h-j-han commited on
Commit
b5af247
1 Parent(s): 2d150b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md CHANGED
@@ -135,4 +135,71 @@ configs:
135
  path: es2en/test_whspbas-*
136
  - split: test_whsptny
137
  path: es2en/test_whsptny-*
 
 
 
 
 
138
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  path: es2en/test_whspbas-*
136
  - split: test_whsptny
137
  path: es2en/test_whsptny-*
138
+ license: mit
139
+ language:
140
+ - de
141
+ - es
142
+ - en
143
  ---
144
+
145
+
146
+ # [SpeechQE: Estimating the Quality of Direct Speech Translation](https://aclanthology.org/2024.emnlp-main.1218)
147
+ This is a benchmark and training corpus for the task of quality estimation for speech translation (SpeechQE).
148
+
149
+ *(We provide test split first, and the training corpus will be provided later. However, if you want those quickly, please do not hesitate to ping me (hjhan@umd.edu)!)
150
+
151
+ ## E2E Model Trained with SpeechQE-CoVoST2
152
+
153
+ |Task | E2E Model | Trained Domain
154
+ |---|---|---|
155
+ |SpeechQE for English-to-German Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-en2de](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-en2de)| CoVoST2|
156
+ |SpeechQE for Spanish-to-English Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-es2en](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-es2en)|CoVoST2|
157
+
158
+
159
+ ## Setup
160
+ We provide code in Github repo : https://github.com/h-j-han/SpeechQE
161
+ ```bash
162
+ $ git clone https://github.com/h-j-han/SpeechQE.git
163
+ $ cd SpeechQE
164
+ ```
165
+ ```bash
166
+ $ conda create -n speechqe Python=3.11 pytorch=2.0.1 pytorch-cuda=11.7 torchvision torchaudio -c pytorch -c nvidia
167
+ $ conda activate speechqe
168
+ $ pip install -r requirements.txt
169
+ ```
170
+
171
+ ## Download Audio Data
172
+ Download the audio data from Common Voice. Here, we use mozilla-foundation/common_voice_4_0.
173
+ ```
174
+ import datasets
175
+ cv4en = datasets.load_dataset(
176
+ "mozilla-foundation/common_voice_4_0", "es", cache_dir='path/to/cv4/download',
177
+ )
178
+ ```
179
+ ## Evaluation with SpeechQE-CoVoST2
180
+ We provide SpeechQE benchmark: [h-j-han/SpeechQE-CoVoST2](https://huggingface.co/datasets/h-j-han/SpeechQE-CoVoST2).
181
+ BASE_AUDIO_PATH is the path of downloaded Common Voice dataset.
182
+ ```bash
183
+ $ python speechqe/score_speechqe.py \
184
+ --speechqe_model=h-j-han/SpeechQE-TowerInstruct-7B-es2en \
185
+ --dataset_name=h-j-han/SpeechQE-CoVoST2 \
186
+ --base_audio_path=$BASE_AUDIO_PATH \
187
+ --dataset_config_name=es2en \
188
+ --test_split_name=test \
189
+ ```
190
+
191
+
192
+ ## Reference
193
+ Please find details in this paper :
194
+ ```
195
+ @misc{han2024speechqe,
196
+ title={SpeechQE: Estimating the Quality of Direct Speech Translation},
197
+ author={HyoJung Han and Kevin Duh and Marine Carpuat},
198
+ year={2024},
199
+ eprint={2410.21485},
200
+ archivePrefix={arXiv},
201
+ primaryClass={cs.CL}
202
+ }
203
+ ```
204
+
205
+