76
1941
+ 68 85 59
1942
+ 81 53 85
1943
+ 18 89 10
1944
+ 93 40 71
1945
+ 85 16 71
1946
+ 39 62 100
1947
+ 6 97 77
1948
+ 17 26 74
1949
+ 86 14 22
1950
+ 11 5 82
1951
+ 21 94 36
1952
+ 56 43 8
1953
+ 20 60 5
1954
+ 29 11 42
1955
+ 37 65 24
1956
+ 3 83 27
1957
+ 26 91 40
1958
+ 23 66 83
1959
+ 4 87 25
1960
+ 24 29 11
1961
+ 91 86 25
1962
+ 59 96 91
1963
+ 0 89 69
1964
+ 95 95 17
1965
+ 3 22 39
1966
+ 44 88 41
1967
+ 29 36 86
1968
+ 24 98 37
1969
+ 2 42 20
1970
+ 43 99 74
1971
+ 91 10 57
1972
+ 47 68 48
1973
+ 18 18 95
1974
+ 76 87 22
1975
+ 15 81 62
1976
+ 41 85 26
1977
+ 38 4 1
1978
+ 60 100 78
1979
+ 54 98 4
1980
+ 60 57 42
1981
+ 98 13 29
1982
+ 28 58 46
1983
+ 90 16 86
1984
+ 0 20 21
1985
+ 37 43 86
1986
+ 20 62 88
1987
+ 33 55 85
1988
+ 82 42 37
1989
+ 54 53 91
1990
+ 82 97 70
1991
+ 99 70 86
1992
+ 77 75 53
1993
+ 29 71 99
1994
+ 63 74 95
1995
+ 58 20 22
1996
+ 89 48 39
1997
+ 25 2 9
1998
+ 54 83 44
1999
+ 8 64 34
2000
+ 33 70 76
2001
+ 31 11 98
2002
+ 87 93 35
2003
+ 58 85 42
2004
+ 96 74 56
2005
+ 96 28 17
2006
+ 2 100 54
2017/quals/progresspie.java ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Hacker Cup 2017
2
+ // Qualification Round
3
+ // Progress Pie
4
+ // Wesley May
5
+
6
+ import java.util.*;
7
+
8
+ public class ProgressPie
9
+ {
10
+ public static void main(String args[])
11
+ {
12
+ double EPS = 0.000001;
13
+ Scanner scan = new Scanner(System.in);
14
+ int T = scan.nextInt();
15
+
16
+ for(int ca=1;ca <= T;ca++)
17
+ {
18
+ double p = scan.nextDouble() / 100;
19
+ double x = scan.nextDouble();
20
+ double y = scan.nextDouble();
21
+ boolean ans = solve(p, x, y);
22
+
23
+ System.out.println("Case #" + ca + ": " + (ans ? "black" : "white"));
24
+ }
25
+ }
26
+
27
+ public static boolean solve(double p, double x, double y)
28
+ {
29
+ if(p == 0) return false;
30
+
31
+ double dx = x - 50;
32
+ double dy = y - 50;
33
+ double d = Math.sqrt(dx*dx + dy*dy);
34
+ if (d > 50) return false;
35
+
36
+ if(dx == 0 && dy == 0) return true;
37
+
38
+ double theta = Math.atan2(dy, dx);
39
+ if (theta < 0) theta += 2 * Math.PI;
40
+ double myp = (2 * Math.PI - theta) / (2 * Math.PI);
41
+ myp += 0.25;
42
+ if (myp >= 1) myp -= 1;
43
+
44
+ return myp <= p;
45
+ }
46
+ }
2017/quals/progresspie.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Some progress bars fill you with anticipation. Some are finished before you
2
+ know it and make you wonder why there was a progress bar at all.
3
+
4
+ Some progress bars progress at a pleasant, steady rate. Some are chaotic,
5
+ lurching forward and then pausing for long periods. Some seem to slow down as
6
+ they go, never quite reaching 100%.
7
+
8
+ Some progress bars are in fact not bars at all, but circles.
9
+
10
+ On your screen is a progress pie, a sort of progress bar that shows its
11
+ progress as a sector of a circle. Envision your screen as a square on the
12
+ plane with its bottom-left corner at (0, 0), and its upper-right corner at
13
+ (100, 100). Every point on the screen is either white or black. Initially, the
14
+ progress is 0%, and all points on the screen are white. When the progress
15
+ percentage, **P**, is greater than 0%, a sector of angle (**P**% * 360)
16
+ degrees is colored black, anchored by the line segment from the center of the
17
+ square to the center of the top side, and proceeding clockwise.
18
+
19
+ ![]({{PHOTO_ID:592385891651966}})
20
+
21
+ While you wait for the progress pie to fill in, you find yourself thinking
22
+ about whether certain points would be white or black at different amounts of
23
+ progress.
24
+
25
+ ### Input
26
+
27
+ Input begins with an integer **T**, the number of points you're curious about.
28
+ For each point, there is a line containing three space-separated integers,
29
+ **P**, the amount of progress as a percentage, and **X** and **Y**, the
30
+ coordinates of the point.
31
+
32
+ ### Output
33
+
34
+ For the **i**th point, print a line containing "Case #**i**: " followed by the
35
+ color of the point, either "black" or "white".
36
+
37
+ ### Constraints
38
+
39
+ 1 ≤ **T** ≤ 1,000
40
+ 0 ≤ **P**, **X**, **Y** ≤ 100
41
+
42
+ Whenever a point (**X**, **Y**) is queried, it's guaranteed that all points
43
+ within a distance of 10-6 of (**X**, **Y**) are the same color as (**X**,
44
+ **Y**).
45
+
46
+ ### Explanation of Sample
47
+
48
+ In the first case all of the points are white, so the point at (55, 55) is of
49
+ course white.
50
+
51
+ In the second case, (55, 55) is close to the filled-in sector of the circle,
52
+ but it's still white.
53
+
54
+ In the third case, the filled-in sector of the circle now covers (55, 55),
55
+ coloring it black.
