|
import argparse |
|
import math |
|
import threading |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision.transforms.functional as TF |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
def rotate_normal_map(normal_map, angle_deg): |
|
angle_rad = angle_deg * (torch.pi / 180.0) |
|
|
|
normal_map = normal_map * 2.0 - 1.0 |
|
normal_map = normal_map.unsqueeze(0) |
|
|
|
|
|
rotation_matrix = torch.tensor([[math.cos(angle_rad), -math.sin(angle_rad), 0], |
|
[math.sin(angle_rad), math.cos(angle_rad), 0], |
|
[0, 0, 1]], device=normal_map.device) |
|
|
|
|
|
reshaped_normal_map = normal_map.view(1, 3, -1) |
|
rotation_matrix = rotation_matrix.view(1, 3, 3) |
|
|
|
|
|
rotated_vectors = torch.bmm(rotation_matrix, reshaped_normal_map) |
|
rotated_vectors = rotated_vectors.view(1, 3, normal_map.size(2), normal_map.size(3)) |
|
|
|
rotated_vectors = rotated_vectors / 2.0 + 0.5 |
|
|
|
return rotated_vectors[0] |
|
|
|
def process_map(map, mat_dest): |
|
map_name = map.stem |
|
img = Image.open(map) |
|
img = TF.to_tensor(img).cuda() |
|
img = TF.resize(img, (4096, 4096), antialias=True) |
|
|
|
img = img.repeat(1, 3, 3) |
|
img = TF.center_crop(img, (5793, 5793)) |
|
|
|
for rot_angle in range(0, 360, 45): |
|
crop_i = 0 |
|
|
|
if "normal" in map_name: |
|
rot_img = rotate_normal_map(img, axis='z', angle_deg=rot_angle) |
|
rot_img = TF.rotate(rot_img, rot_angle) |
|
else: |
|
rot_img = TF.rotate(img, rot_angle) |
|
|
|
rot_img = TF.center_crop(rot_img, (4096, 4096)) |
|
|
|
for crop_res in [4096, 2048, 1024]: |
|
|
|
crops = rot_img.unfold(1, crop_res, crop_res).unfold(2, crop_res, crop_res) |
|
crops = crops.permute(1, 2, 0, 3, 4) |
|
crops = crops.reshape(-1, crops.size(2), crop_res, crop_res) |
|
|
|
for crop in crops: |
|
crop_dir = mat_dest / f"rot_{rot_angle:03d}_crop_{crop_i:03d}" |
|
crop_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
crop = TF.resize(crop, (1024, 1024), antialias=True) |
|
|
|
if map_name in ["height", "displacement"]: |
|
crop = crop.permute(1, 2, 0).cpu().numpy() |
|
crop = crop.astype(np.uint16) |
|
crop = Image.fromarray(crop[..., 0]) |
|
crop.save(crop_dir / f"{map_name}.png") |
|
else: |
|
TF.to_pil_image(crop).save(crop_dir / f"{map_name}.png") |
|
|
|
crop_i += 1 |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser(description="Make dataset crops.") |
|
parser.add_argument("--source_dir", required=True, help="Directory where the original 4K maps are stored.") |
|
parser.add_argument("--dest_dir", required=True , help="Destination directory to store the 1K crops.") |
|
args = parser.parse_args() |
|
|
|
source_dir = Path(args.source_dir) |
|
dest_dir = Path(args.dest_dir) |
|
|
|
|
|
for file in tqdm([x for x in source_dir.glob("**/basecolor.png")]): |
|
mat_dir = file.parent |
|
|
|
name = mat_dir.stem |
|
category = mat_dir.parent.stem |
|
split = mat_dir.parent.parent.stem |
|
|
|
mat_dest = dest_dir / split / category / name |
|
mat_dest.mkdir(parents=True, exist_ok=True) |
|
|
|
thread = [] |
|
for map in mat_dir.glob("*.png"): |
|
t = threading.Thread(target=process_map, args=(map, mat_dest)) |
|
t.start() |
|
|
|
thread.append(t) |
|
|
|
for t in thread: |
|
t.join() |