56
+
2017/quals/progresspie.out ADDED
@@ -0,0 +1,2005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: white
2
+ Case #2: white
3
+ Case #3: black
4
+ Case #4: white
5
+ Case #5: black
6
+ Case #6: white
7
+ Case #7: white
8
+ Case #8: white
9
+ Case #9: black
10
+ Case #10: white
11
+ Case #11: black
12
+ Case #12: white
13
+ Case #13: black
14
+ Case #14: white
15
+ Case #15: white
16
+ Case #16: black
17
+ Case #17: white
18
+ Case #18: black
19
+ Case #19: black
20
+ Case #20: white
21
+ Case #21: white
22
+ Case #22: white
23
+ Case #23: black
24
+ Case #24: black
25
+ Case #25: white
26
+ Case #26: white
27
+ Case #27: black
28
+ Case #28: black
29
+ Case #29: white
30
+ Case #30: black
31
+ Case #31: black
32
+ Case #32: white
33
+ Case #33: white
34
+ Case #34: white
35
+ Case #35: white
36
+ Case #36: white
37
+ Case #37: black
38
+ Case #38: black
39
+ Case #39: white
40
+ Case #40: white
41
+ Case #41: white
42
+ Case #42: white
43
+ Case #43: white
44
+ Case #44: black
45
+ Case #45: white
46
+ Case #46: white
47
+ Case #47: black
48
+ Case #48: black
49
+ Case #49: white
50
+ Case #50: white
51
+ Case #51: white
52
+ Case #52: white
53
+ Case #53: white
54
+ Case #54: white
55
+ Case #55: white
56
+ Case #56: white
57
+ Case #57: black
58
+ Case #58: white
59
+ Case #59: white
60
+ Case #60: black
61
+ Case #61: black
62
+ Case #62: white
63
+ Case #63: black
64
+ Case #64: white
65
+ Case #65: black
66
+ Case #66: white
67
+ Case #67: black
68
+ Case #68: white
69
+ Case #69: white
70
+ Case #70: white
71
+ Case #71: white
72
+ Case #72: black
73
+ Case #73: white
74
+ Case #74: black
75
+ Case #75: black
76
+ Case #76: black
77
+ Case #77: black
78
+ Case #78: white
79
+ Case #79: black
80
+ Case #80: black
81
+ Case #81: white
82
+ Case #82: white
83
+ Case #83: black
84
+ Case #84: black
85
+ Case #85: white
86
+ Case #86: black
87
+ Case #87: white
88
+ Case #88: white
89
+ Case #89: white
90
+ Case #90: white
91
+ Case #91: white
92
+ Case #92: white
93
+ Case #93: white
94
+ Case #94: white
95
+ Case #95: white
96
+ Case #96: black
97
+ Case #97: white
98
+ Case #98: black
99
+ Case #99: black
100
+ Case #100: black
101
+ Case #101: white
102
+ Case #102: black
103
+ Case #103: black
104
+ Case #104: white
105
+ Case #105: black
106
+ Case #106: white
107
+ Case #107: white
108
+ Case #108: white
109
+ Case #109: white
110
+ Case #110: white
111
+ Case #111: black
112
+ Case #112: white
113
+ Case #113: black
114
+ Case #114: black
115
+ Case #115: white
116
+ Case #116: black
117
+ Case #117: white
118
+ Case #118: black
119
+ Case #119: black
120
+ Case #120: black
121
+ Case #121: white
122
+ Case #122: black
123
+ Case #123: white
124
+ Case #124: white
125
+ Case #125: black
126
+ Case #126: white
127
+ Case #127: white
128
+ Case #128: white
129
+ Case #129: white
130
+ Case #130: black
131
+ Case #131: white
132
+ Case #132: white
133
+ Case #133: black
134
+ Case #134: white
135
+ Case #135: black
136
+ Case #136: black
137
+ Case #137: white
138
+ Case #138: white
139
+ Case #139: black
140
+ Case #140: black
141
+ Case #141: black
142
+ Case #142: white
143
+ Case #143: white
144
+ Case #144: white
145
+ Case #145: black
146
+ Case #146: white
147
+ Case #147: white
148
+ Case #148: white
149
+ Case #149: black
150
+ Case #150: white
151
+ Case #151: white
152
+ Case #152: black
153
+ Case #153: white
154
+ Case #154: black
155
+ Case #155: white
156
+ Case #156: black
157
+ Case #157: black
158
+ Case #158: white
159
+ Case #159: white
160
+ Case #160: white
161
+ Case #161: white
162
+ Case #162: black
163
+ Case #163: white
164
+ Case #164: black
165
+ Case #165: black
166
+ Case #166: white
167
+ Case #167: white
168
+ Case #168: black
169
+ Case #169: white
170
+ Case #170: black
171
+ Case #171: black
172
+ Case #172: white
173
+ Case #173: black
174
+ Case #174: white
175
+ Case #175: black
176
+ Case #176: black
177
+ Case #177: white
178
+ Case #178: white
179
+ Case #179: white
180
+ Case #180: white
181
+ Case #181: white
182
+ Case #182: white
183
+ Case #183: black
184
+ Case #184: black
185
+ Case #185: white
186
+ Case #186: black
187
+ Case #187: black
188
+ Case #188: white
189
+ Case #189: black
190
+ Case #190: white
191
+ Case #191: white
192
+ Case #192: black
193
+ Case #193: white
194
+ Case #194: white
195
+ Case #195: black
196
+ Case #196: black
197
+ Case #197: white
198
+ Case #198: black
199
+ Case #199: white
200
+ Case #200: black
201
+ Case #201: black
202
+ Case #202: white
203
+ Case #203: black
204
+ Case #204: white
205
+ Case #205: black
206
+ Case #206: black
207
+ Case #207: white
208
+ Case #208: black
209
+ Case #209: black
210
+ Case #210: white
211
+ Case #211: white
212
+ Case #212: white
213
+ Case #213: black
214
+ Case #214: white
215
+ Case #215: white
216
+ Case #216: black
217
+ Case #217: white
218
+ Case #218: white
219
+ Case #219: white
220
+ Case #220: white
221
+ Case #221: white
222
+ Case #222: white
223
+ Case #223: white
224
+ Case #224: white
225
+ Case #225: white
226
+ Case #226: white
227
+ Case #227: white
228
+ Case #228: white
229
+ Case #229: white
230
+ Case #230: white
231
+ Case #231: black
232
+ Case #232: black
233
+ Case #233: white
234
+ Case #234: white
235
+ Case #235: white
236
+ Case #236: white
237
+ Case #237: white
238
+ Case #238: white
239
+ Case #239: white
240
+ Case #240: white
241
+ Case #241: white
242
+ Case #242: black
243
+ Case #243: black
244
+ Case #244: white
245
+ Case #245: black
246
+ Case #246: black
247
+ Case #247: white
248
+ Case #248: white
249
+ Case #249: white
250
+ Case #250: white
251
+ Case #251: white
252
+ Case #252: black
253
+ Case #253: black
254
+ Case #254: black
255
+ Case #255: white
256
+ Case #256: white
257
+ Case #257: white
258
+ Case #258: black
259
+ Case #259: black
260
+ Case #260: white
261
+ Case #261: black
262
+ Case #262: black
263
+ Case #263: black
264
+ Case #264: white
265
+ Case #265: black
266
+ Case #266: white
267
+ Case #267: white
268
+ Case #268: white
269
+ Case #269: white
270
+ Case #270: white
271
+ Case #271: white
272
+ Case #272: black
273
+ Case #273: white
274
+ Case #274: white
275
+ Case #275: white
276
+ Case #276: white
277
+ Case #277: black
278
+ Case #278: black
279
+ Case #279: white
280
+ Case #280: black
281
+ Case #281: black
282
+ Case #282: white
283
+ Case #283: black
284
+ Case #284: white
285
+ Case #285: black
286
+ Case #286: black
287
+ Case #287: white
288
+ Case #288: black
289
+ Case #289: white
290
+ Case #290: white
291
+ Case #291: black
292
+ Case #292: black
293
+ Case #293: white
294
+ Case #294: black
295
+ Case #295: black
296
+ Case #296: white
297
+ Case #297: white
298
+ Case #298: black
299
+ Case #299: black
300
+ Case #300: white
301
+ Case #301: white
302
+ Case #302: white
303
+ Case #303: white
304
+ Case #304: white
305
+ Case #305: white
306
+ Case #306: black
307
+ Case #307: black
308
+ Case #308: white
309
+ Case #309: white
310
+ Case #310: white
311
+ Case #311: white
312
+ Case #312: white
313
+ Case #313: black
314
+ Case #314: black
315
+ Case #315: black
316
+ Case #316: white
317
+ Case #317: white
318
+ Case #318: white
319
+ Case #319: white
320
+ Case #320: white
321
+ Case #321: white
322
+ Case #322: white
323
+ Case #323: white
324
+ Case #324: black
325
+ Case #325: white
326
+ Case #326: white
327
+ Case #327: black
328
+ Case #328: white
329
+ Case #329: black
330
+ Case #330: white
331
+ Case #331: black
332
+ Case #332: white
333
+ Case #333: black
334
+ Case #334: black
335
+ Case #335: white
336
+ Case #336: white
337
+ Case #337: white
338
+ Case #338: white
339
+ Case #339: white
340
+ Case #340: black
341
+ Case #341: white
342
+ Case #342: white
343
+ Case #343: white
344
+ Case #344: black
345
+ Case #345: black
346
+ Case #346: black
347
+ Case #347: white
348
+ Case #348: black
349
+ Case #349: black
350
+ Case #350: white
351
+ Case #351: white
352
+ Case #352: white
353
+ Case #353: black
354
+ Case #354: black
355
+ Case #355: white
356
+ Case #356: black
357
+ Case #357: white
358
+ Case #358: black
359
+ Case #359: white
360
+ Case #360: white
361
+ Case #361: black
362
+ Case #362: black
363
+ Case #363: white
364
+ Case #364: black
365
+ Case #365: black
366
+ Case #366: white
367
+ Case #367: black
368
+ Case #368: white
369
+ Case #369: white
370
+ Case #370: white
371
+ Case #371: white
372
+ Case #372: white
373
+ Case #373: black
374
+ Case #374: black
375
+ Case #375: white
376
+ Case #376: white
377
+ Case #377: black
378
+ Case #378: white
379
+ Case #379: black
380
+ Case #380: white
381
+ Case #381: black
382
+ Case #382: white
383
+ Case #383: black
384
+ Case #384: black
385
+ Case #385: black
386
+ Case #386: black
387
+ Case #387: black
388
+ Case #388: white
389
+ Case #389: black
390
+ Case #390: white
391
+ Case #391: white
392
+ Case #392: black
393
+ Case #393: white
394
+ Case #394: black
395
+ Case #395: white
396
+ Case #396: white
397
+ Case #397: black
398
+ Case #398: white
399
+ Case #399: white
400
+ Case #400: white
401
+ Case #401: black
402
+ Case #402: black
403
+ Case #403: black
404
+ Case #404: black
405
+ Case #405: white
406
+ Case #406: white
407
+ Case #407: white
408
+ Case #408: black
409
+ Case #409: white
410
+ Case #410: white
411
+ Case #411: white
412
+ Case #412: black
413
+ Case #413: black
414
+ Case #414: black
415
+ Case #415: white
416
+ Case #416: white
417
+ Case #417: black
418
+ Case #418: white
419
+ Case #419: white
420
+ Case #420: black
421
+ Case #421: black
422
+ Case #422: white
423
+ Case #423: white
424
+ Case #424: white
425
+ Case #425: white
426
+ Case #426: black
427
+ Case #427: black
428
+ Case #428: black
429
+ Case #429: black
430
+ Case #430: white
431
+ Case #431: black
432
+ Case #432: black
433
+ Case #433: black
434
+ Case #434: white
435
+ Case #435: white
436
+ Case #436: black
437
+ Case #437: black
438
+ Case #438: white
439
+ Case #439: white
440
+ Case #440: white
441
+ Case #441: black
442
+ Case #442: black
443
+ Case #443: white
444
+ Case #444: white
445
+ Case #445: white
446
+ Case #446: white
447
+ Case #447: white
448
+ Case #448: white
449
+ Case #449: white
450
+ Case #450: white
451
+ Case #451: white
452
+ Case #452: white
453
+ Case #453: black
454
+ Case #454: white
455
+ Case #455: black
456
+ Case #456: black
457
+ Case #457: white
458
+ Case #458: white
459
+ Case #459: white
460
+ Case #460: white
461
+ Case #461: white
462
+ Case #462: white
463
+ Case #463: black
464
+ Case #464: white
465
+ Case #465: white
466
+ Case #466: white
467
+ Case #467: black
468
+ Case #468: white
469
+ Case #469: white
470
+ Case #470: black
471
+ Case #471: black
472
+ Case #472: black
473
+ Case #473: black
474
+ Case #474: black
475
+ Case #475: white
476
+ Case #476: black
477
+ Case #477: white
478
+ Case #478: black
479
+ Case #479: white
480
+ Case #480: white
481
+ Case #481: white
482
+ Case #482: black
483
+ Case #483: white
484
+ Case #484: white
485
+ Case #485: white
486
+ Case #486: white
487
+ Case #487: white
488
+ Case #488: white
489
+ Case #489: white
490
+ Case #490: black
491
+ Case #491: white
492
+ Case #492: white
493
+ Case #493: black
494
+ Case #494: white
495
+ Case #495: black
496
+ Case #496: black
497
+ Case #497: white
498
+ Case #498: black
499
+ Case #499: white
500
+ Case #500: white
501
+ Case #501: white
502
+ Case #502: white
503
+ Case #503: white
504
+ Case #504: white
505
+ Case #505: black
506
+ Case #506: white
507
+ Case #507: white
508
+ Case #508: white
509
+ Case #509: black
510
+ Case #510: black
511
+ Case #511: white
512
+ Case #512: white
513
+ Case #513: white
514
+ Case #514: black
515
+ Case #515: black
516
+ Case #516: white
517
+ Case #517: black
518
+ Case #518: white
519
+ Case #519: black
520
+ Case #520: black
521
+ Case #521: white
522
+ Case #522: white
523
+ Case #523: white
524
+ Case #524: black
525
+ Case #525: white
526
+ Case #526: white
527
+ Case #527: black
528
+ Case #528: black
529
+ Case #529: white
530
+ Case #530: black
531
+ Case #531: white
532
+ Case #532: white
533
+ Case #533: black
534
+ Case #534: black
535
+ Case #535: black
536
+ Case #536: white
537
+ Case #537: white
538
+ Case #538: white
539
+ Case #539: black
540
+ Case #540: white
541
+ Case #541: white
542
+ Case #542: white
543
+ Case #543: white
544
+ Case #544: black
545
+ Case #545: white
546
+ Case #546: white
547
+ Case #547: white
548
+ Case #548: black
549
+ Case #549: black
550
+ Case #550: white
551
+ Case #551: white
552
+ Case #552: white
553
+ Case #553: white
554
+ Case #554: white
555
+ Case #555: black
556
+ Case #556: white
557
+ Case #557: black
558
+ Case #558: white
559
+ Case #559: white
560
+ Case #560: white
561
+ Case #561: white
562
+ Case #562: white
563
+ Case #563: black
564
+ Case #564: white
565
+ Case #565: white
566
+ Case #566: black
567
+ Case #567: white
568
+ Case #568: white
569
+ Case #569: white
570
+ Case #570: white
571
+ Case #571: black
572
+ Case #572: white
573
+ Case #573: black
574
+ Case #574: white
575
+ Case #575: white
576
+ Case #576: white
577
+ Case #577: black
578
+ Case #578: black
579
+ Case #579: black
580
+ Case #580: black
581
+ Case #581: white
582
+ Case #582: white
583
+ Case #583: white
584
+ Case #584: white
585
+ Case #585: black
586
+ Case #586: white
587
+ Case #587: black
588
+ Case #588: white
589
+ Case #589: black
590
+ Case #590: white
591
+ Case #591: white
592
+ Case #592: black
593
+ Case #593: black
594
+ Case #594: white
595
+ Case #595: black
596
+ Case #596: black
597
+ Case #597: white
598
+ Case #598: white
599
+ Case #599: black
600
+ Case #600: white
601
+ Case #601: black
602
+ Case #602: black
603
+ Case #603: white
604
+ Case #604: white
605
+ Case #605: white
606
+ Case #606: white
607
+ Case #607: white
608
+ Case #608: white
609
+ Case #609: black
610
+ Case #610: black
611
+ Case #611: white
612
+ Case #612: white
613
+ Case #613: black
614
+ Case #614: white
615
+ Case #615: white
616
+ Case #616: white
617
+ Case #617: white
618
+ Case #618: white
619
+ Case #619: white
620
+ Case #620: white
621
+ Case #621: white
622
+ Case #622: black
623
+ Case #623: black
624
+ Case #624: black
625
+ Case #625: black
626
+ Case #626: white
627
+ Case #627: black
628
+ Case #628: white
629
+ Case #629: white
630
+ Case #630: white
631
+ Case #631: white
632
+ Case #632: white
633
+ Case #633: black
634
+ Case #634: black
635
+ Case #635: black
636
+ Case #636: white
637
+ Case #637: white
638
+ Case #638: white
639
+ Case #639: black
640
+ Case #640: white
641
+ Case #641: black
642
+ Case #642: white
643
+ Case #643: white
644
+ Case #644: white
645
+ Case #645: black
646
+ Case #646: black
647
+ Case #647: white
648
+ Case #648: white
649
+ Case #649: black
650
+ Case #650: black
651
+ Case #651: black
652
+ Case #652: white
653
+ Case #653: black
654
+ Case #654: white
655
+ Case #655: black
656
+ Case #656: black
657
+ Case #657: white
658
+ Case #658: white
659
+ Case #659: black
660
+ Case #660: white
661
+ Case #661: black
662
+ Case #662: white
663
+ Case #663: white
664
+ Case #664: black
665
+ Case #665: white
666
+ Case #666: white
667
+ Case #667: black
668
+ Case #668: black
669
+ Case #669: white
670
+ Case #670: black
671
+ Case #671: white
672
+ Case #672: white
673
+ Case #673: white
674
+ Case #674: white
675
+ Case #675: black
676
+ Case #676: black
677
+ Case #677: black
678
+ Case #678: white
679
+ Case #679: black
680
+ Case #680: white
681
+ Case #681: black
682
+ Case #682: white
683
+ Case #683: white
684
+ Case #684: white
685
+ Case #685: black
686
+ Case #686: black
687
+ Case #687: black
688
+ Case #688: white
689
+ Case #689: black
690
+ Case #690: black
691
+ Case #691: black
692
+ Case #692: black
693
+ Case #693: white
694
+ Case #694: black
695
+ Case #695: white
696
+ Case #696: white
697
+ Case #697: white
698
+ Case #698: white
699
+ Case #699: black
700
+ Case #700: white
701
+ Case #701: black
702
+ Case #702: white
703
+ Case #703: white
704
+ Case #704: black
705
+ Case #705: white
706
+ Case #706: white
707
+ Case #707: black
708
+ Case #708: black
709
+ Case #709: black
710
+ Case #710: black
711
+ Case #711: black
712
+ Case #712: black
713
+ Case #713: white
714
+ Case #714: black
715
+ Case #715: white
716
+ Case #716: white
717
+ Case #717: white
718
+ Case #718: black
719
+ Case #719: white
720
+ Case #720: black
721
+ Case #721: black
722
+ Case #722: white
723
+ Case #723: black
724
+ Case #724: black
725
+ Case #725: white
726
+ Case #726: black
727
+ Case #727: white
728
+ Case #728: black
729
+ Case #729: white
730
+ Case #730: white
731
+ Case #731: white
732
+ Case #732: black
733
+ Case #733: black
734
+ Case #734: black
735
+ Case #735: white
736
+ Case #736: white
737
+ Case #737: black
738
+ Case #738: white
739
+ Case #739: white
740
+ Case #740: white
741
+ Case #741: white
742
+ Case #742: white
743
+ Case #743: black
744
+ Case #744: white
745
+ Case #745: white
746
+ Case #746: black
747
+ Case #747: white
748
+ Case #748: white
749
+ Case #749: white
750
+ Case #750: black
751
+ Case #751: white
752
+ Case #752: black
753
+ Case #753: white
754
+ Case #754: white
755
+ Case #755: white
756
+ Case #756: black
757
+ Case #757: white
758
+ Case #758: white
759
+ Case #759: black
760
+ Case #760: white
761
+ Case #761: white
762
+ Case #762: white
763
+ Case #763: black
764
+ Case #764: white
765
+ Case #765: white
766
+ Case #766: black
767
+ Case #767: white
768
+ Case #768: white
769
+ Case #769: white
770
+ Case #770: black
771
+ Case #771: white
772
+ Case #772: white
773
+ Case #773: white
774
+ Case #774: white
775
+ Case #775: black
776
+ Case #776: white
777
+ Case #777: black
778
+ Case #778: white
779
+ Case #779: white
780
+ Case #780: white
781
+ Case #781: black
782
+ Case #782: black
783
+ Case #783: white
784
+ Case #784: black
785
+ Case #785: white
786
+ Case #786: black
787
+ Case #787: white
788
+ Case #788: white
789
+ Case #789: black
790
+ Case #790: white
791
+ Case #791: black
792
+ Case #792: black
793
+ Case #793: white
794
+ Case #794: white
795
+ Case #795: black
796
+ Case #796: black
797
+ Case #797: white
798
+ Case #798: white
799
+ Case #799: white
800
+ Case #800: white
801
+ Case #801: black
802
+ Case #802: white
803
+ Case #803: white
804
+ Case #804: black
805
+ Case #805: white
806
+ Case #806: white
807
+ Case #807: black
808
+ Case #808: white
809
+ Case #809: black
810
+ Case #810: black
811
+ Case #811: black
812
+ Case #812: white
813
+ Case #813: white
814
+ Case #814: white
815
+ Case #815: black
816
+ Case #816: white
817
+ Case #817: white
818
+ Case #818: black
819
+ Case #819: white
820
+ Case #820: white
821
+ Case #821: white
822
+ Case #822: black
823
+ Case #823: black
824
+ Case #824: white
825
+ Case #825: black
826
+ Case #826: black
827
+ Case #827: black
828
+ Case #828: white
829
+ Case #829: black
830
+ Case #830: white
831
+ Case #831: white
832
+ Case #832: black
833
+ Case #833: white
834
+ Case #834: black
835
+ Case #835: black
836
+ Case #836: white
837
+ Case #837: black
838
+ Case #838: black
839
+ Case #839: black
840
+ Case #840: white
841
+ Case #841: white
842
+ Case #842: black
843
+ Case #843: white
844
+ Case #844: white
845
+ Case #845: white
846
+ Case #846: black
847
+ Case #847: white
848
+ Case #848: white
849
+ Case #849: black
850
+ Case #850: white
851
+ Case #851: white
852
+ Case #852: black
853
+ Case #853: white
854
+ Case #854: white
855
+ Case #855: white
856
+ Case #856: white
857
+ Case #857: white
858
+ Case #858: black
859
+ Case #859: white
860
+ Case #860: white
861
+ Case #861: white
862
+ Case #862: white
863
+ Case #863: white
864
+ Case #864: white
865
+ Case #865: black
866
+ Case #866: white
867
+ Case #867: white
868
+ Case #868: white
869
+ Case #869: white
870
+ Case #870: white
871
+ Case #871: white
872
+ Case #872: white
873
+ Case #873: black
874
+ Case #874: white
875
+ Case #875: white
876
+ Case #876: black
877
+ Case #877: white
878
+ Case #878: white
879
+ Case #879: black
880
+ Case #880: white
881
+ Case #881: white
882
+ Case #882: white
883
+ Case #883: black
884
+ Case #884: white
885
+ Case #885: white
886
+ Case #886: white
887
+ Case #887: black
888
+ Case #888: black
889
+ Case #889: white
890
+ Case #890: black
891
+ Case #891: white
892
+ Case #892: white
893
+ Case #893: black
894
+ Case #894: white
895
+ Case #895: white
896
+ Case #896: black
897
+ Case #897: white
898
+ Case #898: white
899
+ Case #899: black
900
+ Case #900: white
901
+ Case #901: white
902
+ Case #902: white
903
+ Case #903: white
904
+ Case #904: black
905
+ Case #905: white
906
+ Case #906: white
907
+ Case #907: white
908
+ Case #908: black
909
+ Case #909: white
910
+ Case #910: black
911
+ Case #911: white
912
+ Case #912: black
913
+ Case #913: white
914
+ Case #914: white
915
+ Case #915: black
916
+ Case #916: white
917
+ Case #917: black
918
+ Case #918: white
919
+ Case #919: black
920
+ Case #920: white
921
+ Case #921: white
922
+ Case #922: white
923
+ Case #923: black
924
+ Case #924: white
925
+ Case #925: black
926
+ Case #926: black
927
+ Case #927: black
928
+ Case #928: white
929
+ Case #929: white
930
+ Case #930: white
931
+ Case #931: black
932
+ Case #932: white
933
+ Case #933: white
934
+ Case #934: white
935
+ Case #935: black
936
+ Case #936: white
937
+ Case #937: black
938
+ Case #938: white
939
+ Case #939: black
940
+ Case #940: white
941
+ Case #941: white
942
+ Case #942: black
943
+ Case #943: white
944
+ Case #944: black
945
+ Case #945: black
946
+ Case #946: white
947
+ Case #947: white
948
+ Case #948: white
949
+ Case #949: white
950
+ Case #950: white
951
+ Case #951: black
952
+ Case #952: black
953
+ Case #953: white
954
+ Case #954: white
955
+ Case #955: white
956
+ Case #956: white
957
+ Case #957: black
958
+ Case #958: black
959
+ Case #959: white
960
+ Case #960: white
961
+ Case #961: black
962
+ Case #962: white
963
+ Case #963: white
964
+ Case #964: white
965
+ Case #965: black
966
+ Case #966: white
967
+ Case #967: black
968
+ Case #968: black
969
+ Case #969: white
970
+ Case #970: black
971
+ Case #971: black
972
+ Case #972: black
973
+ Case #973: white
974
+ Case #974: black
975
+ Case #975: black
976
+ Case #976: white
977
+ Case #977: white
978
+ Case #978: black
979
+ Case #979: white
980
+ Case #980: white
981
+ Case #981: black
982
+ Case #982: white
983
+ Case #983: black
984
+ Case #984: black
985
+ Case #985: white
986
+ Case #986: black
987
+ Case #987: black
988
+ Case #988: black
989
+ Case #989: black
990
+ Case #990: black
991
+ Case #991: white
992
+ Case #992: black
993
+ Case #993: white
994
+ Case #994: white
995
+ Case #995: white
996
+ Case #996: white
997
+ Case #997: black
998
+ Case #998: white
999
+ Case #999: black
1000
+ Case #1000: black
1001
+ Case #1001: black
1002
+ Case #1002: white
1003
+ Case #1003: white
1004
+ Case #1004: black
1005
+ Case #1005: black
1006
+ Case #1006: white
1007
+ Case #1007: white
1008
+ Case #1008: white
1009
+ Case #1009: white
1010
+ Case #1010: black
1011
+ Case #1011: black
1012
+ Case #1012: white
1013
+ Case #1013: white
1014
+ Case #1014: black
1015
+ Case #1015: white
1016
+ Case #1016: white
1017
+ Case #1017: white
1018
+ Case #1018: white
1019
+ Case #1019: white
1020
+ Case #1020: black
1021
+ Case #1021: black
1022
+ Case #1022: black
1023
+ Case #1023: black
1024
+ Case #1024: white
1025
+ Case #1025: white
1026
+ Case #1026: black
1027
+ Case #1027: black
1028
+ Case #1028: white
1029
+ Case #1029: white
1030
+ Case #1030: black
1031
+ Case #1031: white
1032
+ Case #1032: white
1033
+ Case #1033: white
1034
+ Case #1034: black
1035
+ Case #1035: white
1036
+ Case #1036: white
1037
+ Case #1037: white
1038
+ Case #1038: white
1039
+ Case #1039: white
1040
+ Case #1040: black
1041
+ Case #1041: black
1042
+ Case #1042: white
1043
+ Case #1043: black
1044
+ Case #1044: white
1045
+ Case #1045: black
1046
+ Case #1046: black
1047
+ Case #1047: white
1048
+ Case #1048: black
1049
+ Case #1049: black
1050
+ Case #1050: white
1051
+ Case #1051: black
1052
+ Case #1052: white
1053
+ Case #1053: white
1054
+ Case #1054: white
1055
+ Case #1055: white
1056
+ Case #1056: white
1057
+ Case #1057: white
1058
+ Case #1058: black
1059
+ Case #1059: white
1060
+ Case #1060: white
1061
+ Case #1061: black
1062
+ Case #1062: black
1063
+ Case #1063: black
1064
+ Case #1064: white
1065
+ Case #1065: white
1066
+ Case #1066: white
1067
+ Case #1067: black
1068
+ Case #1068: black
1069
+ Case #1069: black
1070
+ Case #1070: black
1071
+ Case #1071: black
1072
+ Case #1072: black
1073
+ Case #1073: black
1074
+ Case #1074: white
1075
+ Case #1075: black
1076
+ Case #1076: black
1077
+ Case #1077: black
1078
+ Case #1078: white
1079
+ Case #1079: white
1080
+ Case #1080: black
1081
+ Case #1081: white
1082
+ Case #1082: black
1083
+ Case #1083: black
1084
+ Case #1084: black
1085
+ Case #1085: white
1086
+ Case #1086: black
1087
+ Case #1087: white
1088
+ Case #1088: white
1089
+ Case #1089: black
1090
+ Case #1090: black
1091
+ Case #1091: black
1092
+ Case #1092: black
1093
+ Case #1093: black
1094
+ Case #1094: black
1095
+ Case #1095: white
1096
+ Case #1096: white
1097
+ Case #1097: white
1098
+ Case #1098: white
1099
+ Case #1099: black
1100
+ Case #1100: white
1101
+ Case #1101: black
1102
+ Case #1102: white
1103
+ Case #1103: black
1104
+ Case #1104: white
1105
+ Case #1105: white
1106
+ Case #1106: black
1107
+ Case #1107: white
1108
+ Case #1108: white
1109
+ Case #1109: black
1110
+ Case #1110: white
1111
+ Case #1111: white
1112
+ Case #1112: white
1113
+ Case #1113: white
1114
+ Case #1114: white
1115
+ Case #1115: white
1116
+ Case #1116: black
1117
+ Case #1117: white
1118
+ Case #1118: black
1119
+ Case #1119: black
1120
+ Case #1120: white
1121
+ Case #1121: black
1122
+ Case #1122: white
1123
+ Case #1123: white
1124
+ Case #1124: white
1125
+ Case #1125: black
1126
+ Case #1126: black
1127
+ Case #1127: black
1128
+ Case #1128: black
1129
+ Case #1129: black
1130
+ Case #1130: black
1131
+ Case #1131: white
1132
+ Case #1132: white
1133
+ Case #1133: white
1134
+ Case #1134: white
1135
+ Case #1135: black
1136
+ Case #1136: black
1137
+ Case #1137: white
1138
+ Case #1138: white
1139
+ Case #1139: black
1140
+ Case #1140: white
1141
+ Case #1141: white
1142
+ Case #1142: white
1143
+ Case #1143: white
1144
+ Case #1144: white
1145
+ Case #1145: black
1146
+ Case #1146: black
1147
+ Case #1147: black
1148
+ Case #1148: white
1149
+ Case #1149: black
1150
+ Case #1150: white
1151
+ Case #1151: white
1152
+ Case #1152: white
1153
+ Case #1153: white
1154
+ Case #1154: black
1155
+ Case #1155: black
1156
+ Case #1156: white
1157
+ Case #1157: white
1158
+ Case #1158: white
1159
+ Case #1159: white
1160
+ Case #1160: white
1161
+ Case #1161: black
1162
+ Case #1162: black
1163
+ Case #1163: white
1164
+ Case #1164: white
1165
+ Case #1165: white
1166
+ Case #1166: white
1167
+ Case #1167: white
1168
+ Case #1168: white
1169
+ Case #1169: white
1170
+ Case #1170: white
1171
+ Case #1171: white
1172
+ Case #1172: black
1173
+ Case #1173: white
1174
+ Case #1174: white
1175
+ Case #1175: white
1176
+ Case #1176: black
1177
+ Case #1177: white
1178
+ Case #1178: white
1179
+ Case #1179: white
1180
+ Case #1180: white
1181
+ Case #1181: black
1182
+ Case #1182: white
1183
+ Case #1183: white
1184
+ Case #1184: white
1185
+ Case #1185: black
1186
+ Case #1186: black
1187
+ Case #1187: white
1188
+ Case #1188: black
1189
+ Case #1189: black
1190
+ Case #1190: white
1191
+ Case #1191: black
1192
+ Case #1192: white
1193
+ Case #1193: black
1194
+ Case #1194: white
1195
+ Case #1195: black
1196
+ Case #1196: white
1197
+ Case #1197: white
1198
+ Case #1198: black
1199
+ Case #1199: black
1200
+ Case #1200: white
1201
+ Case #1201: black
1202
+ Case #1202: white
1203
+ Case #1203: white
1204
+ Case #1204: white
1205
+ Case #1205: white
1206
+ Case #1206: white
1207
+ Case #1207: white
1208
+ Case #1208: black
1209
+ Case #1209: black
1210
+ Case #1210: white
1211
+ Case #1211: black
1212
+ Case #1212: black
1213
+ Case #1213: white
1214
+ Case #1214: white
1215
+ Case #1215: black
1216
+ Case #1216: black
1217
+ Case #1217: white
1218
+ Case #1218: black
1219
+ Case #1219: black
1220
+ Case #1220: white
1221
+ Case #1221: white
1222
+ Case #1222: black
1223
+ Case #1223: white
1224
+ Case #1224: white
1225
+ Case #1225: white
1226
+ Case #1226: black
1227
+ Case #1227: white
1228
+ Case #1228: white
1229
+ Case #1229: black
1230
+ Case #1230: black
1231
+ Case #1231: white
1232
+ Case #1232: white
1233
+ Case #1233: black
1234
+ Case #1234: black
1235
+ Case #1235: white
1236
+ Case #1236: white
1237
+ Case #1237: black
1238
+ Case #1238: white
1239
+ Case #1239: white
1240
+ Case #1240: black
1241
+ Case #1241: black
1242
+ Case #1242: white
1243
+ Case #1243: black
1244
+ Case #1244: white
1245
+ Case #1245: white
1246
+ Case #1246: white
1247
+ Case #1247: white
1248
+ Case #1248: black
1249
+ Case #1249: white
1250
+ Case #1250: black
1251
+ Case #1251: white
1252
+ Case #1252: white
1253
+ Case #1253: white
1254
+ Case #1254: black
1255
+ Case #1255: black
1256
+ Case #1256: black
1257
+ Case #1257: white
1258
+ Case #1258: white
1259
+ Case #1259: black
1260
+ Case #1260: white
1261
+ Case #1261: white
1262
+ Case #1262: white
1263
+ Case #1263: white
1264
+ Case #1264: black
1265
+ Case #1265: white
1266
+ Case #1266: black
1267
+ Case #1267: black
1268
+ Case #1268: white
1269
+ Case #1269: white
1270
+ Case #1270: white
1271
+ Case #1271: black
1272
+ Case #1272: white
1273
+ Case #1273: white
1274
+ Case #1274: white
1275
+ Case #1275: black
1276
+ Case #1276: black
1277
+ Case #1277: black
1278
+ Case #1278: white
1279
+ Case #1279: white
1280
+ Case #1280: white
1281
+ Case #1281: black
1282
+ Case #1282: white
1283
+ Case #1283: black
1284
+ Case #1284: white
1285
+ Case #1285: black
1286
+ Case #1286: white
1287
+ Case #1287: white
1288
+ Case #1288: white
1289
+ Case #1289: white
1290
+ Case #1290: white
1291
+ Case #1291: white
1292
+ Case #1292: black
1293
+ Case #1293: black
1294
+ Case #1294: white
1295
+ Case #1295: black
1296
+ Case #1296: white
1297
+ Case #1297: white
1298
+ Case #1298: white
1299
+ Case #1299: black
1300
+ Case #1300: black
1301
+ Case #1301: white
1302
+ Case #1302: black
1303
+ Case #1303: black
1304
+ Case #1304: white
1305
+ Case #1305: white
1306
+ Case #1306: white
1307
+ Case #1307: white
1308
+ Case #1308: white
1309
+ Case #1309: white
1310
+ Case #1310: black
1311
+ Case #1311: white
1312
+ Case #1312: white
1313
+ Case #1313: black
1314
+ Case #1314: white
1315
+ Case #1315: white
1316
+ Case #1316: white
1317
+ Case #1317: white
1318
+ Case #1318: white
1319
+ Case #1319: black
1320
+ Case #1320: white
1321
+ Case #1321: black
1322
+ Case #1322: white
1323
+ Case #1323: white
1324
+ Case #1324: white
1325
+ Case #1325: black
1326
+ Case #1326: black
1327
+ Case #1327: black
1328
+ Case #1328: black
1329
+ Case #1329: white
1330
+ Case #1330: white
1331
+ Case #1331: black
1332
+ Case #1332: black
1333
+ Case #1333: white
1334
+ Case #1334: white
1335
+ Case #1335: white
1336
+ Case #1336: white
1337
+ Case #1337: black
1338
+ Case #1338: white
1339
+ Case #1339: black
1340
+ Case #1340: black
1341
+ Case #1341: black
1342
+ Case #1342: white
1343
+ Case #1343: black
1344
+ Case #1344: black
1345
+ Case #1345: black
1346
+ Case #1346: white
1347
+ Case #1347: black
1348
+ Case #1348: white
1349
+ Case #1349: white
1350
+ Case #1350: white
1351
+ Case #1351: black
1352
+ Case #1352: white
1353
+ Case #1353: white
1354
+ Case #1354: white
1355
+ Case #1355: white
1356
+ Case #1356: white
1357
+ Case #1357: white
1358
+ Case #1358: white
1359
+ Case #1359: white
1360
+ Case #1360: black
1361
+ Case #1361: white
1362
+ Case #1362: white
1363
+ Case #1363: white
1364
+ Case #1364: white
1365
+ Case #1365: white
1366
+ Case #1366: white
1367
+ Case #1367: black
1368
+ Case #1368: white
1369
+ Case #1369: white
1370
+ Case #1370: white
1371
+ Case #1371: white
1372
+ Case #1372: black
1373
+ Case #1373: white
1374
+ Case #1374: black
1375
+ Case #1375: white
1376
+ Case #1376: black
1377
+ Case #1377: white
1378
+ Case #1378: white
1379
+ Case #1379: white
1380
+ Case #1380: black
1381
+ Case #1381: white
1382
+ Case #1382: white
1383
+ Case #1383: white
1384
+ Case #1384: white
1385
+ Case #1385: black
1386
+ Case #1386: white
1387
+ Case #1387: white
1388
+ Case #1388: white
1389
+ Case #1389: black
1390
+ Case #1390: black
1391
+ Case #1391: black
1392
+ Case #1392: black
1393
+ Case #1393: white
1394
+ Case #1394: black
1395
+ Case #1395: white
1396
+ Case #1396: white
1397
+ Case #1397: black
1398
+ Case #1398: white
1399
+ Case #1399: white
1400
+ Case #1400: white
1401
+ Case #1401: white
1402
+ Case #1402: white
1403
+ Case #1403: white
1404
+ Case #1404: white
1405
+ Case #1405: white
1406
+ Case #1406: black
1407
+ Case #1407: black
1408
+ Case #1408: white
1409
+ Case #1409: black
1410
+ Case #1410: white
1411
+ Case #1411: white
1412
+ Case #1412: white
1413
+ Case #1413: white
1414
+ Case #1414: white
1415
+ Case #1415: black
1416
+ Case #1416: black
1417
+ Case #1417: black
1418
+ Case #1418: black
1419
+ Case #1419: black
1420
+ Case #1420: black
1421
+ Case #1421: black
1422
+ Case #1422: black
1423
+ Case #1423: white
1424
+ Case #1424: black
1425
+ Case #1425: white
1426
+ Case #1426: white
1427
+ Case #1427: black
1428
+ Case #1428: white
1429
+ Case #1429: black
1430
+ Case #1430: black
1431
+ Case #1431: white
1432
+ Case #1432: white
1433
+ Case #1433: black
1434
+ Case #1434: white
1435
+ Case #1435: black
1436
+ Case #1436: white
1437
+ Case #1437: white
1438
+ Case #1438: white
1439
+ Case #1439: white
1440
+ Case #1440: white
1441
+ Case #1441: white
1442
+ Case #1442: white
1443
+ Case #1443: white
1444
+ Case #1444: black
1445
+ Case #1445: black
1446
+ Case #1446: black
1447
+ Case #1447: black
1448
+ Case #1448: black
1449
+ Case #1449: white
1450
+ Case #1450: white
1451
+ Case #1451: white
1452
+ Case #1452: white
1453
+ Case #1453: black
1454
+ Case #1454: white
1455
+ Case #1455: white
1456
+ Case #1456: white
1457
+ Case #1457: black
1458
+ Case #1458: black
1459
+ Case #1459: white
1460
+ Case #1460: black
1461
+ Case #1461: white
1462
+ Case #1462: black
1463
+ Case #1463: white
1464
+ Case #1464: black
1465
+ Case #1465: white
1466
+ Case #1466: white
1467
+ Case #1467: white
1468
+ Case #1468: white
1469
+ Case #1469: white
1470
+ Case #1470: white
1471
+ Case #1471: white
1472
+ Case #1472: white
1473
+ Case #1473: black
1474
+ Case #1474: black
1475
+ Case #1475: black
1476
+ Case #1476: black
1477
+ Case #1477: white
1478
+ Case #1478: white
1479
+ Case #1479: black
1480
+ Case #1480: white
1481
+ Case #1481: white
1482
+ Case #1482: black
1483
+ Case #1483: white
1484
+ Case #1484: white
1485
+ Case #1485: white
1486
+ Case #1486: black
1487
+ Case #1487: white
1488
+ Case #1488: black
1489
+ Case #1489: white
1490
+ Case #1490: white
1491
+ Case #1491: white
1492
+ Case #1492: black
1493
+ Case #1493: white
1494
+ Case #1494: black
1495
+ Case #1495: black
1496
+ Case #1496: white
1497
+ Case #1497: black
1498
+ Case #1498: white
1499
+ Case #1499: black
1500
+ Case #1500: white
1501
+ Case #1501: black
1502
+ Case #1502: black
1503
+ Case #1503: white
1504
+ Case #1504: white
1505
+ Case #1505: white
1506
+ Case #1506: black
1507
+ Case #1507: white
1508
+ Case #1508: white
1509
+ Case #1509: black
1510
+ Case #1510: white
1511
+ Case #1511: white
1512
+ Case #1512: white
1513
+ Case #1513: white
1514
+ Case #1514: black
1515
+ Case #1515: white
1516
+ Case #1516: black
1517
+ Case #1517: white
1518
+ Case #1518: black
1519
+ Case #1519: white
1520
+ Case #1520: white
1521
+ Case #1521: black
1522
+ Case #1522: white
1523
+ Case #1523: black
1524
+ Case #1524: white
1525
+ Case #1525: black
1526
+ Case #1526: black
1527
+ Case #1527: white
1528
+ Case #1528: white
1529
+ Case #1529: black
1530
+ Case #1530: white
1531
+ Case #1531: white
1532
+ Case #1532: white
1533
+ Case #1533: white
1534
+ Case #1534: white
1535
+ Case #1535: black
1536
+ Case #1536: black
1537
+ Case #1537: black
1538
+ Case #1538: white
1539
+ Case #1539: black
1540
+ Case #1540: black
1541
+ Case #1541: black
1542
+ Case #1542: white
1543
+ Case #1543: white
1544
+ Case #1544: white
1545
+ Case #1545: white
1546
+ Case #1546: white
1547
+ Case #1547: black
1548
+ Case #1548: black
1549
+ Case #1549: white
1550
+ Case #1550: white
1551
+ Case #1551: black
1552
+ Case #1552: white
1553
+ Case #1553: white
1554
+ Case #1554: white
1555
+ Case #1555: white
1556
+ Case #1556: white
1557
+ Case #1557: white
1558
+ Case #1558: black
1559
+ Case #1559: black
1560
+ Case #1560: black
1561
+ Case #1561: white
1562
+ Case #1562: white
1563
+ Case #1563: white
1564
+ Case #1564: white
1565
+ Case #1565: white
1566
+ Case #1566: black
1567
+ Case #1567: white
1568
+ Case #1568: black
1569
+ Case #1569: white
1570
+ Case #1570: white
1571
+ Case #1571: white
1572
+ Case #1572: black
1573
+ Case #1573: white
1574
+ Case #1574: black
1575
+ Case #1575: white
1576
+ Case #1576: black
1577
+ Case #1577: white
1578
+ Case #1578: white
1579
+ Case #1579: black
1580
+ Case #1580: black
1581
+ Case #1581: black
1582
+ Case #1582: black
1583
+ Case #1583: white
1584
+ Case #1584: white
1585
+ Case #1585: black
1586
+ Case #1586: black
1587
+ Case #1587: black
1588
+ Case #1588: white
1589
+ Case #1589: white
1590
+ Case #1590: black
1591
+ Case #1591: white
1592
+ Case #1592: white
1593
+ Case #1593: black
1594
+ Case #1594: white
1595
+ Case #1595: black
1596
+ Case #1596: white
1597
+ Case #1597: white
1598
+ Case #1598: white
1599
+ Case #1599: black
1600
+ Case #1600: white
1601
+ Case #1601: white
1602
+ Case #1602: white
1603
+ Case #1603: white
1604
+ Case #1604: white
1605
+ Case #1605: black
1606
+ Case #1606: white
1607
+ Case #1607: black
1608
+ Case #1608: white
1609
+ Case #1609: white
1610
+ Case #1610: white
1611
+ Case #1611: black
1612
+ Case #1612: black
1613
+ Case #1613: white
1614
+ Case #1614: white
1615
+ Case #1615: black
1616
+ Case #1616: white
1617
+ Case #1617: white
1618
+ Case #1618: white
1619
+ Case #1619: white
1620
+ Case #1620: white
1621
+ Case #1621: black
1622
+ Case #1622: black
1623
+ Case #1623: white
1624
+ Case #1624: black
1625
+ Case #1625: white
1626
+ Case #1626: black
1627
+ Case #1627: black
1628
+ Case #1628: black
1629
+ Case #1629: black
1630
+ Case #1630: black
1631
+ Case #1631: white
1632
+ Case #1632: black
1633
+ Case #1633: white
1634
+ Case #1634: white
1635
+ Case #1635: white
1636
+ Case #1636: black
1637
+ Case #1637: black
1638
+ Case #1638: black
1639
+ Case #1639: black
1640
+ Case #1640: black
1641
+ Case #1641: white
1642
+ Case #1642: black
1643
+ Case #1643: white
1644
+ Case #1644: white
1645
+ Case #1645: black
1646
+ Case #1646: white
1647
+ Case #1647: white
1648
+ Case #1648: black
1649
+ Case #1649: white
1650
+ Case #1650: black
1651
+ Case #1651: black
1652
+ Case #1652: white
1653
+ Case #1653: black
1654
+ Case #1654: white
1655
+ Case #1655: black
1656
+ Case #1656: black
1657
+ Case #1657: white
1658
+ Case #1658: white
1659
+ Case #1659: white
1660
+ Case #1660: black
1661
+ Case #1661: white
1662
+ Case #1662: white
1663
+ Case #1663: white
1664
+ Case #1664: white
1665
+ Case #1665: white
1666
+ Case #1666: white
1667
+ Case #1667: black
1668
+ Case #1668: black
1669
+ Case #1669: white
1670
+ Case #1670: black
1671
+ Case #1671: white
1672
+ Case #1672: black
1673
+ Case #1673: white
1674
+ Case #1674: white
1675
+ Case #1675: black
1676
+ Case #1676: white
1677
+ Case #1677: white
1678
+ Case #1678: white
1679
+ Case #1679: white
1680
+ Case #1680: white
1681
+ Case #1681: white
1682
+ Case #1682: black
1683
+ Case #1683: white
1684
+ Case #1684: white
1685
+ Case #1685: black
1686
+ Case #1686: white
1687
+ Case #1687: black
1688
+ Case #1688: white
1689
+ Case #1689: white
1690
+ Case #1690: black
1691
+ Case #1691: black
1692
+ Case #1692: white
1693
+ Case #1693: white
1694
+ Case #1694: white
1695
+ Case #1695: white
1696
+ Case #1696: white
1697
+ Case #1697: black
1698
+ Case #1698: white
1699
+ Case #1699: white
1700
+ Case #1700: black
1701
+ Case #1701: black
1702
+ Case #1702: white
1703
+ Case #1703: white
1704
+ Case #1704: black
1705
+ Case #1705: white
1706
+ Case #1706: white
1707
+ Case #1707: white
1708
+ Case #1708: white
1709
+ Case #1709: black
1710
+ Case #1710: black
1711
+ Case #1711: white
1712
+ Case #1712: black
1713
+ Case #1713: white
1714
+ Case #1714: black
1715
+ Case #1715: black
1716
+ Case #1716: white
1717
+ Case #1717: white
1718
+ Case #1718: black
1719
+ Case #1719: black
1720
+ Case #1720: white
1721
+ Case #1721: black
1722
+ Case #1722: white
1723
+ Case #1723: black
1724
+ Case #1724: white
1725
+ Case #1725: black
1726
+ Case #1726: white
1727
+ Case #1727: black
1728
+ Case #1728: white
1729
+ Case #1729: black
1730
+ Case #1730: white
1731
+ Case #1731: black
1732
+ Case #1732: black
1733
+ Case #1733: black
1734
+ Case #1734: white
1735
+ Case #1735: white
1736
+ Case #1736: black
1737
+ Case #1737: black
1738
+ Case #1738: white
1739
+ Case #1739: white
1740
+ Case #1740: white
1741
+ Case #1741: white
1742
+ Case #1742: white
1743
+ Case #1743: black
1744
+ Case #1744: black
1745
+ Case #1745: white
1746
+ Case #1746: black
1747
+ Case #1747: black
1748
+ Case #1748: black
1749
+ Case #1749: white
1750
+ Case #1750: black
1751
+ Case #1751: black
1752
+ Case #1752: white
1753
+ Case #1753: white
1754
+ Case #1754: white
1755
+ Case #1755: black
1756
+ Case #1756: black
1757
+ Case #1757: white
1758
+ Case #1758: black
1759
+ Case #1759: white
1760
+ Case #1760: white
1761
+ Case #1761: white
1762
+ Case #1762: black
1763
+ Case #1763: black
1764
+ Case #1764: white
1765
+ Case #1765: white
1766
+ Case #1766: white
1767
+ Case #1767: white
1768
+ Case #1768: white
1769
+ Case #1769: white
1770
+ Case #1770: black
1771
+ Case #1771: white
1772
+ Case #1772: black
1773
+ Case #1773: white
1774
+ Case #1774: white
1775
+ Case #1775: black
1776
+ Case #1776: black
1777
+ Case #1777: white
1778
+ Case #1778: black
1779
+ Case #1779: white
1780
+ Case #1780: white
1781
+ Case #1781: white
1782
+ Case #1782: white
1783
+ Case #1783: black
1784
+ Case #1784: white
1785
+ Case #1785: black
1786
+ Case #1786: white
1787
+ Case #1787: black
1788
+ Case #1788: black
1789
+ Case #1789: white
1790
+ Case #1790: black
1791
+ Case #1791: black
1792
+ Case #1792: white
1793
+ Case #1793: white
1794
+ Case #1794: black
1795
+ Case #1795: white
1796
+ Case #1796: white
1797
+ Case #1797: white
1798
+ Case #1798: white
1799
+ Case #1799: white
1800
+ Case #1800: black
1801
+ Case #1801: black
1802
+ Case #1802: white
1803
+ Case #1803: black
1804
+ Case #1804: white
1805
+ Case #1805: white
1806
+ Case #1806: white
1807
+ Case #1807: black
1808
+ Case #1808: white
1809
+ Case #1809: black
1810
+ Case #1810: white
1811
+ Case #1811: black
1812
+ Case #1812: black
1813
+ Case #1813: black
1814
+ Case #1814: white
1815
+ Case #1815: white
1816
+ Case #1816: black
1817
+ Case #1817: black
1818
+ Case #1818: white
1819
+ Case #1819: black
1820
+ Case #1820: white
1821
+ Case #1821: black
1822
+ Case #1822: black
1823
+ Case #1823: white
1824
+ Case #1824: white
1825
+ Case #1825: white
1826
+ Case #1826: black
1827
+ Case #1827: white
1828
+ Case #1828: white
1829
+ Case #1829: black
1830
+ Case #1830: black
1831
+ Case #1831: white
1832
+ Case #1832: black
1833
+ Case #1833: black
1834
+ Case #1834: white
1835
+ Case #1835: black
1836
+ Case #1836: white
1837
+ Case #1837: white
1838
+ Case #1838: black
1839
+ Case #1839: black
1840
+ Case #1840: white
1841
+ Case #1841: black
1842
+ Case #1842: white
1843
+ Case #1843: white
1844
+ Case #1844: white
1845
+ Case #1845: white
1846
+ Case #1846: black
1847
+ Case #1847: white
1848
+ Case #1848: black
1849
+ Case #1849: black
1850
+ Case #1850: black
1851
+ Case #1851: white
1852
+ Case #1852: black
1853
+ Case #1853: white
1854
+ Case #1854: white
1855
+ Case #1855: black
1856
+ Case #1856: black
1857
+ Case #1857: white
1858
+ Case #1858: white
1859
+ Case #1859: white
1860
+ Case #1860: white
1861
+ Case #1861: black
1862
+ Case #1862: black
1863
+ Case #1863: black
1864
+ Case #1864: black
1865
+ Case #1865: black
1866
+ Case #1866: white
1867
+ Case #1867: white
1868
+ Case #1868: white
1869
+ Case #1869: white
1870
+ Case #1870: white
1871
+ Case #1871: white
1872
+ Case #1872: white
1873
+ Case #1873: black
1874
+ Case #1874: white
1875
+ Case #1875: white
1876
+ Case #1876: white
1877
+ Case #1877: white
1878
+ Case #1878: white
1879
+ Case #1879: black
1880
+ Case #1880: black
1881
+ Case #1881: black
1882
+ Case #1882: white
1883
+ Case #1883: black
1884
+ Case #1884: black
1885
+ Case #1885: black
1886
+ Case #1886: black
1887
+ Case #1887: black
1888
+ Case #1888: black
1889
+ Case #1889: white
1890
+ Case #1890: white
1891
+ Case #1891: white
1892
+ Case #1892: white
1893
+ Case #1893: white
1894
+ Case #1894: black
1895
+ Case #1895: black
1896
+ Case #1896: white
1897
+ Case #1897: black
1898
+ Case #1898: black
1899
+ Case #1899: white
1900
+ Case #1900: white
1901
+ Case #1901: black
1902
+ Case #1902: white
1903
+ Case #1903: white
1904
+ Case #1904: white
1905
+ Case #1905: black
1906
+ Case #1906: white
1907
+ Case #1907: black
1908
+ Case #1908: white
1909
+ Case #1909: black
1910
+ Case #1910: white
1911
+ Case #1911: white
1912
+ Case #1912: black
1913
+ Case #1913: black
1914
+ Case #1914: white
1915
+ Case #1915: white
1916
+ Case #1916: black
1917
+ Case #1917: white
1918
+ Case #1918: black
1919
+ Case #1919: black
1920
+ Case #1920: white
1921
+ Case #1921: white
1922
+ Case #1922: black
1923
+ Case #1923: white
1924
+ Case #1924: black
1925
+ Case #1925: white
1926
+ Case #1926: white
1927
+ Case #1927: black
1928
+ Case #1928: white
1929
+ Case #1929: black
1930
+ Case #1930: white
1931
+ Case #1931: white
1932
+ Case #1932: white
1933
+ Case #1933: black
1934
+ Case #1934: white
1935
+ Case #1935: white
1936
+ Case #1936: black
1937
+ Case #1937: white
1938
+ Case #1938: black
1939
+ Case #1939: white
1940
+ Case #1940: black
1941
+ Case #1941: black
1942
+ Case #1942: white
1943
+ Case #1943: black
1944
+ Case #1944: black
1945
+ Case #1945: white
1946
+ Case #1946: white
1947
+ Case #1947: white
1948
+ Case #1948: black
1949
+ Case #1949: white
1950
+ Case #1950: white
1951
+ Case #1951: black
1952
+ Case #1952: white
1953
+ Case #1953: white
1954
+ Case #1954: white
1955
+ Case #1955: white
1956
+ Case #1956: white
1957
+ Case #1957: black
1958
+ Case #1958: white
1959
+ Case #1959: white
1960
+ Case #1960: black
1961
+ Case #1961: white
1962
+ Case #1962: white
1963
+ Case #1963: white
1964
+ Case #1964: white
1965
+ Case #1965: black
1966
+ Case #1966: white
1967
+ Case #1967: white
1968
+ Case #1968: white
1969
+ Case #1969: white
1970
+ Case #1970: black
1971
+ Case #1971: black
1972
+ Case #1972: white
1973
+ Case #1973: black
1974
+ Case #1974: white
1975
+ Case #1975: black
1976
+ Case #1976: white
1977
+ Case #1977: white
1978
+ Case #1978: white
1979
+ Case #1979: black
1980
+ Case #1980: black
1981
+ Case #1981: white
1982
+ Case #1982: black
1983
+ Case #1983: white
1984
+ Case #1984: white
1985
+ Case #1985: black
1986
+ Case #1986: black
1987
+ Case #1987: black
1988
+ Case #1988: black
1989
+ Case #1989: white
1990
+ Case #1990: black
1991
+ Case #1991: black
1992
+ Case #1992: white
1993
+ Case #1993: white
1994
+ Case #1994: white
1995
+ Case #1995: black
1996
+ Case #1996: white
1997
+ Case #1997: black
1998
+ Case #1998: white
1999
+ Case #1999: black
2000
+ Case #2000: white
2001
+ Case #2001: black
2002
+ Case #2002: black
2003
+ Case #2003: black
2004
+ Case #2004: black
2005
+ Case #2005: white
2017/round1/268425761045248.jpg ADDED

Git LFS Details

  • SHA256: 4e6ce55910950fbca3760f460cc8f16dc8db00df79031c7774db9db55aeaea0b
  • Pointer size: 129 Bytes
  • Size of remote file: 6.3 kB
2017/round1/336634350719298.jpg ADDED

Git LFS Details

  • SHA256: b3251cba7ef4d2ebca4412cc2ea3d9edb8ba31b1c08973867ae636bc6c4dc004
  • Pointer size: 129 Bytes
  • Size of remote file: 8.43 kB